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    1.1 
Introduction 

 The ability to heal wounds is one of the truly remarkable properties of biological 
systems. A grand challenge in materials science is to design  “ smart ”  synthetic 
systems that can mimic this behavior by not only  “ sensing ”  the presence of a 
 “ wound ”  or defect, but also actively re - establishing the continuity and integrity of 
the damaged area. Such materials would signifi cantly extend the lifetime and 
utility of a vast array of manufactured items. Nanotechnology is particularly rele-
vant to both the utility and fabrication of self - healing materials. For example, as 
devices reach nanoscale dimensions, it becomes critical to establish a means of 
promoting repair at these length scales. Whilst operating and directing minute 
tools to carry out this operation is still far from trivial, an optimal solution would 
be to design a system that could recognize the appearance of a nanoscopic crack 
or fi ssure, and then direct the agents of repair specifi cally to that site. Even in the 
manufacture of various macroscopic components, nanoscale damage is a critical 
issue. For instance, nanoscopic notches and scratches can appear on the surface 
of materials during the manufacturing process. Because of the small size of these 
defects they are diffi cult to detect and, consequently, diffi cult to repair. Such 
defects, however, can have a substantial effect on the mechanical properties of the 
system. For example, signifi cant stress concentrations can occur at the tip of 
notches in the surface; such regions of high stress can ultimately lead to the propa-
gation of cracks through the system and the degradation of mechanical behavior. 

 Thus, one of the driving forces for creating self - healing materials  [1 – 9]  is in fact 
the need to effect repair on the nanoscale. On the positive side, advances in nan-
otechnology could also provide routes for realizing the creation of these materials. 
In particular, scientists can now produce a stunning array of nanoscopic particles, 
and have become highly adept at tailoring the surface chemistry of the particles. 
In this chapter, recent computational studies on the design of self - healing materi-
als that exploit the unique properties of  soft  nanoscopic particles are reviewed. As 
noted further below, these studies take their inspiration from biological systems 
that show remarkable resilience in response to mechanical deformation. 
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 In a recent study  [10] , attention was focused on nanoscopic polymer gel par-
ticles, or  “ nanogels ”   [11] , as the primary building blocks in the system. New 
methodologies have recently enabled the well - controlled synthesis of such colloids 
 [12] . Furthermore, the surface of these particles can be functionalized with vari-
ous reactive groups, which allow the individual nanogel particles to be cross-
linked into a macroscopic material  [11] . By using a coarse - grained computational 
model, it was possible to examine systems of such crosslinked, soft nanogel 
particles, and to design a coating that would undergo structural rearrangement 
in response to mechanical stress, and thus prevents any catastrophic failure of 
the material  [10] . 

 It was assumed that the particles were connected via a fraction of labile bonds 
(e.g., thiol, disulfi de, or hydrogen bonds)  [3] ; the particles were also interconnected 
by stronger, less - reactive bonds (e.g., C – C, bonds)    –    referred to as  “ permanent ”  
bonds    –    and thus, the system exhibits a so - called  “ dual crosslinking. ”  Within this 
system, the stable,  “ permanent ”  bonds between the nanogels play an essential role 
by imparting structural integrity. As discussed below, it is the reactive, labile 
bonds, however, that improve the strength of the material. In particular, when the 
material is strained, the labile bonds break before the stronger connections; these 
broken bonds then allow the particles to slip and slide, to come into contact with 
new neighbors, and to make new connections that maintain the continuity of the 
fi lm. In this manner, the labile bonds can postpone catastrophic failure and, 
thereby, impart self - healing properties to the material. Through computer simula-
tions, the parameter range was pinpointed for optimizing this self - healing behav-
ior. In fact, it was found that only a relatively small volume fraction of labile bonds 
within the material could cause a dramatic increase in the ability of the network 
to resist catastrophic failure  [10] . 

 The above behavior is conceptually analogous to the properties that contribute 
to the strength of the abalone shell  nacre , where brittle inorganic layers are inter-
connected by a layer of crosslinked polymers  [13] . Under a tensile deformation, 
the weak crosslinks or  “ sacrifi cial bonds ”  are the fi rst to break. These ruptures 
dissipate energy and thus mitigate the effects of the mechanical deformation. 
Consequently, the breakage of these sacrifi cial bonds helps to maintain the struc-
tural integrity of the material. 

 It should be mentioned that, in another recent study  [14] , inspiration was taken 
from nature; namely, the functionality of biological leukocytes, which localize at 
a wound and thereby facilitate the repair process. In the synthetic system, the 
 “ leukocyte ”  represents a polymeric microcapsule, the healing agents represent 
encapsulated solid nanoparticles, and the  “ wound ”  is a microscopic crack on a 
surface. In the simulation, the nanoparticle - fi lled microcapsules are driven by an 
imposed fl uid fl ow to move along the cracked substrate. The goal was to determine 
how the release of the encapsulated nanoparticles could be harnessed to repair 
damage on the underlying surface. The simulations revealed that these capsules 
could deliver the encapsulated materials to specifi c sites on the substrate, thus 
effectively generating an alternate route to repairing surface defects. Once the 
healing nanoparticles had been deposited on the desired sites, the fl uid - driven 
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capsules could move further along the surface, and for this reason the strategy 
was termed  “ repair - and - go. ”  The latter strategy might be particularly advantageous 
as it would have a negligible impact on the precision of the nondefective regions, 
and involve minimal amounts of the repair materials. 

 It is noteworthy that micron - sized capsules fi lled with dissolved particles can 
encompass very high payloads, allowing them very rapidly to carry and deliver 
large amounts of nanoparticles to a desired location. Furthermore, the continued, 
fl ow - driven motion of these micro - carriers, at least potentially, would allow mul-
tiple damaged regions to be healed by the capsules. 

 As the introduction of a synthetic microvasculature  [15]  into structural materials 
becomes more developed, the use of such microcapsules as cellular mimics could 
expand the effi ciency of the artifi cial circulatory systems. In addition to supplying 
healing reagents in the channels, it could be advantageous to encapsulate  “ damage 
markers ”  within the microcapsules. The microcapsules would then continue to 
circulate in a  “ healthy, ”  undamaged system, but become trapped or localized at a 
damaged site and thus deliver a chemical  “ marker ”  (i.e., a visible or fl uorescent 
dye) through its porous shell. Such markers would enable the nondestructive loca-
tion and tracking of the damaged regions over time. 

 Below, attention is focused on describing the present authors ’  studies with 
nanogels. In previous investigations  [10] , the  lattice spring model  ( LSM ) was uti-
lized, which was adopted from atomistic models of solid - state and molecular 
physics  [16] . The LSM involves a network of interconnected  “ springs, ”  which 
describe the interactions between neighboring units. The large - scale behavior of 
the resultant system can be mapped onto continuum elasticity theory  [17] . Advan-
tage was taken of the LSM to formulate new techniques for modeling the interac-
tions between surface - functionalized, soft nanogels. Following Section  1.2 , the 
fi ndings on the behavior of dual crosslinked nanogel particles under strain are 
discussed, after which new calculations are described that allow modeling of the 
viscoelastic behavior of the individual nanogel particles.  

   1.2 
Methodology 

 In this section, the computational approaches are described that were used to 
examine healing at the nanoscale. Specifi cally, we address the challenge of mod-
eling deformable nanoscopic particles that are interconnected into a macroscopic 
network by both reactive and relatively nonreactive bonds. As noted above, the 
term  “ dual crosslinking ”  is used when referring to this material; here, the labile 
bonds allow the system to undergo signifi cant structural rearrangement, while the 
strong  “ permanent ”  bonds provide an important  “ backbone. ”  It is the dynamic 
interplay between these different components that gives rise to the novel and 
distinctive characteristics of the materials. 

 A network of associated colloidal particles is commonly referred to a  “ particle 
gel. ”  To the best of the present authors ’  knowledge, there have been no prior 
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computational studies on particle gels where each individual particle is itself a 
deformable gel. Thus, these studies  [10]  represent the fi rst simulations of a deform-
able network where each unit can itself undergo deformation. 

 The approach for simulating the nanogel network is based on the LSM  [17, 18] , 
where point - like masses (nodes) are interconnected by Hookean springs, which 
represent bonds. Figure  1.1 a shows the seven - node model that represents the 
individual gel unit. These units are then interconnected into an extended material 
by both permanent and labile bonds.   

 Within a single gel unit, the nodes interact through a potential   U r( )  that involves 
an attractive Hookean spring interaction, and a repulsive force, which mimics an 
excluded volume around the node:

   U r r
a

r
( ) = +⎛

⎝⎜
⎞
⎠⎟

κ
2

2     (1.1)   

 with a cut - off distance  r  c . Here,   κ  is the spring stiffness constant,  r  is the distance 
between the nodes, and  a  is the repulsion parameter. The equilibrium distance 
between the nodes is equal to   Δ = ( / ) /a 2 1 3. In the simulations, the cut - off dis-
tance  r  c  is set equal to   2Δ. Within each gel unit, the bonds do not break during 
the course of the simulations. 

 To model bonds between gel units, the same interaction potential is used, which 
emanates from each of the surface nodes on the gel pieces. Now, however, the 
spring constant   κ  for the inter - gel interactions is taken to be sixfold weaker than 
that for intra - gel bonds. (While different values for the latter spring constants 
could be chosen, it must be noted that for the large number of nodes considered 
here    –    in excess of 1000 for large samples    –    signifi cant differences between the 
inter -  and intra - gel spring constants can give rise to numerical instabilities.) Addi-

     Figure 1.1     (a) Schematic of a deformable gel particle; each 
particle consists of seven nodes (points) connected by 
spring - like bonds (lines); (b) Fragment of an undeformed 
nanogel layer for sample with  P     =    0.8. The dark lines between 
units (shaded in gray) mark stable bonds, while light gray 
lines indicate labile bonds.  

(b)(a)
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tionally,   κ  has the same value for stable and labile bonds. (The latter choice allowed 
attention to be focused specifi cally on isolating effects arising from the dual 
crosslinking.) In the case of a broken bond, the interaction potential is only given 
by the repulsive part (i.e., by the term   ∝1/r  in Equation  1.1 ). 

 The dynamical behavior of the system is taken to be in the overdamped limit, 
where the inertial terms in the equation of motion for the nodes is neglected. 
Thus, the velocity of a node is taken to be proportional to the net force acting on 
it (where the net force is the sum of forces from neighboring nodes and from an 
external tensile force). It must be noted that this assumption is commonly made 
in studies on gel dynamics  [19, 20] . Specifi cally, each gel node obeys the following 

dynamical equation:   
d

dt
i

i
r

F= μ , where   μ is the mobility and  F   i   is the force acting on 

node  i . Here,   μ  is taken to be a constant, and thus the dependence of the mobility 
on the polymer density is neglected. The force acting on the node  i  is defi ned 

as:   F
r

Fi
i

i
U

= −
∂
∂

+ ext, where the elastic energy  U  is equal to   U U m n

m n

= ′ −∑1

2
1(| |)

,

r r ; 

here, the prime denotes that the summation is for  m   ≠   n . The term   Fi
ext is the 

external force acting on particle  i . In these simulations,   Fi
ext is the tensile force 

applied to the nodes at the vertical edges of a rectangular sample. These equations 
of motion are then numerically integrated, using the fourth - order Runge – Kutta 
algorithm. 

 As explained above, in response to the applied deformation, the bonds between 
the gels units can rupture and reconnect. Thus, the Bell model  [21]  was adopted 
to describe the rupture and reformation of bonds. Recently, the Bell model has 
served as a useful framework for describing the relationship between bond dis-
sociation and stress  [22] , and has also been widely used to describe the reversible 
bonds formed in proteins  [23] , between biological cells, or between cells and sur-
faces  [24 – 26] . In accordance with the model  [21, 25] , the rupture rate,  K r  , is an 
exponential function of the force applied to the bond:

   K
r F U

k T
r
s l s l

s l

B

( , ) ( , )
( , )

exp .=
−⎡

⎣⎢
⎤
⎦⎥

ν 0 0     (1.2)   

 Here,   U s l
0
( , ) is the potential well depth at zero mechanical stress,  F  is the applied 

force,  r  0  is a parameter that characterizes the change in the reactivity of the bond 
under stress,  k B   is the Boltzmann constant, and  T  is the temperature. In the simu-
lations, we set   r0 0 2= . Δ, which is a representative value for chemical bonds  [23] .
The parameter   ν( , )s l  is an intrinsic frequency of an unstressed bond; in the LSM, 
its value is equal to   ν κ( , ) /s l m= , where   κ  is the bond stiffness and  m  is the reduced 
mass of the nodes attached to the bond (in the simulations,  m  was set to 1). The 
superscripts  s  and  l  label the stable and labile bonds, respectively. Taking repre-
sentative values into consideration, the potential well depth was set equal to 
  U k Tl

B0 100( ) =  for labile bonds, and to   U k Ts
B0 140( ) =  for strong bonds  [27] . 

 The reforming rate,  K f  , for a broken bond was calculated directly from the 
detailed balance principle  [24, 26] :
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where   ΔU s l( , ) is a difference in the potential energies of a connected and broken 
bond, and   Kr

s l
0

( , ) and   K f
s l
0

( , ) are the rupture and reforming rates for an unstressed bond. 
For the Hookean spring interaction described by Equation  1.1 , this gives  [24, 26] :

   K K r r r k Tf
s l

f
s l s l

B
( , ) ( , ) ( , )exp ( ) ( )/= − − −( )( ){ }−0 0

12κ Δ Δ     (1.3)   

 The probability for a connected bond to break and the probability for a broken 
bond to reform within a numerical time step   Δt were taken to be of the following 
forms:

   w K tr
s l

r
l s( , ) ( , )exp ,= − −[ ]1 Δ  

   w K tf
s l

f
l s( , ) ( , )exp .= − −⎡⎣ ⎤⎦1 Δ     (1.4)   

 At each simulation time step, the probability of bond rupturing or reforming 
is computed according to Equation  1.4 , where   Δt = −10 2 is the time step of 
integration. 

 Gel samples of three different sizes were considered: (i) fi ve rows, with 10 par-
ticles in each row; (ii) 10 rows with 10 particles in each row; and (iii) 12 rows with 
15 particles in each row. To prepare dual crosslinked materials with different dis-
tributions of labile and permanent bonds, these samples were constructed in two 
steps. In the fi rst step, the layers were arranged into a regular pattern with a lattice 
spacing of   3Δ between the centers of the gel units, where   Δ is the equilibrium 
distance between the nodes (  2Δ is the horizontal size of a gel unit). The vertical 
spacing between the layers was equal to   1 3. Δ. At this step, all possible bonds within 
the cut - off radius were established, and each node was allowed to subtend at most 
fi ve interactions. All of these interactions were marked as labile bonds. The sample 
was then equilibrated for 100 time steps (for the smallest sample), or 1000 time 
steps (for larger samples). During the equilibration, the initial mechanical stresses 
undergo relaxation, and the most stressed bonds were ruptured in accordance with 
the probability in Equation  1.4 . In the second step, the characteristics of each inter -
 particle bond were specifi ed, assigning stable bonds with a probability   P and labile 
bonds with a probability   ( )1−P . Thus, even for a fi xed value of   P, each simulation 
has a different, independent distribution of stable and labile bonds.  

   1.3 
Towards Self - Healing Organic Nanogels 

   1.3.1 
Response of Samples to Tensile Deformation 

 In the simulations, the interconnected gel particles form a  two - dimensional  ( 2 - D ) 
network (see Figure  1.1 b). Given that   Nsta and   Nlab are the respective average 
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number of stable and labile bonds in the system, the ratio   P N N Nsta sta lab= +/( ) is 
used to characterize the interconnections in the network. For example, for   P = 1, 
the nanogel particles are interconnected solely by the stable bonds, whereas for 
  P = 0 8. , the material encompasses 20% labile bonds. In this case,  P  is referred to 
as the dual crosslinking ratio. 

 Below are described the fi ndings for larger samples; namely, those that encom-
passed eight rows of gel particles, with 10 particles in each row, and a sample with 
12 rows, where each row consisted of 15 particles. In order to characterize the 
behavior of the system, a Weibull statistical analysis  [28]  was carried out on these 
samples. In the relatively thin samples, a certain fraction of the labile bonds are 
located in the outer surface of the fi lm. When the tensile deformation was applied 
 [10] , some of these bonds were readily broken (as they had fewer neighbors to bind 
them), and this process effectively nucleated a small surface crack which then 
initiated the ensuing dynamic processes. As the width of the sample was increased, 
however, the relative fraction of surface bonds decreased. To ensure that the simu-
lations are run in realistic time scales, for the larger samples, a small notch was 
initially introduced at a random site at the surface, after which the analysis was 
carried out, as described below. 

 Following the introduction of a crack at the lower surface (as shown by the verti-
cal arrows in Figure  1.2 ), the sample was stretched by a tensile force. It was then 
determined whether the sample fractured after being stretched at a given stress, 
  σ , or not The simulation was repeated eight times, with different initial positions 
for the crack. The probability of rupture,   pb, was calculated as a ratio of the number 

     Figure 1.2     Two different realizations of a large 
sample, which is composed of 12 rows of gel 
clusters, with 15 clusters in a row. The dual 
crosslinking ratio is  P     =    0.8. The initial cracks 
are marked by vertical arrows. Large 
horizontal arrows indicate the direction of the 
stretching forces that are applied to the 

sample ’ s edges. Top row: The sample is 
stable for 2100 time steps before a structural 
rearrangement takes place. Bottom row: the 
sample fractures at  t   ∼  9700 numerical time 
steps. It is clearly seen that fracture is 
initiated at the crack.  
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of times that the sample was completely fractured,   nb, compared to the total 
number of attempts,   ntot (  p n nb b tot= / ).   

 In the Weibull statistical analyses, the probability of a sample breaking is 
described by the two - parameter cumulative distribution function:

   pb b
m( ) exp / ,σ σ σ= − −( )⎡⎣ ⎤⎦1     (1.5)  

where   σb and  m  are the fi tting parameters characterizing the distribution. The 
parameter   σb is the characteristic stress at which the sample fractures, and the 
exponent  m  characterizes the brittleness of the sample. 

 The results of the analysis for the two larger samples are quantitatively similar; 
thus, the data for the largest sample are presented in Figure  1.3 . The plot in Figure 
 1.3 a shows the dependence of the probability of rupture,   pb, on the applied stress 
  σ  for a sample with  P     =    0.8; each point represents an average of eight independent 
simulations. The stress   σ  is normalized by the stiffness of the bond,   κ  (see Section 
 1.2 ), which has the same dimensionality as   σ  in two dimensions (so that the ratio 
  σ κ/  is dimensionless). The curve shows the result of fi tting the numerical data 
to the function   pb( )σ  in Equation  1.5 . The fi tting parameters were determined with 
the aid of the least - squares method. The values for the relevant parameters were 
  σ κb / .= 0 83 (  ±0 04. ) and  m     =    5.15 (  ±0 04. ) for  P     =    0.8. Thus, the statistical error in 
the determination of the fi tting parameters was  ∼ 5% for the characteristic rupture 
stress   σb, and less than 1% for the exponent  m . It can be seen that, for  P     =    0.8, 
the curve characterizing   pb exhibits a gentle slope.   

 By generating plots similar to Figure  1.3 a for different values of  P , the curve in 
Figure  1.3 b is obtained, which shows the dependence of the characteristic rupture 
stress   σb on the dual crosslinking ratio  P . The error bars in this plot show the 
standard deviations for   σb obtained via the fi tting procedure. The maximum in the 
plot at  P   ∼  0.7 clearly shows that the stress needed to fracture a material with a 
small fraction of reactive bonds is greater than that required to fracture a material 
composed entirely of the stable bonds.  

   1.3.2 
Stress – Strain Curve 

 In order to more completely characterize the behavior of this dual - crosslinked 
material under tensile deformation, and to demonstrate its self - healing properties, 
the stress – strain curves were also determined. In contrast to the simulations 
described above, where a constant stress was applied to a sample, in this case the 
sample was stretched at a constant velocity, and the tensile stress was computed 
as a function of the strain,   ε = −( )/L L L0 0. (In particular, the right edge of the 
sample was held fi xed, while the left edge was displaced along the horizontal axes 
with a speed  V t  .) This type of measurement is widely used in the characterization 
of crosslinked polymers  [29, 30] . It should be noted that the engineering stress 
 [31] , which is defi ned as the ratio of the tensile force to the cross - section (in the   Y  
direction) of the unperturbed layer, is calculated. At regions of high strain, where 
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     Figure 1.3     (a) Probability for the sample to 
break,  p  b , plotted as a function of the applied 
tensile stress,   σ . The solid squares show the 
results from simulations for dual crosslinked 
samples with  P     =    0.8. The dashed curve 
shows the results of fi tting of the data by the 
Weibull probability distribution function. The 

stress is normalized by the bond stiffness 
constant,   κ ; (b) The diamonds show the 
dependence of   σb on the dual crosslinking 
ratio  P , as calculated through Weibull 
statistical analyses for the largest sample. The 
full curve is plotted as a guide for the eye.  
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structural rearrangement takes place, the true stress is higher than the calculated 
engineering stress, due to the decrease in the sample ’ s cross - section during the 
course of the rearrangement. Thus, these calculations provide an estimate from 
below for the stability region of materials encompassing labile bonds ( P     <    1). 

 Figure  1.4  shows the stress – strain curves calculated for the largest sample (with 
12 rows with 15 particles in each row) for  P     =    1 and  P     =    0.8. Here, the tensile 
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     Figure 1.4     Upper diagram: Stress – strain curve 
calculated for the largest sample. Stress is 
normalized by the bond stiffness constant,   κ . 
The open squares mark the results for dual 
crosslinked samples  P (0)    =    0.8; fi lled triangles 
indicate the results for the permanently 
crosslinked  P     =    1 samples. The dashed curves 
are plotted to guide the eye. The inset shows 
jumps in the stress – strain curve on an 
enlarged scale. Lower diagrams: Panels (1 – 3) 
showing the evolution of a portion of the 

sample with increasing strain,   ε. The 
moments in time at which the panels are 
plotted are labeled in the upper plot by 
vertical arrows. Panels (1) and (2) show the 
respective images of the sample just before 
and after the formation of holes between the 
gel particles because of the bond rupture. 
Panel (3) shows the same sample after the 
holes have collapsed, at a later time. A cluster 
positioned near these structural 
rearrangements is marked by slanted arrow.  
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speed was equal to   V dt = −10 3 /τ , where   d = 2Δ is the characteristic size of the gel 
particle. The parameter   τ μκ= 1/  is the elastic response time for a bond, where   μ 
is the mobility of the nodes and   κ  is the stiffness of the bonds (see below and 
Section  1.2 ). The fi rst peak at   ε ≈ 0 08.  provides the yield stress, while at stresses 
below the yield stress the curves for the permanent and dual crosslinked samples 
coincide with each other. The latter behavior arises because the stiffness constants 
for the strong and labile bonds are chosen to be equal. The lower panels (1 – 3) in 
Figure  1.4  illustrate the mechanism of structural rearrangement (plastic elonga-
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tion) of the sample for   ε > 0 08. . As is apparent from panels (1) and (2), elongation 
of the sample at   ε > 0 08.  is accompanied by rupture of bonds and the formation 
of cavities in the sample bulk. (The formation of cavities during the plastic defor-
mation of solid samples was also observed in molecular dynamics simulations in 
crosslinked polymers  [29, 30, 32] .) The bond rupture is also responsible for the 
saw - tooth - shaped fl uctuations seen in the stress – strain curves, and is clearly visible 
in the inset. In the case of the dual crosslinked sample, the cavities collapse at 
later times due to the formation of new labile bonds between the clusters, as is 
evident from panel (3) (see also Figure  1.2 ). In effect, the dual crosslinking allows 
the particles to move relative to each other, without compromising the structural 
integrity of the sample and thereby, to decrease the strain energy.   

 It is clear from Figure  1.4  that the strain at which the  P     =    0.8 dual crosslinked 
sample fractures (  εb ≈ 0 5. ) is approximately 1.5 - fold greater than that for the 
sample with  P     =    1.0 (  εb ≈ 0 33. ). Furthermore, the stress needed to fracture the 
 P     =    0.8 sample is greater than   σ*, which is the stress necessary to fracture 
the  P     =    1 material. The latter fi nding is in agreement with the plot in Figure  1.3 , 
which was obtained from simulations involving constant applied stress. These 
observations support the conclusion that the introduction of labile bonds leads to 
an increase in the mechanical stability of the nanogel material. 

 Figure  1.5 a reveals how the total number of bonds in the sample,  N tot      =     N lab      +     N sta  , 
vary with the applied strain for the tensile deformation shown in Figure  1.4 . The 
data are plotted up to the point where the samples undergo fracture:   ε ≈ 0 5.  for 
 P     =    0.8 and   ε ≈ 0 33.  for  P     =    1.0. While the total number of bonds is decreased 
during the deformation for both  P     =    0.8 and  P     =    1.0 samples, the total number of 
bonds for the dual crosslinked sample is always higher than that for the perma-
nently crosslinked sample in the plastic deformation region   ε > 0 08. . This differ-
ence is due to the reformation of ruptured labile bonds during the structural 
rearrangement.   

 To further characterize changes in the network during rearrangement in the 
dual crosslinked sample, the saturation parameter   s N Nlab lab= / (max) is defi ned; this 
is the ratio of the number of formed labile bonds to the maximally permitted 
number of labile bonds in the sample. The total number of labile bonds is limited 
in the model by the total number of nodes on the surface of the gel particles (see 
Section  1.2 ). The dependence of  s  on   ε  for the  P     =    0.8 sample is plotted in the 
inset in Figure  1.5 b. Initially, only approximately 28% of all possible labile bonds 
were formed in the sample; all the other labile bonds were suffi ciently stressed 
that they ruptured, in accordance with the probability in Equation  1.2 . During 
rearrangement of the sample, the number of labile bonds was gradually increased, 
and reached   s ≈ 0 5.  before the sample fractured. 

 On the other hand, the less - reactive, stable bonds mostly simply rupture (without 
reforming) during rearrangement for the  P     =    1 sample (see Figure  1.5 a). As a 
consequence, the value of  P  (the ratio of the number of stable bonds to the total 
number of bonds) is decreased from its initial value of  P     =    0.8 to   P ≈ 0 53.  during 
the course of deformation (as shown in Figure  1.5 b). These data support the con-
tention that reforming of the labile bonds plays a crucial role in maintaining the 
stability of dual crosslinked samples.  
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   1.3.3 
Tensile Strength of Nanogel Samples 

 Finally, an investigation was made into how the stability of the samples depends 
on  V t  , the rate of the tensile deformation. Calculations were performed for rates 
 V t   in the range from 10  − 4  through   10 2− × d /τ . At any given rate, a stress – strain 
curve similar to that shown in Figure  1.4  was calculated for the largest sample with 

     Figure 1.5     (a) Changes in the total number of bonds in the 
sample at the initial crosslinking ratio  P (0)    =    0.8 (circles) and 
at  P     =    1.0 (triangles) during the deformation shown in Figure 
 1.4 ; (b) Dependence of  P  on strain   ε, calculated for the same 
simulation. Inset: Saturation  s  in the labile bond network as a 
function of strain. The vertical arrows in (a) and (b) mark the 
strain at which the sample fractured.  
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a randomly placed crack on its surface. The strain at which the sample fractured 
into two pieces,   εb, was determined in each simulation as the strain at which the 
stress – strain curve dropped sharply to zero. The results obtained for   εb were averaged 
over eight independent simulations made with different positions of the crack. 
The results for the  P     =    0.8 and  P     =    1.0 samples are summarized in Figure  1.6 , where 
the points show the averaged values for   εb and the error bars mark the stan dard 
deviations. The plots reveal a maximum at a tensile rate of   V dt ∼ 2 10 3× ×− /τ  for 
both dual and permanently crosslinked samples. Note that a maximum in the 
dependence of   εb on the tensile rate is known to occur for permanently crosslinked 
elastomers in the regime where viscoelastic effects are important  [33] . It is also 
evident from Figure  1.6  that, at any tensile rate, the   εb calculated for the  P     =    0.8 
sample was from  ∼ 20% (at the fastest tensile rates   V dt ≥ × ×−6 10 3 /τ ) to 30% (at 
slower tensile rates,   V dt < × ×−6 10 3 /τ ) higher than that for the  P     =    1.0 sample. 
This was in accordance with the results described above for the calculations at 
constant velocity. Of note, it follows from Figure  1.6  that the stress – strain curves 
shown in Figure  1.4  were computed for conditions near the maximum of the 
  εb tV( ) dependence.    

   1.3.4 
Modeling Viscoelastic Nanogel Particles 

 In Section  1.3.3 , the individual nanogel particles were modeled as purely elastic 
objects, and the relaxation processes within the system were due solely to the 
rearrangement of bonds interconnecting the nanogels. In order to capture viscoe-
lastic behavior, the  gel lattice spring model  ( gLSM )  [34]  was introduced into the 

     Figure 1.6     Dependence of   σb on tensile rate, shown on a 
logarithmic scale for the largest sample at  P (0)    =    0.8 
(diamonds) and  P     =    1.0 (triangles).  
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computational framework, so as to allow a generalization of the methodology to a 
broader range of materials. To formulate this gLSM, we fi rst determined the 
energy density within the deformed material through the use of a phenomenologi-
cal model of viscoelasticity. A fi nite element approximation was then employed to 
describe the deformation fi eld in terms of a set of nodal coordinates. Finally, 
Newton ’ s second law was used to derive the equations of motion for the nodal 
points. Each of these steps is described below. 

 First, an isotropic solid body that undergoes a time - dependent deformation 
  X x X→ ( , )t  is considered. Here,  X  represents the coordinates of a point within the 
material in the initial, undeformed state, whereas  x  is the position of the same 
point upon deformation at time  t . The local strain is characterized by the Finger 
tensor  [35]    ̂ ( ) (̂ ) ˆ ( )B F Ft t t= ⋅ T , where

   [ ( )]
( , )

, , , , ,F
Xˆ t

x t

X
i jij

i

j

= ∂
∂

= 1 2 3     (1.6)   

 is the deformation - gradient tensor, and the superscript  “ T ”  represents the trans-
position operation. In purely elastic solids, the local stresses at a time  t  depend on 
the local strains at the same time  t ; that is, the elastic stress tensor   ̂ ( )sel t  is a func-
tion of the strain tensor   ̂ ( )B t . If, however, the solid is viscoelastic, then the local 
stresses depend on the deformation history. Hence, the stress tensor   ̂ ( )*s t  is a 
 functional  of the relative strain tensor   ̂ ( , )b t t′ , which characterizes deformations in 
the body at time  t  relative to the state of the body at   ′ ≤t t  [36] . The relative strain 
tensor can be determined through the following decomposition:

   ̂ ( , ) (̂ ) ˆ ( ) ˆ ( ),b F C Ft t t t t′ = ′⋅ ⋅−1 T     (1.7)  

where   ̂ ( ) ˆ ( ) (̂ )C F Ft t t= ⋅T  is the left Cauchy – Green strain tensor;   ̂ ( , ) ˆ( )b Bt t0 = , since 
the body is assumed to be undeformed at   ′ =t 0. 

 The constitutive equation (i.e., the stress – strain relationship) can be determined 
if the energy dependence on the strain is known. It is assumed that the strain 
energy density,  U , which is defi ned per unit volume of unstrained material, is 
represented as a sum of two contributions:   U U U= +el

*, where   Uel describes the 
purely elastic deformations and   U * is the viscoelastic contribution to the strain 
energy. Correspondingly, the stress tensor also consists of the two contributions: 
  ̂ ( ) ˆ ( ) ˆ ( )*s s st t t= +el . The dependence of the stress tensors   ̂ ( )sel t  and   ̂ ( )*s t  on the 
respective strain tensors   ̂ ( )B t  and   ̂ ( , )b t t′  is determined by the choice of   Uel and   U *. 

 The elastic energy density   Uel depends only on   ̂B through the invariants of this 
tensor   Ii,   i = 1 2 3, , , that is,   U U I I Iel el= ( , , )1 2 3   [35] . The invariants are calculated as 
follows:

   I I I1 2
2 2

3
1

2
= = − =tr , [(tr ) tr( )], det .B B B Bˆ ˆ ˆ ˆ     (1.8)   

 It is worth noting that   I dV dV3
1 2

0
/ /=  is the relative volumetric change in a material 

element due to the deformation, where   dV  and   dV0 are the element volumes in 
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the deformed and undeformed states, respectively. Below, the notation   J I= 3
1 2/  will 

also be used. The constitutive equation for the purely elastic stress can written in 
the following general form:  [35] 

   ˆ ( )̂ ˆ ˆ ,/ / /sel = + + −− − −2 2 23
1 2

2 2 3 3 3
1 2

1 3
1 2

2
1I w I w I I w I wI B B     (1.9)  

where   ̂I is a unit tensor and

   w
I

U I I I ii
i

=
∂
∂

=el( , , ), , , .1 2 3 1 2 3     (1.10)   

 To specify the elastic contribution to the strain energy of the nanogels, the so - called 
 “ neo - Hookean compressible material ”  model is employed  [36, 37] . Within this 
model, the elastic strain energy depends only on   I1 and   I3, and has the following 
form:

   U c I K Jel = − +1 2 3 1 20 1
2/ ( ) / log ( ).    (1.11)   

 The fi rst term on the right - hand - side of Equation  1.11  depends only on   I1, and 
describes the contribution from the shear deformations. The second term on the 
right - hand - side of Equation  1.11  is the energy of bulk deformations, that is a func-
tion of the volumetric change  J . The   c0 and  K  are the model parameters, which 
are proportional to the shear and bulk moduli, respectively. Note that   K c>> 0, since 
the bulk modulus is usually much greater that the shear modulus. The substitu-
tion of Equation  1.11  into Equation  1.9  results in the following equation for the 
purely elastic stress contribution:

   ˆ ( ) ( )ˆ( ) ( )log[ ( )]ˆsel t c J t t K J t J t= +− −
0

1 1B I     (1.12)   

 The general form of the viscoelastic contribution to the energy density   U * also 
depends only on the invariants   I t ti( , )′ ,   i = 1 2 3, , , of the relative stress tensor   ̂ ( , )b t t′ . 
In polymeric materials, the shear deformations exhibit strong relaxation effects, 
whereas the bulk deformations are essentially purely elastic. Therefore, it can 
be assumed that   U * only includes the contribution from the relaxing shear 
stresses. The latter contribution can be generalized from the elastic neo - Hookean 
term in Equation  1.11  (the fi rst term that depends on   I t1( )) to the case of viscoe-
lastic behavior, so that   U * depends on the fi rst invariant   I t t1( , )′  of the relative 
strain tensor. The following simple generalization of the neo - Hookean term is 
utilized  [36] :

   U t I t
t

t t I t t dt
t

* / ( , )[ ( , ) ] / ( , )[ ( , ) ] .= − + ∂
∂ ′

′ ′ − ′∫1 2 0 0 3 1 2 31 1

0

χ χ
    (1.13)   

 Here,   χ( , )t t′  gives the viscoelastic strain energy generated at time   ′t  that remains 
unrelaxed at time   t t≥ ′. The corresponding constitutive equation for the viscoelas-
tic stress is  [36] :
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   ˆ ( ) ( , ) ( ) (̂ , ) ( ) ( , ) (̂ , )*s t t J t t J t
t

t t t t dt
t

= + ∂
∂ ′

′ ′ ′− − ∫χ χ
0 01 1

0

b b ..     (1.14)   

 The viscoelastic behavior of the nanogels is modeled by assuming a simple expo-
nential relaxation:

   χ τ( , ) exp[ ( )/ ],*t t c t t R′ = − − ′0     (1.15)  

where   c0
* contributes to the unrelaxed shear modulus and   τR is the relaxation time. 

 After the stress – strain relationships (Equations  1.12  and  1.14 ) have been speci-
fi ed, the dynamics of each nanogel particle is described by the following contin-
uum equation:

   ρ [ ( ) ] ( ).*∂ + ⋅∇ = ∇⋅ +tv v v s sel     (1.16)   

 Here,   ρ is the mass density, which depends on the volumetric changes  J , and 
  ρ ρ= −

0
1J , where   ρ0 is the nanogel density in the undeformed state. For each 

nanogel particle, Equation  1.16  is subject to boundary conditions due to the inter-
particle interactions. 

 The numerical integration of Equation  1.16  can be readily performed using the 
gLSM; this entails approximating a nanogel particle by a number of fi nite elements 
and solving the equations of motion for the nodal points of the elements. The 
gLSM approach is illustrated by considering the 2 - D nanogel particle shown in 
Figure  1.7 a. The nanogel is modeled as a  three - dimensional  ( 3 - D ) particle confi ned 
in a slit of thickness   H H= ⊥λ 0, where   H0 is the particle height in the undeformed 
state, and   λ⊥ is the uniform compressive strain imposed on the particle in the 
direction perpendicular to the slit surface. It is assumed that motion of the particle 
along the slit surface is frictionless, so that the particle dynamics can be considered 
as purely 2 - D.   

 The shape of the hexagonal nanogel particle shown in Figure  1.7 a is best cap-
tured by six equal triangular fi nite elements, each of which is labeled by the integer 
number   m = 1 2 6, , ,…  (see Figure  1.7 a). The nodes within the element m are 
labeled by   n = 1 2 3, ,  in the counter - clockwise direction (see Figure  1.7 b). The posi-
tion of a node is given by   xn( )m . In the undeformed state, the elements are assumed 
to have a uniform density   ρ0, and the elemental area is   A0. In the fi nite element 
approximation, the total energy of a system is equal to the sum of the energies of 
the elements; that is,   W U dV H A U= ≈∫ ∑0 0 0 ( )m

m
, and each elemental energy 

  U( )m  is expressed in terms of the nodal coordinates. The force acting on the node 
 n  belonging to the element m is obtained by differentiating  W  with respect to 
  xn( )m . The elemental contribution to the equation of motion is then written as:

   1 3 0

2

2
/ ( )

( )

( )
.ρ d

dt

U
n

n

x
x

m
m

m
= −

∂
∂

    (1.17)   

 If a node is common to several adjacent elements, then the equation of motion 
for the node is obtained by summation of the elemental contributions given by 
Equation  1.17 . 
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 First, let us consider the triangular element m in the hexagonal gel (below, the 
element label is omitted for brevity). As indicated in Figure  1.7 c, the element nodes 
have the coordinates   Xn,   n = 1 2 3, ,  in the undeformed state. The edge vectors   Dn, 
  n = 1 2 3, , , are also introduced, where

   D X X D X X D X X1 3 2 2 1 3 3 2 1= − = − = −, , ,     (1.18)   

 so that the edge  n  is located opposite to the node  n  (see Figure  1.7 c). Note that 
  Dnn∑ = 0. Any point  X  within the triangle can be uniquely parameterized using 
the local triangular coordinates   Ln  [38] :

   X X=
=
∑Ln

n

n

1

3

,     (1.19)   

     Figure 1.7     (a) Schematic of a viscoelastic 
nanogel cluster approximated by six triangular 
elements. Each element is labeled by an 
integer number m    =    1, 2,  …  , 6; (b) Notation 
for the node labeling in an m th  viscoelastic 
triangular element. The nodes within the 
element are labeled as 1, 2, or 3, where the 
node shared by all elements in the center of 
the cluster is marked as 1, and the rest of the 

nodes are marked sequentially in a 
counterclockwise direction; (c) Triangular 
element in undeformed (left) and deformed 
(right) states.  X  is an arbitrary point within 
the unit. The vectors  e    i   defi ne the 2 - D 
reference frame used in the simulations.  A i   
and  a i   are the areas of the triangles (as shown 
in the fi gure), and  A  0  and  a  0  are the total area 
of the unit before and after deformation.  
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 The values of   Ln, which are also known as the shape functions, are defi ned as 
  L A An n= / 0, where   An is the area of the triangle formed by the point  X  and the end 
points of the edge  n , and   A Ann

=∑ 0 is the total area of the undeformed triangle. 
The value of   An can be determined through the coordinates of the point  X  and the 
nodal coordinates as:

   An n n= × − −1 2 1/ ( ) .D X X     (1.20)   

 The above defi nitions are illustrated in Figure  1.7 c. 
 Displacement of the nodal points   X xn n t→ ( ) results in deformation of the inte-

rior of the element, and the areas   An also change,   A an n→  (as illustrated in Figure 
 1.7 c). The total area of the deformed triangle is   a ann0 = ∑ . The deformation 
  X x X→ ( ) is then approximated by linear functions of   X. In this case, 
  a a A A Ln n n/ /0 0= = , so the position of the point   x X( ) in the deformed triangle is 
characterized by the same triangular coordinates   Ln as for the point  X  of the unde-
formed element (Figure  1.7 c):

   x X X x( , ) ( ) ( ).t L tn n

n

=
=
∑

1

3

    (1.21)   

 The above equation indicates explicitly that   L Ln n= ( )X , according to Equation  1.20 . 
 By using Equation  1.21  to approximate the deformation fi eld within a triangular 

element, it is possible to determine the element strain – energy density  U  as a func-
tion of the nodal points. To facilitate this computation, the base vectors   gi are 
introduced as

   g
x

i
iX

i= ∂
∂

=, , , ,1 2 3     (1.22)  

and the matrix element for the left Cauchy – Green tensor is given in terms of   gi as

   [ ( )] ( ) ( ) [ ( )]
( ) (

C g g C
g g g g

t t t tij i j ij ikl jmn
k l m n= ⋅ = × ⋅ ×−and 1 ε ε ))

[ ( )]
,

g g g1 2 3
2⋅ ×

    (1.23)  

where   εijk is the Levi – Civita tensor. According to Equations  1.21  and  1.22 , the base 
vectors depend on the nodal coordinates as

   g xi
n

i
n

n

t
L

X
t( ) ( ).=

∂
∂=

∑
1

3

    (1.24)   

 The time dependence of the base vectors can be expressed in terms of the instan-
taneous values of the edge vectors   dn as

   g D e d D e d1
0

2 2 1 1 2 2
1

2
( ) [( ) ( ) ( ) ( )],t

A
t t= ⋅ − ⋅  

   g D e d D e d2
0

2 1 1 1 1 2
1

2
( ) [( ) ( ) ( ) ( )],t

A
t t= − ⋅ − ⋅     (1.25)  
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   g e3 3( ) ,t = ⊥λ  

where   d x xn n nt t t( ) ( ) ( )= −+ +2 1  and   Dn are defi ned by Equation  1.18 . The invariants 
of the strain tensors are calculated by substituting Equation  1.25  into Equation 
 1.23  to obtain

   I t t tnm

n m

n m1 1
2

2
2

3
2 0( ) ( ) ( ),

,

≡ + + = ⋅∑g g g x xΓ( )
    (1.26)  

   I t t t t t t tnm

n m

n m1
1( , ) tr[ ( ) ( )] ( ) ( ) ( ).

,

′ ≡ ⋅ ′ = ′ ⋅− ∑C C x xΓ     (1.27)   

 The matrix elements   Γnm
( )0  depend on the element shape in the equilibrium state, 

whereas the values   Γnm t( )′  retain information concerning the deformation history, 
namely:

   Γ Γnm
n m

nm
n m

n mA
t

t t

t t
( )

( )
, ( )

( ) ( )

( ) ( )
.0

0
2 22

= ⋅ = ⋅
×[ ]

D D d d

d d
    (1.28)   

 Similarly, the relative volume ratio between the deformed and undeformed gel,  J , 
can be calculated as

   J t t t t A t t( ) ( ) [ ( ) ( )] ( ) [ ( ) ( )].≡ ⋅ × = ⋅ ×⊥
−g g g e d d1 2 3 0

1
3 1 22λ     (1.29)   

 The substitution of Equations  1.26 ,  1.27  and  1.29  into Equations  1.11 ,  1.13  
and  1.16  yields the elemental energy density as a function of the nodal 
coordinates:

   

U t c t t K A tnm n m

nm

( ) ( ( ) ( )) / log [ ( ) ( ( )( )= ⋅ + ⋅ ×∑ ⊥
−

0
0 2

0
1

3 11 2 2Γ x x e dλ dd

x x

2( ))]

( )( ( ) ( ))*

t

c t t tnm n m

nm

+ ⋅∑θ
    (1.30)   

 Here, the dimensionless functions   θnm t( ) describe the relaxation processes and are 
obtained by solving the following rate equations:

   τ θ θR
mn

mn mn
d t

dt
t t

( )
( ) ( ),= − + Γ     (1.31)  

where   τR is the relaxation time, and   Γmn t( ) is determined by Equation  1.28 . Equa-
tion  1.31  was obtained by differentiating Equation  1.13 , with Equation  1.15  taken 
into account. Finally, the force on the node  n  of the element m is calculated accord-
ing to Equation  1.17 . 

 It can now be demonstrated that the formulation developed above captures the 
creep and stress relaxation behavior that is characteristic of viscoelastic solids. 
Below are presented the results of computer simulations performed for the trian-
gular fi nite element and the entire hexagonal nanogel particle. The dynamic equa-
tions were transformed to the dimensionless form using the length and time 
scales of   L0 = Δ and   T c0 0

2
0

1 2= ( / ) /ρ Δ , respectively, where   Δ is the lateral size of the 
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undeformed triangular element. The model parameters were chosen to be   λ⊥ = 1, 
  K c/ 0 4= ,   c c0 0 1* / = , and   τR = 0 1. . The undeformed, relaxed confi guration was used 
for the initial condition. The material ’ s behavior was tested for the bulk and shear 
deformation modes. For the triangular element, the deformation modes are shown 
schematically in Figure  1.8 . The bulk and shear deformations of the hexagonal 
particle were introduced in a similar manner.   

 The creep behavior of the triangular element was simulated by applying forces 
of   F = 10 to each of the element nodes, as shown in Figure  1.8 . The dynamic 
equations were then solved to determine the time - dependent strain   ε( )t ; the results 
are shown in Figure  1.9 a. The shear strain is indicated by the solid line and was 
defi ned as   ε γsh t t( ) tan ( )= , where   γ  is the shear angle (see Figure  1.8 a). The bulk 
strain is shown by the dashed line, and was calculated as   εb t A t A( ) ( )/= −0 1, where 
 A ( t ) and  A  0  are the element areas in the deformed and undeformed states, respec-
tively. Figure  1.9 a demonstrates that, due to the viscoelasticity of the material, the 
application of the external force leads to a gradual build - up of the strain.   

 The stress relaxation behavior of the triangular element was obtained by deter-
mining the forces that develop in the material after an instantaneous deformation, 
which then is kept constant. Figure  1.9 b shows the results of simulations at the 
instantaneous shear and bulk strains of   ε sh = 0 207.  and   εb = 0 718. , respectively. 
Figure  1.9 b shows that the nodal force,  F ( t ), acquires its maximum value  F (0) at 
an initial moment of deformation, and then decreases as the viscoelastic relaxation 
takes place. It can be seen in Figure  1.9 b that the shear stress relaxation is notice-
ably stronger than the bulk stress relaxation. 

 When six triangular elements are put together to form a hexagonal particle, the 
resulting particle  “ inherits ”  the viscoelastic properties of the constituent elements. 
Figure  1.10  shows the creep behavior of the hexagonal particle after the shear and 
bulk stresses are applied. To model the creep behavior under shear, the two bottom 
nodes were pinned to their equilibrium positions, the shear forces of   F = 10 were 
applied to the two top nodes, and the particle height and distance between the 

     Figure 1.8     Scheme depicting (a) shear and (b) bulk modes 
of deformation of a triangular element shown in Figure  1.7 b. 
The equilibrium shape of the element is shown by the dashed 
lines.  
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     Figure 1.9     (a) Creep and (b) stress relaxation of a triangular 
element under the shear (solid curves) and bulk (dashed 
curves) deformations (see text for notations);   τR is the 
relaxation time, as defi ned in Equation  1.15 .  
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     Figure 1.10     Creep behavior of a hexagonal nanogel particle 
(Figure  1.7 a) under the shear (solid curve) and bulk (dashed 
curve) modes of deformation.  
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top nodes were kept constant. The creep behavior under dilatation was modeled 
by applying the pressure of   p = 10 that pulls the surface nodes outwards. (The 
pressure  p  was computed as the value of the applied force divided by the current 
length of an edge.) By comparing Figures  1.9 a and  1.10 , it can be seen that the 
individual triangular elements and the hexagonal particle exhibit similar viscoe-
lastic behaviors.   

 The approach outlined above provides a powerful method for modeling the 
behavior of deformable materials that encompass viscoelastic behavior. In future 
studies, this model will be built on to determine how the viscoelasticity of the 
nanogels affects the macroscopic response of the dual crosslinked material 
described in this chapter.   

   1.4 
Conclusions 

 To summarize, the aim of the present studies was to demonstrate how computa-
tional modeling can be used to design self - healing materials and coatings. To that 
end, previous studies on nanoscopic gel particles that are interconnected into a 
microscopic network by both stable and labile bonds were reviewed. New calcula-
tions for modeling the viscoelastic behavior of the individual nanogel particles 
were also described. 

 To demonstrate the self - healing behavior of dual crosslinked polymeric materi-
als, the response of a network of deformable nanogels to a tensile stress was 
modeled; this showed that the introduction of a small fraction of labile crosslinks 
can lead to dramatic improvements in the strength of a material. The rapid reform-
ing of these labile bonds provides the structural rearrangement that preserves the 
mechanical integrity of the sample. 

 Analogies can drawn with other experimental systems that indicate the validity 
of these predictions. For example, it is useful to recall the polydisulfi de chains 
that contribute to the unique properties of rubber  [39] . In particular, the reshuf-
fl ing of the labile S – S bonds in the polysulfi de crosslinks as the rubber is 
deformed is what contributes to the toughness of this material  [40] . Recently, 
investigations have shown that polymer chains which encompass a signifi cant 
fraction of hydrogen bonds can also undergo a rapid structural rearrangement 
due to bond breaking and remaking that imparts self - healing properties to the 
bulk material  [3] .  

  Acknowledgments 

 The authors gratefully acknowledge fi nancial support from the DOE (for partial 
support of G.V.K. and S.F.D.), and ONR (for the partial support of V.V.Y.). G.V.K. 
also acknowledges partial support from NSF through TeraGrid resources provided 
by NCSA.  



 References  25

  References 

     1       Caruso ,  M.M.  ,   Davis ,  D.A.  ,   Shen ,  Q.  , 
  Odom ,  S.A.  ,   Sottos ,  N.R.  ,   White ,  S.R.   and 
  Moore ,  J.S.   ( 2009 )  Mechanically - induced 
chemical changes in polymeric materials . 
 Chemical Reviews ,  109 ,  5755  –  98 .  

     2       Chen ,  X.  ,   Dam ,  M.A.  ,   Ono ,  K.  ,   Mal ,  A.  , 
  Shen ,  H.  ,   Nutt ,  S.R.  ,   Sheran ,  K.   and 
  Wudl ,  F.A.   ( 2002 )  Thermally re - mendable 
cross - linked polymeric material .  Science , 
 295 ,  1698  –  702 .  

     3       Cordier ,  P.  ,   Tournilhac ,  F.  ,   Soulie -
 Ziakovic ,  C.   and   Leibler ,  L.   ( 2008 ) 
 Self - healing and thermoreversible rubber 
from supramolecular assembly .  Nature , 
 451 ,  977  –  80 .  

     4       Amendola ,  V.   and   Meneghetti ,  M.   ( 2009 ) 
 Self - healing at the nanoscale .  Nanoscale , 
 1 ,  74  –  88 .  

     5       Trask ,  R.S.  ,   Williams ,  H.R.   and   Bond ,  I.P.   
( 2007 )  Self - healing polymer composites: 
mimicking nature to enhance 
performance .  Bioinspiration and 
Biomimetics ,  2 ,  P1  –  9 .  

     6       Balazs ,  A.C.   ( 2007 )  Modeling self - healing 
materials .  Materials Today ,  10 ,  18  –  23 .  

     7       Wool ,  R.P.   ( 2008 )  Self - healing materials: a 
review .  Soft Matter ,  4 ,  400  –  18 .  

     8       Wu ,  D.Y.  ,   Meure ,  S.   and   Solomon ,  D.   
( 2008 )  Self - healing polymeric materials: a 
review of recent developments .  Progress in 
Polymer Science ,  33 ,  479  –  522 .  

     9       Hickenboth ,  C.R.    et al.  ( 2007 )  Biasing 
reaction pathways with mechanical force . 
 Nature ,  446 ,  423  –  7 .  

  10       Kolmakov ,  G.V.  ,   Matyjaszewski ,  K.   and 
  Balazs ,  A.C.   ( 2009 )  Harnessing labile 
bonds between nanogel particles to create 
self - healing materials .  ACS Nano ,  3 , 
 885  –  92 .  

  11       Min ,  K.   and   Matyjaszewski ,  K.   ( 2005 ) 
 Atom - transfer radical atom 
polymerization in microemulsion . 
 Macromolecules ,  38 ,  8131  –  4 .  

  12       Min ,  K.  ,   Gao ,  H.   and   Matyjaszewski ,  K.   
( 2006 )  Development of an ab initio 
emulsion transfer radical polymerization: 
from microemulsion to emulsion .  Journal 
of the American Chemical Society ,  128 , 
 10521  –  6 .  

  13       Smith ,  B.L.  ,   Schaffer ,  T.E.  ,   Viani ,  M.  , 
  Thompson ,  J.B.  ,   Frederick ,  N.A.  ,   Kindt ,  J.  , 

  Belcher ,  A.  ,   Stucky ,  G.D.  ,   Morse ,  D.E.   
and   Hansma ,  P.K.   ( 1999 )  Molecular 
mechanistic origin of the toughness of 
natural adhesive, fi bres and composites . 
 Nature ,  399 ,  761  –  3 .  

  14       Kolmakov ,  G.V.  ,   Revanur ,  R.  ,   Tangirala , 
 R.  ,   Emrick ,  T.  ,   Russell ,  T.P.  ,   Crosby ,  A.J.   
and   Balazs ,  A.B.   ( 2010 )  Using 
nanoparticle - fi lled microcapsules for 
site - specifi c healing of damaged 
substrates: creating a  “ repair - and - go ”  
system .  ACS Nano ,  4 ,  1115  –  23 .  

  15       Therriault ,  D.  ,   White ,  S.R.   and   Lewis ,  J.A.   
( 2003 )  Chaotic mixing in three -
 dimensional microvascular networks 
fabricated by direct - write assembly . 
 Nature Materials ,  2 ,  265  –  71 .  

  16       Ashurst ,  W.T.   and   Hoover ,  W.G.   ( 1976 ) 
 Microscopic fracture studies in the 
two - dimensional triangular lattice . 
 Physical Review B ,  14 ,  1465  –  73 .  

  17       Buxton ,  G.A.  ,   Care ,  C.M.   and   Cleaver , 
 D.J.   ( 2001 )  A lattice spring model of 
heterogeneous materials with plasticity . 
 Modelling and Simulation in Materials 
Science and Engineering ,  9 ,  485  –  97 .  

  18       Buxton ,  G.A.   and   Balazs ,  A.C.   ( 2004 ) 
 Modeling the dynamic fracture of 
polymer blends processed under shear . 
 Physical Review B ,  69 ,  054101 .  

  19       Yashin ,  V.V.   and   Balazs ,  A.C.   ( 2006 ) 
 Pattern formation and shape changes in 
self - oscillating polymer gels .  Science ,  314 , 
 798  –  801 .  

  20       Kuksenok ,  O.  ,   Yashin ,  V.V.   and   Balazs , 
 A.C.   ( 2007 )  Mechanically induced 
chemical oscillations and motion in 
responsive gels .  Soft Matter ,  3 ,  1138  –  44 .  

  21       Bell ,  G.I.   ( 1978 )  Models for the specifi c 
adhesion of cells to cells .  Science ,  200 , 
 618  –  27 .  

  22       Chang ,  K.C.  ,   Tees ,  D.F.J.   and   Hammer , 
 D.A.   ( 2000 )  The state diagram for cell 
adhesion under fl ow: leukocyte rolling 
and fi rm adhesion .  Proceedings of the 
National Academy of Sciences of the United 
States of America ,  97 ,  11262  –  7 .  

  23       Wiita ,  A.P.  ,   Ainavarapu ,  S.R.K.  ,   Huang , 
 H.H.   and   Fernandez ,  J.M.   ( 2006 ) 
 Force - dependent chemical kinetics of 
disulfi de bond reduction observed with 



 26  1 Towards Self-Healing Organic Nanogels: A Computational Approach 

Selection ,  8th edn ,  Prentice - Hall , 
 Columbus .  

  32       Mukherji ,  D.   and   Abrams ,  C.F.   ( 2008 ) 
 Microvoid formation and strain hardening 
in highly cross - linked polymer networks . 
 Physical Review E ,  78 ,  050801(R) .  

  33       Gents ,  A.N.   ( 1994 )  Strength of 
elastomers ,  Science and Technology of 
Rubber ,  2nd edn  (eds   J.E.   Mark  ,   B.   Erman   
and   F.R.   Eirich  ),  Academic Press ,  New 
York , pp.  471  –  512 .  

  34       Yashin ,  V.V.   and   Balazs ,  A.C.   ( 2007 ) 
 Theoretical and computational modeling 
of self - oscillating polymer gels .  Journal of 
Chemical Physics ,  126 ,  124707 .  

  35       Atkin ,  R.J.   and   Fox ,  N.   ( 1980 )  An 
Introduction to the Theory of Elasticity , 
 Longman ,  New York .  

  36       Drozdov ,  A.D.   ( 1996 )  Finite Elasticity and 
Viscoelasticity: A Course in the Nonlinear 
Mechanics of Solids ,  World Scientifi c , 
 Singapore .  

  37       Bonet ,  J.   and   Wood ,  R.D.   ( 1997 )  Nonlinear 
Continuum Mechanics for Finite Element 
Analysis ,  Cambridge University Press , 
 New York .  

  38       Zienkiewicz ,  O.C.   ( 1977 )  The Finite 
Element Method ,  3rd  edn,  McGraw - Hill , 
 London .  

  39       Tobolsky ,  A.V.   and   MacKnight ,  W.J.   
( 1965 )  Polymeric Sulfur and Related 
Polymers ,  Wiley - Interscience ,  New York .  

  40       Aklonis ,  J.J.   and   McKnight ,  W.J.   ( 1983 ) 
 Introduction to Polymer Viscoelasticity , 
 2nd edn ,  Wiley - Interscience , 
 New York .   

  
 
 
 
 
 
 
 
 
     

single - molecule techniques .  Proceedings of 
the National Academy of Sciences of the 
United States of America ,  103 ,  7222  –  7 .  

  24       Bell ,  G.I.  ,   Dembo ,  M.   and   Bongrand ,  P.   
( 1984 ) Cell adhesion.  Competition 
between nonspecifi c repulsion and 
specifi c bonding .  Biophysical Journal ,  45 , 
 1051  –  64 .  

  25       King ,  M.R.   and   Hammer ,  D.A.   ( 2001 ) 
 Multiparticle adhesive dynamics: 
hydrodynamic recruitment of rolling 
leukocytes .  Proceedings of the National 
Academy of Sciences of the United States of 
America ,  98 ,  14919  –  24 .  

  26       Bhatia ,  S.K.  ,   King ,  M.R.   and   Hammer , 
 D.A.   ( 2003 )  The state diagram for cell 
adhesion mediated by two receptors . 
 Biophysical Journal ,  84 ,  2671  –  90 .  

  27       Sanderson ,  R.T.   ( 1976 )  Chemical Bonds 
and Bond Energy ,  2nd  edn,  Academic 
Press ,  New York .  

  28       Lawn ,  B.R.   ( 1993 )  Fracture of Brittle Solids , 
 2nd edn ,  Cambridge University Press , 
 New York .  

  29       Dirama ,  T.E.  ,   Varshney ,  V.  ,   Anderson , 
 K.L.  ,   Shumaker ,  J.A.   and   Johnson ,  J.A.   
( 2008 )  Coarse - grained molecular 
dynamics simulations of ionic polymer 
networks.   Mechanics of Time - Dependent 
Materials ,  12 ,  205  –  20 .  

  30       Tsige ,  M.  ,   Lorentz ,  C.D.   and   Stevens ,  M.J.   
( 2004 )  Role of network connectivity on 
the mechanical properties of highly 
cross - linked polymers .  Macromolecules ,  37 , 
 8466  –  72 .  

  31       Budinski ,  K.G.   and   Budinski ,  M.K.   ( 2004 ) 
 Engineering Materials: Properties and 




