1

Strukturen anorganischer Werkstoffe (Metalle und Keramiken)

1.1 Klassifizierung und allgemeine Charakteristika anorganischer Werkstoffe

Betrachtet man als Beispiel für die Vielfältigkeit der Materialeigenschaften die elektrische Leitfähigkeit fester Stoffe bei Raumtemperatur (Tab. 1.1), so stellt man fest, dass diese Werte zwischen 10^{-18} und fast $10^8~\Omega^{-1}~\mathrm{m}^{-1}$ annehmen kann. Wohl keine physikalische Eigenschaft zeigt einen derartig großen Wertebereich, was natürlich auch dazu geführt hat, die Werkstoffe je nach Leitfähigkeit formal in Metalle

Tab. 1.1 Elektrische Leitfähigkeit ausgewählter Stoffe bei Raumtemperatur

Stoff- gruppe	Stoff	Leitfähigkeit $[\Omega^{-1} \; m^{-1}]$
Isolatoren	Bernstein Glimmer, Kochsalz Plexiglas Glas	10^{-18} 10^{-15} 10^{-13} 10^{-12}
Halbleiter	Silicium Germanium InSb dotiert Sb_2Te_3	$ 4 \cdot 10^{-18} 1 10^4 - 10^5 3 \cdot 10^5 $
Metalle	Bismut Antimon Chrom Nickel Aluminium Kupfer Silber	$8,6 \cdot 10^{5}$ $2,6 \cdot 10^{6}$ $7,1 \cdot 10^{6}$ $16,3 \cdot 10^{6}$ $36,2 \cdot 10^{6}$ $61,0 \cdot 10^{6}$ $66,7 \cdot 10^{6}$

(höchste Leitfähigkeiten), Halbleiter ("mittlerer" Wertebereich) und Isolatoren (Leitfähigkeiten kleiner als $10^{-10}~\Omega^{-1}~\text{m}^{-1}$) einzuteilen.

Geht man den physikalischen Ursachen nach, warum die Eigenschaften der festen anorganischen Werkstoffe ein so außerordentlich breites Wertespektrum aufweisen, so wird man letztlich feststellen, dass diese in der Natur der chemischen Bindung zwischen den atomaren Bausteinen der Festkörper zu suchen sind. Man unterscheidet dabei

- die metallische Bindung, bei der praktisch frei bewegliche Elektronen mit ihrer negativen Ladung die Bindung zwischen den positiv geladenen Ionenrümpfen vermitteln,
- die atomare oder kovalente Bindung, bei der lokalisierte Elektronenpaare zwischen den atomaren Bindungspartnern eine starke Bindung bewirken und
- die Ionenbindung, die durch eine elektrostatische Wechselwirkung unterschiedlich geladener Ionen im Festkörper zustande kommt.

Die beiden erstgenannten Bindungsarten können sowohl bei Elementen als auch Verbindungen auftreten, die Ionenbindung nur bei Verbindungen zwischen Elementen mit großen Unterschieden der Elektronegativitäten.

Diese Bindungstypen können "rein" auftreten (metallische Bindung: Cu, Ag, Au; kovalente Bindung: Diamant, Silicium; Ionenbindung: NaCl, LiF) oder "gemischt", d. h. als Hybride, wobei die Hybridbindungen oft fester sind als die sie bildenden reinen Bindungsarten (GaAs als Hybrid aus kovalenter und Ionenbindung; TiN als Hybrid aus metallischer und Ionenbindung; Se oder Bi als Hybride aus metallischer und kovalenter Bindung).

Während der Begriff "metallische Werkstoffe" (reine Metalle, metallische Legierungen, intermetallische Verbindungen) relativ gut definiert ist (es sind Stoffe mit dominierender metallischer Bindung), ist das für die "anderen" anorganischen Werkstoffe nicht so einfach machbar, man spricht daher in diesen Fällen pauschal von "anorganischnichtmetallischen Werkstoffen" und verwendet nicht selten dafür den Begriff "keramische Werkstoffe", auch wenn die in der Fachliteratur gegebenen Definitionen für Keramiken sehr vielfältig und meist enger gefasst sind. Jedoch eine Gemeinsamkeit haben all diesen "keramischen" Werkstoffe: Die Elektronen in diesen Systemen sind im Gegensatz zu den metallischen Werkstoffen lokalisiert. Das hat Konsequenzen für die Eigenschaften dieser Werkstoffe, auf die noch einzugehen ist.

Auf eine Gruppe von in der Technik besonders wichtigen Werkstoffen soll noch verwiesen werden, die Halbleiter. Bei ihnen sind die Elektronen bei einer Temperatur nahe 0 K lokalisiert. Jedoch werden mit steigender Temperatur durch thermische Aktivierung mehr und mehr delokalisierte, d.h. in einem elektrischen Feld leicht bewegliche Elektronen gebildet, die zu einer mit der Temperatur zunehmenden elektrischen Leitfähigkeit führen. Das unterscheidet sie von den Metallen, deren bewegliche Elektronen in ihrer Konzentration praktisch unabhängig von der Temperatur

sind und die eine mit der Temperatur abnehmende elektrische Leitfähigkeit zeigen. Delokalisierte und damit leicht bewegliche Elektronen können in Halbleitern auch auf dem Wege der Dotierung mit Elementen differierender Wertigkeiten erzeugt werden. Auch in diesem Falle ist eine thermische Aktivierung der Ladungsträger notwendig. Halbleiter weisen in der Regel kovalente bzw. dominierend kovalente Bindungen zwischen den Atomen auf.

Je nach der Art der Bindung bilden sich im Festkörper ausgehend von einem Atom/Ion unterschiedliche Nachbarschaften (Koordinationen) aus, oder anders ausgedrückt, die Bindungsart entscheidet zusammen mit geometrischen Gegebenheiten (z. B. Radien der Atome bzw. Ionen) über die Koordination insbesondere in der nächsten Nachbarschaft. Diese Koordination ist aber die Basis für die sich ausbildenden Festkörperstrukturen, die grundsätzlich in drei Kategorien eingeteilt werden können:

1. Kristalline Strukturen: Die Atome bzw. Ionen sind im Festkörper dreidimensional periodisch angeordnet. Die Struktur lässt sich beschreiben durch ein dreidimensional periodisches Gitter, in dessen Gitterpunkten die Atome/Ionen bzw. Moleküle bzw. Molekülgruppen angeordnet sind (Raumgitter). Wesentliches Kennzeichen der kristallinen Struktur ist ihre Translationssymmetrie, was bedeutet, dass eine Verschiebung des Systems um sogenannte Gittervektoren (Verbindungsvektoren zwischen äguivalenten Gitterpunkten) zur Identität der Struktur bzw. der Besetzung der Gitterpunkte führt (siehe Abschnitt 1.3). Da die vorliegenden Prinzipien der Koordination im ganzen Kristall realisiert werden, besitzt dieser eine sogenannte Fernordnung.

- 2. In einem amorphen Festkörper ist die nächste Nachbarschaftsbeziehung nicht mehr streng geregelt, es treten z.B. Schwankungsbereiche für die Abstände zu den nächsten Nachbarn auf. Man kann zwar die Besetzung in der nächsten Nachbarschaft mit einiger Sicherheit vorhersagen, doch je weiter man sich vom Ausgangspunkt entfernt, desto unbestimmter werden die Angaben zu den Atom-/Ionen-Positionen bzw. den Besetzungen. Es existiert keine Fernordnung mehr, nur noch eine sogenannte Nahordnung.
- 3. Ein selten auftretender Fall sind die Quasikristalle. In ihnen stellt man zwar eine weitreichende Ordnung bezüglich der Positionen der Atome/Ionen fest (Fernordnung), es ist aber keine dreidimensional periodische. Damit fehlt die für kristalline Strukturen kennzeichnende Translationssymmetrie. Das ist verknüpft mit dem Auftreten von Symmetrien, die es in kristallinen Strukturen nicht gibt (z. B. fünfzählige Achsen). Substanzen/Materialien mit quasikristalliner Struktur sind selten (z. B. Legierungen im Konzentrationsbereich von $Al_{80}Mn_{20}$, $Al_{65}Cu_{20}Co_{15}$, $Ti_{45}Zr_{40}Ni_{15}$) und werden bisher technisch nicht genutzt.

Der überwiegende Teil der Werkstoffe ist kristallin. Dabei kann der betrachtete Werkstoff aus einem einzigen Kristall bestehen, dann spricht man von einem Einkristall (Abb. 1.1). Einkristalle findet man häufig in der Natur, man erkennt sie leicht an der Ausbildung von ebenen, unter bestimmten Winkeln zueinander angeordneten (Wachstums-) Flächen. Die technisch erzeugten Einkristalle lassen oft diese Ebenmäßigkeit der äußeren Begrenzungsflächen vermissen, ohne dass damit der einkristalline Charakter verloren gegangen ist.

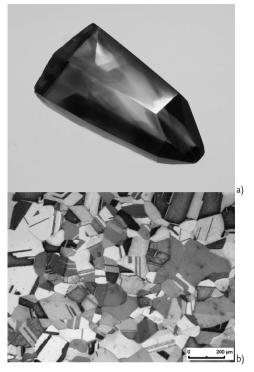


Abb. 1.1 Kristalline Strukturen: a) natürlich gewachsener Einkristall (Quarz), b) Vielkristall (Messing)

Die wohl größte Gruppe der kristallinen Werkstoffe sind die Viel- oder Polykristalle. Sie bestehen aus lückenlos aneinander gefügten Bereichen mit einer bestimmten für Festkörper typischen Ordnung, getrennt durch Grenzflächen. Diese Bereiche können alle der gleichen Phase angehören oder auch verschiedenen. Meist sind sie einkristallin (genannt Kristallite bzw. Körner), jedoch können sie auch amorpher Natur oder quasikristallin sein. Abbildung 1.1 b zeigt das mikroskopisch sichtbar gemachte "Gefüge" von polykristallinem Messing. In diesem Falle sind zahlreiche, etwa 50-100 µm große einkristalline Bereiche von Cu-Zn-Mischkristallen lückenlos aneinander gefügt (s. auch Abschnitt 1.9).

1.2

Grundeigenschaften der anorganischen Werkstoffe

121

Metallische Werkstoffe

Die Frage nach dem Wesen der Metalle wird in der Regel damit beantwortet, dass man die typischen Eigenschaften dieser Stoffgruppe nennt. Zu ihnen gehören:

- das hohe Reflexionsvermögen bzw. der charakteristische "metallische" Glanz, gepaart mit Undurchsichtigkeit,
- eine hohe elektrische und thermische Leitfähigkeit und
- eine im Allgemeinen gute plastische Verformbarkeit.

Diese Grundeigenschaften, durch die sich die Metalle von anderen Werkstoffgruppen deutlich unterscheiden, können durch Legierungsbildung sowie gezielte Vorund Nachbehandlungen in weiten Grenzen variiert und damit technischen Anforderungen an metallische Werkstoffe optimal angepasst werden.

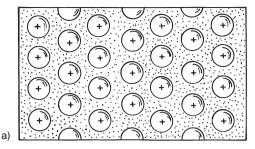
Betrachten wir zunächst die elektrische Leitfähigkeit als die für Metalle typischste Eigenschaft. Wie Tab. 1.1 ausweist, liegen die Leitfähigkeiten der Metalle bei Raumtemperatur im Bereich von etwa 10⁵ bis $6.10^7~\Omega^{-1}~m^{-1}$ und damit um mehr als 10 Zehnerpotenzen über denen der Isolatoren. Die Abgrenzung zwischen Metallen und Halbleitern fällt dagegen nicht so leicht, insbesondere wenn man dotierte Halbleiter in Betracht zieht. Eine Reihe von Metallen wie z. B. Bismut (Wismut) und Antimon, die auch als Halbmetalle bezeichnet werden, haben relativ geringe Leitfähigkeiten, die im Bereich der Kennwerte für halbleitende Substanzen liegen. Eine Unterscheidung zwischen diesen Gruppen kann jedoch einfach über das Vorzeichen des Temperaturkoeffizienten der Leitfähigkeit vorgenommen werden: Metalle haben stets einen negativen Temperaturkoeffizienten (Erniedrigung der Leitfähigkeit mit steigender Temperatur), Halbleiter dagegen einen positiven (Erhöhung der Leitfähigkeit durch wachsende Ladungsträgerdichten mit steigender Temperatur).

Die thermischen Leitfähigkeiten der Metalle sind um zwei bis drei Zehnerpotenzen höher als die typischer Isolatoren. Sie betragen z. B. für Silber 422, für Bismut 8, für Glas 0,6 und für Polyvinylchlorid 0,16 W m $^{-1}$ K $^{-1}$.

Während Metalle ein optisches Reflexionsvermögen von mehr als 60 % erreichen (Silber: 94 %, Kupfer: 83 %, Eisen: 57 %), weisen Ionenkristalle Werte von ≤ 30 % auf. Gewöhnliches Glas reflektiert nur etwa 4 % des auffallenden Lichts, ist dafür aber in hohem Maß lichtdurchlässig (transparent).

Die für eine nachweisbare plastische Verformung bei Raumtemperatur notwendige kritische Schubspannung metallischer Einkristalle nimmt Werte zwischen 0,1 und 20 MPa an, dagegen sind die meisten Halbleiter und vor allem die Ionenkristalle bei dieser Temperatur praktisch nicht oder nur sehr schlecht verformbar. Sie verhalten sich spröde, d. h. sie gehen bei entsprechender mechanischer Beanspruchung ohne vorausgehende plastische Deformation zu Bruch.

Womit lassen sich diese charakteristischen Eigenschaften der Metalle erklären? Ursache ist die metallische Bindung zwischen den atomaren Bausteinen der festen, aber auch der flüssigen Metalle. Metallatome geben bei hinreichender gegenseitiger Annäherung, wie sie bei der Bildung von kondensierten Phasen stattgefunden hat, leicht einen Teil ihrer Hüllenelektronen ab. Es bildet sich ein Gerüst von positiv geladenen Ionenrümpfen, zwischen denen



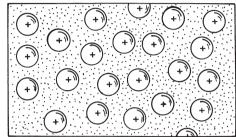


Abb. 1.2 Schematische Darstellung des metallischen Bindungszustands: Zwischen den positiven Ionenrümpfen bilden die delokalisierten Elektronen das sogenannte Elektronengas: a) kristalliner (fern geordneter) Zustand, b) amorpher (nah geordneter) Zustand

sich die abgegebenen Elektronen unlokalisiert, d. h. quasi frei mit Geschwindigkeiten im Bereich von 1000 km s⁻¹ bewegen können (Abb. 1.2). Sie formieren das sogenannte Elektronengas. Dieses Elektronengas mit seiner negativen Ladung vermittelt die Bindung zwischen den positiven Ionenrümpfen; es tritt eine ungerichtete elektrostatische Wechselwirkung auf. Diese Wechselwirkung ist außerdem unabgesättigt, d.h. die Zahl der nächsten Nachbarn, die sogenannte Koordinationszahl, wird letztlich nur durch die geometrischen Gegebenheiten begrenzt. Sie strebt maximale Werte an, da auf diese Weise der Energiezustand des Systems minimiert werden kann.

Für den metallischen Zustand ist es nicht notwendig, dass die Ionenrümpfe eine strenge räumliche Ordnung bzw. dreidimensionale Periodizität mit großer Reichweite, d. h. eine Fernordnung aufweisen, wie sie in kristallinen Körpern realisiert wird, sondern er tritt auch dann auf, wenn die Ionenrümpfe zueinander nur nahgeordnet sind, wie es von metallischen Schmelzen und festen metallischen Gläsern her bekannt ist. Auch tritt dieser metallische Bindungszustand nicht nur bei gleichartigen Atomen auf, d. h. bei reinen Metallen, sondern auch bei ungleichartigen Partnern (z. B. in Mischkristallen und intermetallischen Verbindungen). Bestimmte metallische Legierungssysteme neigen zur Ausbildung von Quasikristallen.

Die eingangs genannten typischen metallischen Eigenschaften sind Folge dieses metallischen Bindungszustands, wie nachfolgend kurz erläutert werden soll.

Die Elektronen des Elektronengases bewegen sich nahezu frei zwischen den positiven Ionenrümpfen. Bei Anlegen eines elektrischen Felds E (einer äußeren Spannung) wirkt auf diese Elektronen eine Kraft, die sie leicht in Feldrichtung driften lässt, was zum Transport von elektrischer Ladung in dieser Richtung führt. Es entsteht ein elektrischer Stromfluss. Die leichte Beweglichkeit der freien Elektronen bei einer angelegten Spannung/Feldstärke ist die Ursache für die gute elektrische Leitfähigkeit der Metalle. Diese wird im Wesentlichen bestimmt durch Nel (Zahl der Leitfähigkeitselektronen pro Volumeneinheit) und μ_{el} (Elektronenbeweglichkeit). Die Stromdichte i (Ladungsmenge, die pro Zeiteinheit durch die Einheitsfläche tritt) ergibt sich zu

$$j = N_{\rm el} e_0 \mu_{\rm el} E = \sigma E \tag{1.1}$$

- e₀ Elementarladung
- σ elektrische Leitfähigkeit, (Kehrwert: spezifischer elektrischer Widerstand ρ)
- E elektrische Feldstärke

Beziehung 1.1 stellt das verallgemeinerte geometrieunabhängige Ohm'sche Gesetz dar: j entspricht dem Strom I, E der Spannung U und σ^{-1} dem Widerstand R (I = R^{-1} U).

Da die Ladungsträgerdichte bei den Metallen praktisch von der Temperatur unabhängig ist, bestimmt die Temperaturabhängigkeit der Elektronenbeweglichkeit die der elektrischen Leitfähigkeit. Aufgrund der mit der Temperatur wachsenden Wechselwirkung der Elektronen mit den thermischen Gitterschwingungen und Gitterfehlern aller Art sinkt mit zunehmendem T die Beweglichkeit der Elektronen und damit die elektrische Leitfähigkeit.

Die hohe Beweglichkeit und Konzentration der Leitfähigkeitselektronen führt auch zu einer großen thermischen Leitfähigkeit der Metalle. Entsprechend dem Wiedemann-Franz'schen Gesetz ist bei nicht zu tiefen Temperaturen, d. h. bei Dominanz der elektronenbedingten Wärmeleitung, das Verhältnis aus thermischer (κ) und elektrischer Leitfähigkeit direkt proportional zur Temperatur T bzw. bei gegebener Temperatur für alle Metalle konstant.

$$\kappa/\sigma = K_{\rm W} \cdot T$$
 (1.2)
$$K_{\rm W} = 2,44 \cdot 10^{-8} \text{ W V A}^{-1} \text{ K}^{-2}$$

Die elektrostatische Wechselwirkung zwischen den Ionenrümpfen und dem Elektronengas ist ungerichtet und wegen der Gleichartigkeit der Bindungspartner unabgesättigt. Das führt zu einer möglichst hohen Zahl nächster Nachbarn, weshalb sich die atomaren Strukturen der Metalle durch eine hohe Packungsdichte auszeichnen, wie sie von Substanzen mit gerichteten bzw. abgesättigten Bindungen (Ionen-bzw. Kovalenzbindungen) nicht erreicht wird.

Die quasifreien Elektronen des Elektronengases können sehr leicht durch wech-

Tab. 1.2 Reflexionsvermögen von Materialien

Material	R [%]	
Ag	94	
Mg	93	
Cu	83	
Al	83	
Ni	62	
Fe	57	
TiC	47	
Fe ₃ C	56	
TiO ₂	20	
Fe ₃ O ₄	21	
Al_2O_3	7,6	
SiO_2	4	

selnde elektrische Felder, d. h. durch elektromagnetische Strahlungen wie Licht, zu Schwingungen angeregt werden (Entstehung elektrischer Dipole). Infolgedessen strahlen sie ihrerseits elektromagnetische Wellen mit gleicher Frequenz ab, die als reflektierte Strahlung wahrgenommen werden. Diese Tatsache und die hohe Konzentration der Leitfähigkeitselektronen erklären das hohe Reflexionsvermögen der Metalle (Tab. 1.2). Als Regel gilt dabei, dass Metalle mit hoher elektrischer Leitfähigkeit auch ein hohes Reflexionsvermögen besitzen (Silber). Andererseits bedeutet das auch, dass Metalle praktisch undurchsichtig (opak) sind. Nur der nicht reflektierte Anteil des Lichts dringt in das Metall ein und wird in ihm außerdem noch stark absorbiert.

Wegen der ungerichteten Bindung lassen sich die Bindungsrichtungen zwischen benachbarten Ionenrümpfen leicht verändern ("verbiegen"), was bedeutet, dass die Ionenrümpfe relativ leicht gegeneinander verschoben werden können. Deswegen sind Versetzungen als eine besondere Gitterfehlerart, die eine plastische Deformation von Kristallen ermöglicht, leicht beweglich (s. Abschnitt 1.7.3). Die Folge davon ist, dass

Tab. 1.3 Kritische Schubspannungen für die plastische Verformung von Metallen durch Gleiten (Raumtemperatur)

Metalle	τ [MPa]
Cu	0,2
Cu-14 Atom-% Al	20
Al	0,1
Ni	5
Mg, Cd	0,5
Fe	5-10
V	20

die für eine plastische Deformation notwendige minimale Schubspannung verhältnismäßig gering ist (Tab. 1.3). Metalle lassen sich bekanntlich gut plastisch verformen.

1.2.2 Keramische Werkstoffe

Unter dem Begriff "Keramische Werkstoffe" sollen hier alle nichtmetallisch-anorganischen Werkstoffe verstanden werden, d. h. Werkstoffe, die dominierend ionische bzw. kovalente Bindungen und ihre Mischformen aufweisen. Es sind vielfach Verbindungen zwischen Metallen/Halbmetallen und Nichtmetallen (Sauerstoff, Stickstoff, Kohlenstoff, Silicium, Bor u. a.). Es können aber auch Verbindungen zwischen Nichtmetallen selbst sein (z. B. SiC, Si₃N₄ u. a. m.). Sie sind vorwiegend kristallin, oft aber auch amorph.

Somit sind unter dem Begriff "keramische" bzw. "anorganisch-nichtmetallische Werkstoffe" klassische Tonkeramiken und Porzellane, Nitride, Oxide, Boride und Karbide, Silikate, Email und Gläser, Bindemittel und Baustoffe, Feuerfestmaterialien und vieles mehr zusammengefasst worden. Den Keramiken ist gemeinsam, dass sie keine freien, d. h. delokalisierte Elektronen besitzen.

Die Folgen davon sind:

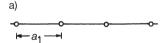
- schlechte bzw. verschwindende elektrische Leitfähigkeit;
- geringe Wärmeleitfähigkeiten: Wärmetransport nur über Gitterschwingungen (Phononenleitung), die nur bei Materialien mit niedriger Ordnungszahl groß werden (z. B. Diamant, Berylliumoxid, Borkarbid, Bornitrid);
- niedrige mittlere Ordnungszahlen und Dichten;
- chemische Beständigkeit (Säurebeständigkeiten oft höher als Beständigkeiten in alkalischen Medien);
- schlechte Verschiebbarkeit der atomaren Bindungspartner gegeneinander, was zu hohen kritischen Fließspannungen führt, die meistens deutlich höher sind als die kritischen Bruchspannungen (Keramiken haben in der Regel hohe Härten und sind auch bei erhöhten Temperaturen spröde.);
- oft optische Transparenz und damit geringes Reflexionsvermögen;
- mittlere und hohe Schmelztemperaturen bzw. geringe thermische Ausdehnungskoeffizienten;
- Glasbildung oft leicht möglich (Gläser, amorphe Strukturen);
- Spezielle physikalische Eigenschaften (Ferrimagnetika; Ferroelektrika, Dielektrika, Piezoelektrika, Thermoelektrika)

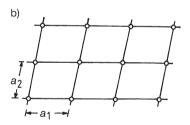
Kristalliner Aufbau anorganischer Werkstoffe (Kristallografie)

Als Kristall bezeichnet man einen homogenen Festkörper, dessen atomare Bausteine eine regelmäßige, dreidimensional periodische Anordnung aufweisen, die sich über das gesamte Kristallvolumen erstreckt. Aus dieser Definition eines Kristalls folgt unter anderem, dass

- sich die Schwerpunktslagen der atomaren Kristallbausteine (Atome, Ionen, Moleküle) durch ein räumliches Punktgitter im mathematischen Sinn beschreiben lassen (Raumgitter),
- sich der Kristall durch eine Fernordnung seiner Bausteine auszeichnet (ausgehend von einem Gitterpunkt kann bei Kenntnis der sogenannten Gitterparameter die Position aller Gitterpunkte berechnet werden),
- Symmetriebeziehungen zwischen Elementen des Raumgitters existieren und
- die Eigenschaften der Kristalle im Allgemeinen richtungsabhängig sind (Anisotropie).

In einem räumlichen Punktgitter (Raumgitter) existieren (Abb. 1.3)





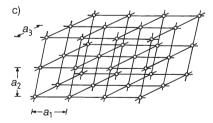


Abb. 1.3 Erklärung eines Raumgitters: a) Gittergerade mit Translationsperiode a_1 , b) Netzebene mit Translationsperioden a_1 und a_2 , c) Raumgitter mit Translationsperioden a_1 , a_2 und a_3

- Gitterrichtungen als Verbindung von Gitterpunkten, entlang denen eine periodische Atomanordnung auftritt;
- Gitterebenen (Netzebenen) als ebene Anordnungen von Gitterpunkten, wobei diese ein zweidimensional periodisches Netz bilden und
- elementare parallelepipedische Gitterzellen (Elementarzellen), die in drei Dimensionen raumfüllend periodisch wiederkehren.

Die wichtigste Eigenschaft des Raumgitters ist seine Translationsfähigkeit. Als Translation bezeichnet man eine solche Verschiebung des Gitters in einer durch zwei Gitterpunkte vorgegebenen Gitterrichtung, die nach einem bestimmten Verschiebungsbetrag das Gitter wieder mit seiner Ausgangsstellung zur Deckung bringt (Erreichen der Identität). Die kleinstmögliche Verschiebung in dieser Gitterrichtung, die diese Bedingung erfüllt, heißt Translationsperiode (T). Alle Verschiebungen um ein ganzzahliges Vielfaches einer Translationsperiode führen ebenfalls zur Identität mit der Ausgangsstellung. Abbildung 1.3 a veranschaulicht eine Gittergerade eines Raumgitters mit der Translationsperiode $T_1 = a_1$. Kristallografisch ungleichwertige Gitterrichtungen weisen eine unterschiedliche Translationsperiode auf. Da es unendlich viele Gitterpunkte gibt, existieren ebenfalls unendlich viele Gitterrichtungen.

Zwei sich in einem Punkt schneidende Gittergeraden mit den Translationsperioden T_1 und T_2 legen eine sogenannte Gitterebene fest, auf der die Gitterpunkte netzartig angeordnet sind. Sie wird daher auch als *Netzebene* bezeichnet. Die aus den Translationsperioden $T_1 = a_1$ und $T_2 = a_2$ gebildeten elementaren Netzmaschen wiederholen sich zweidimensional periodisch (Abb. 1.3 b).

Fügt man letztlich eine Translation um T_3 in einer Richtung hinzu, die nicht in der Netzebene mit T_1 und T_2 liegt, baut sich ein Raumgitter auf, das als parallele äquidistante Aufeinanderfolge von identischen Netzebenen aufzufassen ist (Netzebenenscharen, Abb. 1.3 c). Die drei Translationsperioden T_i definieren ein sechsseitiges Parallelepiped, dessen Flächen Parallelogramme aus je zwei T_i darstellen.

In jedem Raumgitter lassen sich nun drei Translationsperioden mit kleinsten Beträgen $T_i = a_i$ finden. Die Kanten des zugehörigen Parallelepipeds schließen dann möglichst große und einfache Winkel α_i ein. Das sich aus diesen drei Grundvektoren des Raumgitters bildende Parallelepiped heißt *Elementarzelle*, die in drei Dimensionen periodisch aneinander gefügt das Raumgitter ergibt. Die Elementarzellen beinhalten alle relevanten Strukturinformationen des Kristalls.

Symmetrie der Raumgitter bedeutet, dass es zu jeder Gitterrichtung weitere gibt, die bezüglich ihrer atomaren Belegung bzw. Translationsperioden und damit ihrer physikalischen Eigenschaften gleichwertig bzw. identisch sind. Mit anderen Worten: Es gibt sogenannte Symmetrieoperationen, deren Anwendung das unendlich gedachte Raumgitter wieder mit sich selbst zur Deckung bringt. Zu diesen Operationen zählen

- die Translation.
- die Spiegelung,
- die Drehung,
- die Inversion und
- bestimmte Verknüpfungen dieser Operationen untereinander.

Vielfach lassen sich in einem Raumgitter Ebenen finden, an denen durch einfache Spiegelung die Gitterpunkte des einen Halbraums in die des anderen identisch überführt werden können (Abb. 1.4). Sol-

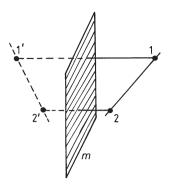


Abb. 1.4 Spiegelung zweier Punkte 1 und 2 an der Spiegelebene *m*

che Ebenen bezeichnet man als Spiegelebenen, diese Symmetrieoperation selbst als Spiegelung.

Eine weitere Gruppe von Symmetrieoperationen bilden die Drehungen. Sie werden durch Drehachsen verschiedener Zähligkeiten n charakterisiert, wobei n den Drehwinkel ϕ_n bestimmt, um den das Gitter mindestens bis zu seiner Identität mit der Ausgangsposition gedreht werden muss. Er beträgt $\phi_n = 360^\circ/n$ bzw. $\phi_n = 2\pi/n$. Zum Beispiel erreicht man bei einer sechszähligen Drehachse nach einer Drehung um $2\pi/6$ oder 60° eine Identitätslage, bei einer vierzähligen dagegen nach $\pi/2$ oder 90°. Das bedeutet, dass sich für diese Beispiele bei einer vollen Drehung sechs bzw. vier gleichwertige, identische Positionen für das Gitter ergeben. Die mit den Translationseigenschaften der Raumgitter verträglichen Zähligkeiten der Drehachsen betragen 2, 3, 4 oder 6 (Abb. 1.5).

Als *Inversion* bezeichnet man die Spiegelung an einem Punkt, Inversionszentrum genannt (Abb. 1.6). Identität zweier Gitterpunkte liegt dann vor, wenn ihre Verbindungslinie durch das Inversionszentrum verläuft und ihr Abstand zu diesem jeweils gleich groß ist.

Kombiniert man diese Symmetrieelemente miteinander, so stellt man fest,

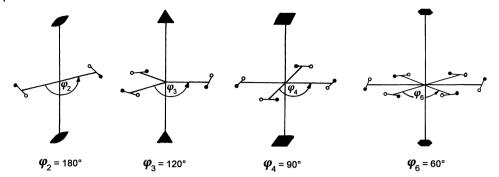


Abb. 1.5 Drehachsen mit Zwei-, Drei-, Vier- und Sechszähligkeit

Abb. 1.6 Inversion; Spiegelung an einem Punkt Z

dass nur 32 verschiedene Kombinationsmöglichkeiten, Punktgruppen genannt, existieren, die die Bedingungen für ein Raumgitter erfüllen. Diese Kombinationen entsprechen den aus der Kristallografie bekannten 32 Kristallklassen. Zu ihrer Beschreibung verwendet man 7 verschiedene Koordinatensysteme aus den Grundvektoren ai, die mit einer Ausnahme keine kartesischen Koordinatensysteme darstellen. Sie weisen eine unterschiedliche Metrik bezüglich der ai bzw. Achsenwinkel auf, die von der Rechtwinkligkeit abweichen. Entscheidend für die Zuordnung zu den Kristallsystemen sind die Beträge der elementaren Translationen a_i und die Winkel α_i zwischen ihnen. (Die Wahl der drei elementaren Translationen soll so erfolgen, dass ihre Beträge möglichst klein sind und ihre Richtungen hohe Symmetrie aufweisen.) Die Beträge a_i und die Winkel α_i werden als Gitterparameter bezeichnet. Bei der Definition der Achsenwinkel α_i gilt folgende

Konvention: Der Winkel α_1 wird von den Achsen a_2 und a_3 eingeschlossen, der Winkel α_2 von a_3 und a_1 sowie der Winkel α_3 von a_1 und a_2 .

In Tab. 1.4 sind die möglichen Kristallsysteme zusammengestellt (vergleiche auch Abb. 1.7).

Die rhomboedrische Elementarzelle kann aus einem Würfel abgeleitet werden, der in der Richtung einer Raumdiagonalen gestaucht bzw. gestreckt wurde. Dieses Raumgitter lässt sich auch mit einem Achsensystem beschreiben, das dem hexagonalen entspricht. Allerdings tritt dann in a3-Richtung nur eine dreizählige Achse auf, weshalb man das rhomboedrische System auch dem trigonalen Untersystem des hexagonalen Systems zuordnen kann. Unter dieser Bedingung kommt man auch mit sechs Koordinaten- bzw. Kristallsystemen aus.

Die Elementarzellen für die Kristallsysteme enthalten nicht nur in ihren Eckpunkten gleichwertige Gitterpunkte (Äquivalentpositionen), in denen die Atome/Ionen bzw. Moleküle angeordnet sind, sondern teilweise auch in den Flächen- bzw. Raummitten. Die sich daraus ergebenden 14 verschiedenen Möglichkeiten werden Bravais-Typen genannt und sind in Abb. 1.8 dargestellt. Ein gleichwertiger Gitterpunkt in der Raummitte der Elementarzelle führt zu

Tab. 1.4 Kristallsysteme

System	Gitterparameter	Wesentliche Symmetrieelemente
Kubisch	$a_{\rm i}=a$ $a_{\rm 1}=90^{\circ}$	4 dreizählige Achsen in Richtung der Raum- diagonalen der würfelförmigen Elementarzelle
Tetragonal	$\mathbf{a}_1 = \mathbf{a}_2 \neq \mathbf{a}_3$ $\alpha_1 = \alpha_2 = \alpha_3 = 90^{\circ}$	vierzählige Achse in a_3 -Richtung
Hexagonal	$a_1 = a_2 \neq a_3$ $\alpha_1 = \alpha_2 = 90^\circ; \ \alpha_3 = 120^\circ$	sechszählige Achse in a_3 -Richtung
Rhomboedrisch	$a_1 = a_2 = a_3$ $\alpha_1 = \alpha_2 = \alpha_3 \neq 90^{\circ}$	dreizählige Achse in Richtung der längsten bzw. kürzesten Raumdiagonalen der Elementarzelle
Orthorhombisch	$\mathbf{a}_1 \neq \mathbf{a}_2 \neq \mathbf{a}_3$ $\alpha_1 = \alpha_2 = \alpha_3 = 90^{\circ}$	zweizählige Achsen in Richtung der $\boldsymbol{a}_{\mathrm{i}}$
Monoklin	$a_1 \neq a_2 \neq a_3$ $\alpha_1 = \alpha_3 = 90^\circ; \ \alpha_2 \neq 90^\circ$	zweizählige Achse in a_2 -Richtung
Triklin	$\mathbf{a_1} \neq \mathbf{a_2} \neq \mathbf{a_3}$ $\alpha_1 \neq \alpha_2 \neq \alpha_3 \neq 90^{\circ}$	nur Inversionszentrum

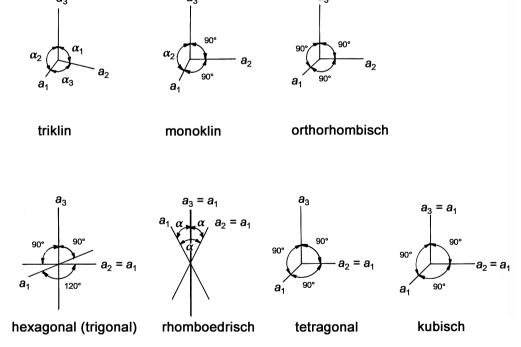
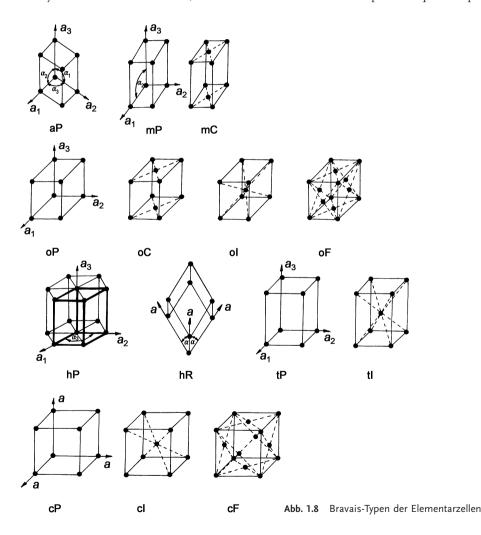


Abb. 1.7 Kristallografische Achsensysteme

einem innen- bzw. raumzentrierten Gitter, das durch das Symbol I gekennzeichnet wird. Ist die Mitte nur eines Flächenpaars mit einem gleichwertigen Gitterpunkt belegt, spricht man von einem basiszentrierten Gitter (Symbol C). Treten auf allen sechs Flächen der Zelle zentrierte Positionen auf, ergibt sich das (allseitig) flächenzentrierte Gitter mit dem Symbol F. Primitive Gitter mit dem Symbol P weisen keinerlei Zentrierungen auf. Zur Kennzeichnung des Kristallsystems verwendet man die Symbole c für das kubische, t für das

tetragonale, h für das hexagonale, o für das orthorhombische, m für das monokline und a für das trikline Kristallsystem. Für das kubisch flächenzentrierte Gitter lässt sich also einfach cF schreiben, für das basiszentrierte orthorhombische Gitter oC usw. (s. Abb. 1.8). Das kubisch flächenzentrierte Gitter wird außerdem oft mit "kfz" und das kubisch raumzentrierte mit "krz" abgekürzt. Das Symbol hR steht für die rhomboedrische Elementarzelle.

Bei den primitiven Elementarzellen (EZ) sind nur die acht Eckpunkte Äquivalentpo-



sitionen (ÄP). Da an jeder Ecke einer EZ insgesamt acht EZ zusammentreffen, bedeutet das, dass jede ÄP nur zu einem Achtel einer Zelle zugerechnet werden kann. Daher ergibt sich bei allen primitiven EZ nur eine ÄP/EZ. Bei den raum- oder innenzentrierten Zellen kommt die zentrierte Position hinzu, sie haben also zwei ÄP/EZ. Bei Flächenzentrierungen gilt, dass jede Flächenmitte nur zur Hälfte der Zelle angehört. Damit ergeben sich für die basiszentrierten Zellen zwei ÄP/EZ und für die allseits flächenzentrierten vier ÄP/EZ.

Mit der Festlegung der Äquivalentpositionen bzw. dem Bravais-Typ ist die Beschreibung der tatsächlichen Atom-/Ionenpositionen in der Elementarzelle in einfacher Weise möglich. In jede dieser Äquivalentpositionen wird im einfachsten Fall ein einzelnes Atom (z. B. Cu, Al, Fe), meist aber eine Gruppe von Atomen/Ionen gesetzt, wobei in dieser Gruppe im Fall von Verbindungen mindestens einmal ihre Formeleinheit enthalten sein muss (z.B. ein Cl^{-} - und ein Na $^{+}$ -Ion im Fall von NaCl). Diese Gruppe wird Basis genannt. Die vollständige Beschreibung der Besetzung einer Elementarzelle ergibt sich somit aus der Angabe des Bravais-Typs mit seinen Äquivalentpositionen und der Angabe der geometrischen Orte der Atome/Ionen in der Basis. Die Angabe, es handele sich um ein kubisch flächenzentriertes Gitter (cF) bedeutet also nicht, dass entsprechend der vier Äquivalentpositionen nur vier Atome in der Elementarzelle enthalten sind. Das trifft nur zu, wenn die Basis aus einem Atom wie z. B. bei Cu, Ni, Al, Au, Ag besteht. Enthält die Basis N Atome, dann sind es $N \times 4$ Atome/EZ. So befinden sich beim kubisch flächenzentrierten Carbid Cr₂₃C₆ eben nicht vier, sondern $4 \times (23 \text{ Cr-Atome} + 6 \text{ C-Atome}) = 116$ Atome in der Elementarzelle. Auf jede

Äquivalentposition wird einmal die komplette Formeleinheit gesetzt.

Die Charakterisierung der Raumgitter durch drei Grundvektoren, die die Elementarzellen bilden, erlaubt eine einfache geometrische Beschreibung von Gitterpunkten, Gitterrichtungen (Gittergeraden) und Netzebenen (Gitterebenen) und deren geometrische Verknüpfungen. Dabei nutzt man Vektoren bzw. die Vektorrechnung, wobei allerdings zu beachten ist, dass die verwendeten Koordinatensysteme mit Ausnahme des kubischen nicht kartesischer Art sind. Das macht die konkreten Beziehungen oft etwas unübersichtlich.

1.3.1 **Gitterpunkte**

Die Position eines Gitterpunkts wird durch seinen Ortsvektor r gekennzeichnet, der den Ursprung des Koordinatensystems mit eben diesem Gitterpunkt verbindet.

$$r = x_1 a_1 + x_2 a_2 + x_3 a_3 \tag{1.3}$$

Bei gegebenem Kristallsystem reicht es aus, wenn zur Positionsbeschreibung nur die drei Koordinaten x_i angegeben werden. Diese Koordinaten sind ganzzahlig, wenn die Gitterpunkte die Ecken der Elementarzellen bilden. Für die anderen Gitterpunkte trifft das nicht zu. So haben z. B. die Raummitten einer Elementarzelle die Koordinaten $\frac{1}{2}$ $\frac{1}{2}$, die Flächenmitten $\frac{1}{2}$ $\frac{1}{2}$ 0, $\frac{1}{2}$ 0 $\frac{1}{2}$ und 0 $\frac{1}{2}$ $\frac{1}{2}$. Damit ergeben sich für die Bravais-Zellen folgende Koordinaten:

- primitive EZ: nur 0 0 0;
- basiszentrierte EZ: 0 0 0, $\frac{1}{2}$ $\frac{1}{2}$ 0;
- raum- oder innenzentrierte EZ: 0 0 0, $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$;
- flächenzentrierte EZ: 0 0 0, $\frac{1}{2}$ $\frac{1}{2}$ 0, $\frac{1}{2}$ 0 $\frac{1}{2}$ 0 $\frac{1}{2}$ 0, 0 $\frac{1}{2}$ 0, 0 $\frac{1}{2}$ 1/2.

1.3.2

Gittergeraden

Eine Gittergerade wird durch den Vektor T zwischen zwei beliebigen Gitterpunkten festgelegt. Wegen der Translationssymmetrie des Raumgitters kann einer der beiden Gitterpunkte durch Parallelverschiebung des Vektors T in den Ursprung verlegt werden, sodass sich folgende Definition ergibt:

$$T = u \ a_1 + v \ a_2 + w \ a_3 \tag{1.4}$$

Auch hier ist es ausreichend, wenn nur die drei Richtungsindizes in der Form $[u\ v\ w]$ angegeben werden (Verwendung eckiger Klammern). Negative Komponenten werden durch einen Querstrich über dem entsprechenden Index gekennzeichnet. Kehrt man alle Vorzeichen der Indizes um, erhält man die zugehörige Gegenrichtung.

Als Beispiele seien die Kanten, die Flächendiagonalen und die Raumdiagonalen einer parallelepipedischen Elementarzelle angegeben:

- Kanten: [1 0 0], [0 1 0], [0 0 1];
- Flächendiagonalen: [1 1 0], [1 1 0], [1 0 1], [1 0 1], [0 1 1];
- Raumdiagonalen: $[1\ 1\ 1]$, $[1\ 1\ \overline{1}]$, $[1\ \overline{1}\ 1]$, $[1\ 1\ 1]$.

Nur in primitiven Gittern sind die u, v, w immer ganze Zahlen. Hat der Translationsvektor bei zentrierten Gittern zunächst nicht ganzzahlige Komponenten, so werden die Komponenten mit einem gemeinsamen Multiplikator ganzzahlig und teilerfremd gemacht. So hat der Vektor, der den Ursprung einer Elementarzelle mit dem zentrierten Punkt in der Vorderfläche des Parallelepipeds verbindet, zunächst die Komponenten $[1 \frac{1}{2} \frac{1}{2}]$. Daraus wird nach Multiplikation mit dem Faktor 2 dann [2 1 1].

Setzt man die u,v,w in spitze Klammern (z. B. < u v >), so ist die Gesamtheit

aller Gitterrichtungen gemeint, die für die gegebene Kristallklasse bzw. Symmetrie kristallografisch gleichwertig sind. Will man z. B. die Gesamtheit der Kantenrichtungen des Würfels (s. oben) bezeichnen, dann verwendet man dafür kurz die Symbolik < 1.0.0 >.

Jede Gitterrichtung wird durch ihre Translationsperiode charakterisiert. Sie stellt den Betrag des Gittervektors T dar, wenn dieser zwei Gitterpunkte verbindet, zwischen denen keine anderen gleichwertigen liegen. Bezüglich der Berechnung der T für die verschiedenen Kristallsysteme und der Winkel zwischen Gittergeraden sei auf Abschnitt 1.10 verwiesen.

1 3 3

Netzebenen (Gitterebenen)

Die räumliche Lage einer Netzebene ist durch die Angabe von drei in ihr liegenden Gitterpunkten eindeutig bestimmt. Dazu verwendet man am besten die Schnittpunkte der Netzebene mit den drei kristallografischen Hauptachsen a_i , die die sogenannten Achsenabschnitte markieren (Abb. 1.9). Diese Abschnitte sind Vielfache der Grundvektoren und betragen m_1 a_1 , m_2 a_2 und m_3 a_3 .

Nun ist es für die Charakterisierung einer Netzebene zweckmäßig, nicht die

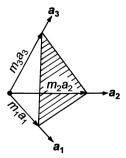


Abb. 1.9 Zur Ableitung der Miller-Indizes einer Netzebene

 $m_{\rm i}$, sondern ihre Reziprokwerte $1/m_{\rm i}$ anzugeben. Sie sind rationale Zahlen und können somit durch Multiplikation mit einem Faktor $p=m_1~m_2~m_3$ stets ganzzahlig und anschließend teilerfremd gemacht werden. Man nennt die sich so ergebenden Zahlen die Miller-Indizes h,k und l. Für sie gilt

h: k: l: = p
$$(1/m1 : 1/m2 : 1/m3)$$

= m2 m3 : m3 m1 : m1 m2 (1.5)

Die drei Miller-Indizes werden in runde Klammern gesetzt, um sie von der Symbolik für Gitterrichtungen in eckigen Klammern unterscheiden zu können. Ein Strich über einem Index bedeutet, dass der betreffende Abschnitt im negativen Bereich des Achsensystems liegt. Achsenabschnitte, die im Unendlichen liegen (Ebene verläuft parallel zur betreffenden Achse), ergeben einen Miller-Index gleich null. Will man die Gesamtheit der kristallografisch gleichwertigen Netzebenen angeben, verwendet man geschweifte Klammern. So umfasst die Angabe {1 0 0} für das kubische Kristallsystem alle sechs Flächen des Würfels, d. h. die Flächen (1 0 0), $(\overline{1} \ 0 \ 0)$, (0 1 0), $(0\ \overline{1}\ 0)$, $(0\ 0\ 1)$ und $(0\ 0\ \overline{1})$. Die Zahl der kristallografisch gleichwertigen Flächen bezeichnet man als Flächenhäufigkeit.

Wegen der Translationseigenschaft der Kristallgitter existiert zu jeder konkreten Netzebene (h k l) eine unendlich große Zahl von kristallografisch gleichwertigen, parallel und mit definiertem Abstand zueinander verlaufenden Netzebenen. Sie bilden eine sogenannte Netzebenenschar mit dem Netzebenenabstand d_{hkl} . Dieser Netzebenenabstand ist ein wesentliches Charakteristikum der Netzebenenschar und kann aus den Miller-Indizes h,k,l und den Gitterparametern a_i und a_i berechnet werden. Für das kubische Kristallsystem gilt

$$d_{hkl} = \mathbf{a} (h^2 + k^2 + l^2)^{-1/2} \tag{1.6}$$

Entsprechende Beziehungen für andere Kristallsysteme sind in Abschnitt 1.10 zu finden.

1.3.4

Elementarzellenvolumen

Das Volumen einer parallelepipedischen Elementarzelle ergibt sich im allgemeinen Fall (triklines Kristallsystem) zu

$$V_{\text{EZ}} = \mathbf{a_1 a_2 a_3} [1 - (\cos^2 \alpha_1 + \cos^2 \alpha_2 + \cos^2 \alpha_3) + 2\cos \alpha_1 \cos \alpha_2 \cos \alpha_3]^{1/2}$$

$$(1.7)$$

Für die orthogonalen Systeme ergibt sich daraus wegen $\alpha_i = 90^{\circ}$ bzw. cos $\alpha_i = 0$ die einfache Beziehung

$$V_{\rm EZ} = a_1 \ a_2 \ a_3 \tag{1.8}$$

und für das hexagonale System

$$V_{\rm EZ} = a_1^2 a_3 \sqrt{3}/2 \tag{1.9}$$

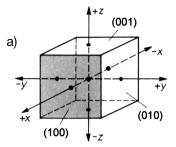
1.3.5

Kristallformen

Im kubischen Kristallsystem bildet die Gesamtheit der kristallografisch gleichwertigen Ebenen vom Typ $\{h\ k\ l\}$ jeweils einen regelmäßigen Polyeder, der sofern er alle diese Flächen enthält, die volle Symmetrie des kubischen Kristallsystems widerspiegelt. Häufig auftretende Formen sind (Abb. 1.10):

- der Würfel (Kubus) mit seinen sechs Flächen vom Typ {1 0 0},
- der Oktaeder mit seinen acht Flächen vom Typ {1 1 1} und
- der Rhombendodekaeder mit seinen zwölf Flächen vom Typ {1 1 0}.

Natürlich können Polyeder auch durch die Kombination mehrerer Ebenentypen





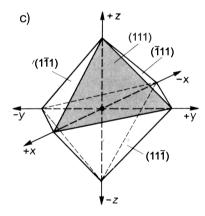


Abb. 1.10 Kubische Kristallformen: a) Würfel oder Hexaeder (begrenzende Flächen sind Quadrate), b) Zwölfflächner oder Rhombendodekaeder (begrenzende Flächen sind Rhomben), c) Achtflächner oder Oktaeder (begrenzende Flächen sind gleichseitige Dreiecke)

{h k l} gebildet werden. Beispiel hierfür ist der 14-flächige *Kuboktaeder*, der sechs {1 0 0}-Ebenen und acht {1 1 1}-Ebenen enthält.

In den nichtkubischen Kristallsystemen benötigt man für die Ausgestaltung von Polyedern meist mehrere Ebenentypen $\{h\ k\ l\}$, da die drei elementaren Kristallachsen nicht mehr gleichwertig sind. So wird im tetragonalen Kristallsystem ein sechsflächiger prismatischer Körper durch die $\{1\ 0\ 0\}$ -Ebenen und die $\{0\ 0\ 1\}$ -Ebenen begrenzt.

1.4 Chemische Bindung und Koordination, typische Kristallstrukturen

Die zwischen den atomaren Bausteinen eines Festkörpers bzw. Kristalls wirkenden Kräfte werden durch ihren Abstand und insbesondere die Art der chemischen Bindung, d.h. durch die Elektronenstruktur der Bindungspartner, bestimmt: kovalente, ionische und metallische Bindungen. Diese Bindungsarten werden noch durch schwache Bindungen wie Wasserstoffbrückenbindungen bei Polymeren und die sehr schwachen Molekül- oder Van-der-Waals-Bindungen (Dipolwechselwirkungen) ergänzt, die an dieser Stelle jedoch nicht weiter erörtert werden sollen.

1.4.1 Metallische Bindung und Strukturen metallischer Werkstoffe

1.4.1.1 Strukturen metallischer Elemente

Die metallische Bindung ist ihrem Wesen nach ungerichtet und nicht abgesättigt. Das ist die Ursache dafür, dass in metallischen Strukturen bzw. Kristallen eine hohe Koordinationszahl und damit eine hohe Packungsdichte der Atome zu beobachten ist. Eine abstoßende elektrostatische Wechselwirkung zwischen den Ionenrümpfen kann wegen des zwischen ihnen befindlichen Elektronengases nicht auftreten.

Die Kristallstruktur der meisten Metalle lässt sich einfach mit dem Modell dichtest gepackter Kugeln erklären. Dabei ergeben sich zwei Grundvarianten: die kubisch dichteste Packung (kdP) und die hexagonal dichteste Packung (hdP). Sie können beide als Stapelung dichtest gepackter Atomebenen aufgefasst werden, innerhalb derer die Atome untereinander mit jeweils sechs nächsten Nachbarn in Kontakt stehen (Abb. 1.11).

Erfolgt eine Stapelung dieser Ebenen so, dass sie mit ihren Atomschwerpunkten die in Abb. 1.11 mit A, B oder C gekennzeichneten Positionen in der Folge ...A-B-C-A-B-C... besetzen (Dreier-Periodizität der Stapelung), entsteht die kubisch dichteste Kugelpackung mit einem kubisch flächenzentrierten Gitter (kfz), wie es in Abb. 1.12 a dargestellt ist. Es hat die Koordinationszahl 12 und damit eine Raumerfüllung von 74 %. Die dichtest gepackten Ebenen sind die {1 1 1}-Ebenen. Wichtige Metalle, die eine solche kubisch flächenzentrierte Struktur aufweisen, sind: Al, Ag, Au, Ni, Cu, Pb und Pt. 24 % aller nicht-

radioaktiven Metalle weisen diese Struktur auf. Nach ihrem repräsentativen Vertreter Cu wird dieser Strukturtyp auch der Cu-Typ genannt (sogenannter Strukturtyp A1).

Wird eine Stapelfolge ...A-B-A-B..., ...B-C-B-C... oder ... C-A-C-A... realisiert (Zweier-Periodizität der Stapelung, Abb. 1.12 b), erhält man die hexagonal dichteste Kugelpackung, deren Elementarzelle in Abb. 1.12 c dargestellt ist. Die dichtest gepackten Ebenen sind die {0 0 1}-Ebenen. Auch diese Struktur hat die Koordinationszahl 12 und erreicht bei einem idealen Achsenverhältnis von $a_3/a_1 = \sqrt{8/3} = 1,633$ die Packungsdichte von 74%. Weichen die Achsenverhältnisse als Ausdruck nicht mehr rein metallischer Bindung von diesem idealen Wert ab (Auftreten von gerichteten Bindungsanteilen), verringert sich die Raumerfüllung. So hat das hexagonale Metall Zink mit dem Achsenverhältnis 1,856 nur noch eine Raumerfüllung von 64%. 41% der insgesamt 59 nichtradioaktiven Metalle besitzen bei Raumtemperatur eine hexagonale Struktur, darunter Zn, Ti, Zr, Mg, Be, Cd und Co. Dieser Strukturtyp wird auch als Mg-Typ (A3) bezeichnet.

Eine hohe Packungsdichte von 68 % erreicht man auch bei einer Anordnung

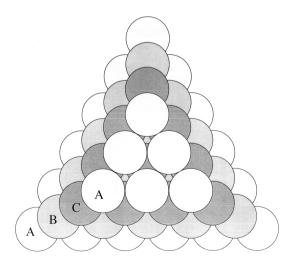
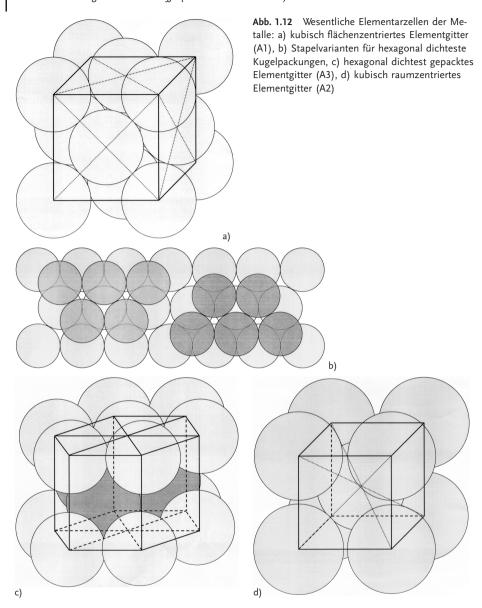


Abb. 1.11 Stapelung von Ebenen mit dichtester Kugelpackung



gleich großer Kugeln in einem kubisch raumzentrierten Gitter (Abb. 1.12 d). Es hat eine Koordinationszahl von 8. Diese Struktur besitzen 27 % der nichtradioaktiven Metalle, unter ihnen Fe, V, Cr, Mo und W. Sie wird auch als W-Typ bezeichnet (A2).

Nur 10% der Metalle kristallisieren in Strukturen, die nicht den hier genannten Typen zuzuordnen sind (z.B. Sn bei Temperaturen oberhalb 13,6°C, Ga, Bi, In, Hg, Mn).

Die Radien r der kugelig angenommenen Metallatome bestimmen die Elementarzellenparameter a. Dabei gilt, dass die Atome in den dichtest gepackten Gitterrichtungen, d. h. in den Gitterrichtungen mit den kürzesten Translationsperioden, sich gegenseitig berühren. Bei der kfz-Kugelpackung kontaktieren die Kugeln (Atome) entlang der $< 1\ 1\ 0 >$ -Richtungen, die die Diagonalen der Würfelflächen darstellen. Dabei gilt, dass die Diagonale der Würfelflächen gleich dem Vierfachen des Atomradius ist und gleichzeitig das $\sqrt{2}$ -fache der Kantenlänge a der Elementarzelle beträgt. Daraus folgt

$$4 r = a \sqrt{2} \text{ bzw. } r = \frac{1}{4} \sqrt{2} a$$
 (1.10)

Aus dem Gitterparameter *a*, der z. B. mithilfe der Röntgendiffraktometrie mit hoher Genauigkeit bestimmt werden kann (s. Abschnitt 2.6), lassen sich somit die Atomradien bzw. Atomdurchmesser leicht ableiten (Tab. 1.5).

Ähnliche Überlegungen lassen sich auch für das kubisch raumzentrierte Elementgitter anstellen. Hier berühren sich die Kugeln/Atome in den Raumdiagonalen der Elementarzelle, d.h. in den dichtest gepackten $< 1\ 1\ 1 >$ -Richtungen, sodass gilt:

$$r = \frac{1}{4} \sqrt{3} a$$
 (1.11)

Im Fall der hexagonal dichtesten Kugelpackung stellen die < 1~0~0>-Richtungen die kürzesten Abstände zwischen zwei Atomen dar:

$$r = \frac{1}{2} a_1$$
 (1.12)

1.4.1.2 Intermetallische Verbindungen

Bei der Reaktion zweier oder mehrerer metallischer Elemente miteinander können im chemischen Sinn Verbindungen entstehen, die einen dominierend metallischen Bindungscharakter aufweisen. Man nennt

Tab. 1.5 Atomdurchmesser ausgewählter Metalle (einschließlich C und Si)

Element	relative Atommasse	Bravais-Gitter	Koordinationszahl	Atomdurchmesser [nm]
Aluminium	26,982	cF	12	0,2864
Blei	207,19	cF	12	0,3500
Chrom	51,996	cI	8	0,2498
Eisen	55,847	cI	8	0,2483
Gold	196,967	cF	12	0,2884
Cadmium	112,40	hP	12	0,2979
Cobalt	58,933	hP	12	0,2507
Kohlenstoff	12,011			
Diamant		cF	4	0,1545
Grafit		hP	6	0,2461
Kupfer	63,546	cF	12	0,2556
Magnesium	24,312	hP	12	0,3209
Molybdän	95,94	cI	8	0,2725
Nickel	58,71	cF	12	0,2492
Silber	107,868	cF	12	0,2889
Silicium	28,086	cF	4	0,2352
Titan	47,90	hP	12	0,2896
Wolfram	183,85	cI	8	0,2741
Zink	65,37	hP	12	0,2665

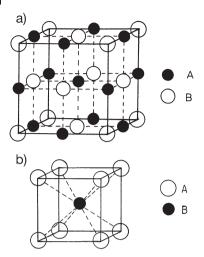


Abb. 1.13 Typische Strukturen von Ionenkristallen: a) Steinsalzstruktur (B1), b) Cäsiumchloridstruktur (B2)

sie intermetallische Verbindungen oder intermetallische Phasen. Ihre Kristallstruktur unterscheidet sich deutlich von der der reinen Elemente. Als Beispiel dafür sei die Phase β' -CuZn genannt. Sie weist eine Cäsiumchloridstruktur (cP) auf (Abb. 1.13 b), während Cu eine kdP bzw. kfz (cF) und Zn eine hdP realisieren.

Die intermetallischen Verbindungen haben eine chemische Zusammensetzung, die in gewissen Grenzen stöchiometrischen Verhältnissen entspricht (z. B. Al_2Cu , Ag_5Zn_8 , FeCr), wobei sich diese nicht aus herkömmlichen Valenzbetrachtungen, wie sie z. B. für Ionenverbindungen gelten, ableiten lassen.

Wie auch die anderen chemischen Verbindungen können die intermetallischen Verbindungen (intermetallischen Phasen) in Daltonide und Berthollide unterteilt werden. Unter Daltoniden versteht man Verbindungen mit wohl definierter Stöchiometrie, d.h. sehr engem Homogenitätsbereich, für die das Dalton'sche Gesetz der multiplen Proportionen bezüglich der

Atomanteile der Reaktionspartner sehr genau erfüllt ist. Ihre Zusammensetzung kann also gut mit Formeln der Art A_mB_n beschrieben werden.

Berthollide dagegen sind Verbindungen, deren Zusammensetzung mehr oder weniger stark von einer stöchiometrischen abweicht. So existiert die bereits erwähnte Verbindung β' -CuZn nicht nur mit einem Cu:Zn-Verhältnis von 1:1, sondern im Bereich von etwa 45 bis 50 Atom-% Zn. Ursachen für eine Stöchiometrieabweichung können sein:

- eine Nichtbesetzung eines Teiles der Gitterplätze, die für eine der chemischen Komponenten vorgesehen sind (Leerstelleneinbau bzw. Subtraktionsmischkristallbildung),
- ein gegenseitiger Austausch der Atomarten der Verbindung im Sinn einer Substitution oder seltener
- der zusätzliche Einbau einer Atomart auf Gitterlücken (Zwischengitterplätzen) wie bei einer Einlagerungsmischkristallbildung.

Nicht selten treten Kombinationen dieser Varianten auf. Die chemische Kennzeichnung einer solchen berthollidischen Verbindung erfolgt zweckmäßigerweise so, dass in der Formelangabe die Abweichung x von der stöchiometrischen Zusammensetzung, bezogen auf das betreffende Untergitter, sichtbar wird. So schreibt man z. B. für das nichtstöchiometrische stickstoffarme Titannitrid TiN_{1-x} und bringt damit zum Ausdruck, dass der Anteil x der Stickstoffgitterplätze nicht besetzt ist (Leerstellen im Stickstoffuntergitter).

Die Grenze zwischen den Daltoniden und den Bertholliden kann nicht quantifiziert werden; sie ist eigentlich nicht vorhanden, da alle chemischen Verbindungen mehr oder weniger ausgeprägte Homogenitätsbereiche aufweisen. Sie sind aber in vielen Fällen so eng, dass man aus praktischer Sicht von stöchiometrischen Verbindungen im Sinn der Daltonide sprechen kann.

Für die Deutung der sich bei der Bildung intermetallischer Verbindungen einstellenden Kristallstrukturen können drei wesentliche Argumente herangezogen werden:

1. Prinzip der größten Packungsdichte: Entsprechend dem Wesen der metallischen Bindung (ungerichtet, unabgesättigt) streben intermetallische Verbindungen wie die reinen Metalle nach einer hohen Koordinationszahl bzw. ckungsdichte. Da die Komponenten der intermetallischen Verbindungen in der Regel unterschiedliche Atomradien haben, ergeben sich Koordinationen und Raumerfüllungen, die sich von denen der Elementstrukturen wie kdP oder hdP wesentlich unterscheiden können. Betrachtet man als erste oder nächste Koordinationssphäre nicht nur die Gesamtheit der Nachbaratome, die den kleinsten Abstand zum betrachteten Atom haben, sondern bezieht in diese Koordinationssphäre auch diejenigen Atome ein, die sich in ihrem Abstand nur wenig vom kleinsten unterscheiden, findet man nichtreguläre Koordinationspolyeder, deren Koordinationszahlen noch oberhalb von 12 liegen können (KZ = 14, 15 oder 16). Als Beispiel dafür ist in Abb. 1.14 neben dem regulären Koordinationspolyeder für

- die kfz-Elementstruktur der nichtreguläre für die Koordinationszahl 16 gezeigt, wie er z. B. für die A-Atome in zahlreichen AB_2 -Verbindungen vom Typ der Laves-Phasen zutrifft (Abb. 1.14).
- Kritische Valenzelektronenkonzentrationen: Als Valenzelektronenkonzentration (VEK) bezeichnet man die mittlere Zahl der Valenzelektronen pro Atom, bestimmt durch die chemische Zusammensetzung der Verbindung.

$$VEK = N_{A} c_{A} + N_{B} c_{B} + ... {(1.13)}$$

- N Zahl der Valenzelektronen der Komponenten
- c Atomanteile der Komponenten

Die maximal zulässige VEK einer Phase hängt von ihrer Struktur ab, was bedeutet, dass mit steigender VEK bei Erreichen eines kritischen Werts ein Umschlag der bis zu diesem Wert existenten Struktur in eine solche erfolgt, die eine höhere VEK zulässt. Dieses Verhalten ist typisch für die sogenannten Hume-Rothery-Phasen.

3. Wertigkeitsdifferenzen: Elemente bzw. Metalle der 4.–7. Hauptgruppen des Periodensystems sind starke Anionenbildner und fördern daher in intermetallischen Verbindungen mit Metallen der niederen Hauptgruppen (Kationenbildner) eine starke ionische Bindungskomponente. Man bezeichnet diesen Typ der

KZ = 12

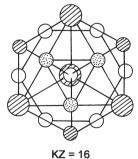


Abb. 1.14 Koordinationspolyeder für die Koordinationszahlen KZ = 12 und KZ = 16; nach Schulze (Atome gleicher Ausmalung liegen in einer gemeinsamen Ebene parallel zur Zeichenebene.)

intermetallischen Verbindungen als Zintl-Phasen. Sie haben wie die Ionenverbindungen allgemein sehr enge Homogenitätsbereiche und einen salzartigen Charakter. Beispiele sind Mg₂Si oder Mg₂Sn, zwei Verbindungen, auf die man die üblichen Valenzregeln anwenden kann.

Betrachten wir einige wichtige Arten intermetallischer Verbindungen etwas näher.

Laves-Phasen

Die Laves-Phasen weisen eine Zusammensetzung AB_2 auf und kristallisieren in den miteinander verwandten Strukturtypen des $MgCu_2$ (Abb. 1.15), des $MgZn_2$ oder des $MgNi_2$. Sie bilden sich dann, wenn das Verhältnis der Atomradien r_A/r_B der beiden Partner nahe dem Wert $\sqrt{3/2}=1,225$ liegt. Die Koordinationszahl für die A-Atome beträgt 16, für die B-Atome 12, sodass sich eine mittlere Koordinationszahl von $(16 + 2 \cdot 12)/3 = 13^1/3$) ergibt, die damit deutlich über der der dichtesten Kugelpackungen kdP bzw. hdP mit 12 liegt. Die Laves-Phasen sind das typische Beispiel dafür, dass die sich ausbildende Struk-

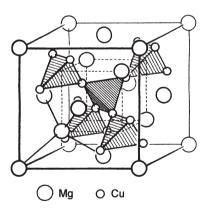


Abb. 1.15 Elementarzelle des MgCu₂; nach Schulze (Jedes Mg-Atom ist von 16 kleineren Cu-Atomen und jedes Cu-Atom von 12 Mg-Atomen umgeben.)

tur durch das Prinzip der maximalen Packungsdichte bestimmt wird.

Beispiele: Al₂Fe, Fe₂Mo, Fe₂Ti, Fe₂W, Zn₂Mg, Cu₂Mg, Cr₂Nb, Cr₂Ti, Ni₂Mg.

Hume-Rothery-Phasen

Die einwertigen Metalle Cu, Ag und Au sowie eine Reihe von Übergangsmetallen (z. B. Ni, Fe, Co) bilden mit einer Vielzahl von B-Metallen (Metalle der Gruppen IIb, IIIb, IVb, Vb) eine Reihe von typischen aus. deren Stabilitätsgrenzen durch kritische Valenzelektronenkonzentrationen VEK gegeben sind (Tab. 1.6). Die Berechnung der VEK erfolgt unter der Voraussetzung, dass die Edelmetalle einwertig, die Übergangsmetalle nullwertig sind und die B-Metalle eine Wertigkeit entsprechend ihrer Gruppenzugehörigkeit besitzen (z. B. Cd zweiwertig, Al dreiwertig, Sn vierwertig). So beträgt die VEK für die Verbindung $Cu_5Zn_8 (5 \cdot 1 + 8 \cdot 2)/(5 + 8) = 21/$ 13, für die Verbindung NiAl (0 + 3)/(1 + 1)= 3/2 = 21/14 und für die Verbindung $AgCd_3 (1 + 3 \cdot 2)/(1 + 3) = 7/4 = 21/12.$

Ein instruktives Beispiel für die in Tab. 1.6 aufgeführten Phasen liefert das System Cu-Zn (s.Kap. 6, Abb. 6.12). Die β' -Phase entspricht der Verbindung CuZn, die γ -Phase der Verbindung Cu $_5$ Zn $_8$ und die ϵ -Phase der Verbindung CuZn $_3$.

Technisch wichtige Legierungssysteme, in denen sich Hume-Rothery-Phasen ausbilden, sind die Kupferlegierungen mit Zn (Messinge), Sn (Sn-Bronzen) sowie Cd, Al und Si.

σ-Phasen

σ-Phasen enthalten zwei oder mehr Übergangsmetalle, wobei sich ihre komplizierte tetragonale Struktur durch eine hohe effektive Koordinationszahl und eine Konzentration der äußeren s- und d-Elektronen zwischen 6,2 und 7 e/Atom auszeichnet. Wohl der bekannteste Vertreter ist die

Tab. 1.6 Hume-Rothery-Phasen

Phase	VEK e/Atom	Gitter	Beispiele
α-Mischkristall	1–1.36	kfz	α-Messing (Cu-Zn-Mischkristall)
β	1,5 = 21/14	krz bzw. kpr ^a	β'-CuZn, NiAl, Cu ₃ Al
γ	1,62 = 21/13	kpr γ-Messing-Typ ^b	Cu_5Zn_8 , Cu_9Ga_4
ε	1,75 = 21/12	hexagonal	CuZn ₃ , AgCd ₃ , Ag ₅ Al ₃
η	2	hdP	η-Zn-Cu-Mischkristall

^a kpr – kubisch primitiv bzw. cP.

σ-FeCr-Phase, die sich in hoch chromhaltigen Stählen bei Temperaturen zwischen 600 und 900 °C ausbilden kann und zur unerwünschten Versprödung dieser Stähle führt. Bei gleichen Anteilen von Fe- und Cr-Atomen beträgt die Valenzelektronenkonzentration 7 e/Atom. An der Bildung der σ-Phase auf FeCr-Basis können sich auch die Metalle Mo, V, Ni und W substitutionell beteiligen.

Die intermetallischen Verbindungen weisen nicht mehr rein metallische Bindungen zwischen den Metallatomen auf, sondern sind Beispiele für Mischbindungen, was bedeutet, dass kovalente bzw. ionische Bindungsanteile in merklichem Umfang auftreten und damit die Eigenschaften deutlich mitbestimmen. Sie haben nicht selten hohe Schmelz- bzw. Zersetzungspunkte, weshalb sie sich als Hochtemperaturwerkstoffe eignen (Systeme Ni-Al, Ni-Ti, Ti-Al, Fe-Al, Ni-Cr).

1.4.1.3 Einlagerungsphasen (Intermediäre Phasen)

Die Übergangsmetalle neigen stark zur Einlagerung der Nichtmetalle (Metalloide) Wasserstoff, Bor, Kohlenstoff und Stickstoff in Gitterlücken (s. Abschnitt 1.5.1.2). Er-

folgt diese Einlagerung in vollständig geordneter Art, entstehen Einlagerungsphasen, deren Strukturen mit denen der reinen Metalle eng verwandt sind (auch Hägg-Phasen genannt). Geometrische Bedingung für die Bildung der Einlagerungsphasen ist, dass das Radienverhältnis $r_{\rm x}/r_{\rm A} < 0.59$ bleibt. Übersteigt das Radienverhältnis diesen Wert, findet man wesentlich kompliziertere Strukturen, wie wir sie beim Fe₃C (Zementit) und den Chromcarbiden Cr₃C₂, Cr₆C, Cr₇C₃ und Cr₂₃C₆ antreffen $(r_{\rm C}/r_{\rm Fe}=0.620; r_{\rm C}/r_{\rm Cr}=0.616)$. Typische Vertreter der Einlagerungsphasen weisen die Zusammensetzung M₈X, M₄X, M₂X und MX auf (M - Übergangselement, X -Nichtmetall). Diese Verbindungen treten insbesondere bei Nitriden der Übergangsmetalle auf. Folgende Beispiele seien aufgeführt:

 α'' -Fe $_{16}$ N $_2$ (Typ M $_8$ X): Die Elementarzelle entspricht einer verzerrten achtfachen Zelle des krz-Eisens (Verdoppelung in allen drei Achsenrichtungen und Verlegung des Koordinatenursprungs auf die Position 0 0 $\frac{1}{2}$ einer ursprünglichen Eisenzelle) mit einer Einlagerung von Stickstoffatomen in den Positionen 0 0 0 und $\frac{1}{2}$ $\frac{1}{2}$ Die Verzerrung des

^b Der γ-Messing(γ-Ms)Typ besitzt eine Elementarzelle, die aus einer krz Zelle durch Verdreifachung in allen drei Achsen hervorgeht, jedoch in den Positionen 0 0 0 und $\frac{1}{2}$ $\frac{1}{2}$ keine Atome aufweist. Die Zahl der Atome pro Elementarzelle beträgt daher 52.

Grundgitters führt dabei zu einer tetragonalen Symmetrie.

 γ' -Fe₄N (Typ M_4 X): Es liegt eine kfz-Anordnung der Fe-Atome vor; das Stickstoffatom befindet sich in der oktaedrischen Gitterlücke bei $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$; die Elementarzelle bleibt kubisch, ist aber durch das N-Atom in der Raummitte primitiv geworden.

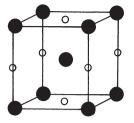
ε-Fe₂N (Typ M_2 X): Die Eisenatome bilden eine hexagonal dichteste Kugelpackung; der Stickstoff besetzt maximal 50 % der vorhandenen oktaedrischen Lücken in $\frac{2}{3}\frac{1}{3}\frac{1}{4}$ und $\frac{1}{3}\frac{2}{3}\frac{3}{4}$, wobei sich eine geordnete Verteilung unter Wahrung der hexagonalen Symmetrie einstellt.

Isomorphe Verbindungen, d. h. Verbindungen mit gleicher Struktur: Cr_2N , V_2N .

CrN (Typ MX): Alle vier oktaedrischen Lücken des kfz-Chromgrundgitters werden mit Stickstoffatomen besetzt. Die Struktur entspricht der des Steinsalzes. Isomorphe Verbindungen: TiC, TiN, VC, VN.

Eine nichtstatistische Verteilung interstitiellen Kohlenstoffs findet sich auch in der thermodynamisch metastabilen Phase Martensit im System Fe-C, die durch eine diffusionslose Phasenumwandlung eines kohlenstoffhaltigen Austenits (kfz-Fe-C-Mischkristall) als Folge einer raschen Abschreckung auf Raumtemperatur entsteht. Das Fe-Grundgitter des Martensits ist dem des krz- α -Eisens verwandt, die C-Atome besetzen je nach C-Gehalt partiell nur die oktaedrischen Lücken in 0 0 $\frac{1}{2}$ und $\frac{1}{2}$ $\frac{1}{2}$ 0 (Abb. 1.16). Folge davon ist eine tetragonale Verzerrung bzw. Symmetrie des Gitters.

Typisch für die Einlagerungsphasen sind größere Stöchiometrieabweichungen in dem Sinn, dass ein Teil der den interstitiellen Atomen vorbehaltenen Gitterplätze unbesetzt bleibt. So tritt TiC nicht nur in sei-



O mögliche C-Positionen

Abb. 1.16 Mögliche Zwischengitterplätze des Kohlenstoffs im Fe-C-Martensit

ner stöchiometrischen Zusammensetzung auf, sondern auch mit einem deutlichen Kohlenstoffunterschuss, der bis zu 50 % betragen kann (TiC_{1-x} mit $x \le 0.5$). Die Steinsalzstruktur bleibt dabei erhalten, was auf eine statistische Verteilung der Leerstellen im C-Untergitter hinweist. Gleiches beobachtet man beim Titannitrid oder beim hexagonalen Fe₂N (ε -Fe₂N_{1-x} mit $x \le 0.4$).

Eine Substitutionsmischkristallbildung zwischen verschiedenen isomorphen Einlagerungsphasen ist verbreitet, wobei sich sowohl die Metall- als auch die Nichtmetallatome gegenseitig ersetzen können (Ti[C,N], [Ti,V]C).

1.4.2

Kovalente Bindung (Atombindung)

Die kovalente Bindung basiert auf Elektronenpaaren als Bindungsbrücken zwischen den Bindungspartnern, wobei bei Elementen jeder Partner für jede ausgebildete Bindung ein Elektron beisteuert. Die Elektronenspins der Paare sind antiparallel. Werden mehrere Bindungen von einem Atom ausgehend gebildet, dann sind die Bindungsrichtungen räumlich so weit wie möglich voneinander entfernt (Ausbildung maximaler Bindungswinkel), um die elektrostatische Abstoßung der Bindungselektronenpaare untereinander zu minimieren.

Ziel dabei ist, dass jedes Atom eine von den Edelgasen her bekannte stabile Achterschale für die Außenelektronen ausbildet, d. h. dass die Zahl der Valenzelektronen N plus die Zahl Z der durch die gebildeten Bindungen zusätzlich in die unmittelbare Nähe des betrachteten Atoms gebrachten Elektronen acht betragen soll. Die Zahl der Bindungen Z ergibt sich somit aus der Differenz der Valenzelektronenzahl (bestimmt durch die Gruppe im periodischen System der Elemente) zur Zahl 8, d. h. zu

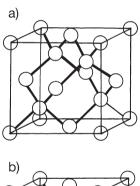
$$Z = 8 - N \tag{1.14}$$

Die Zahl der ausgebildeten Bindungen Z ist gleich der Zahl der nächsten Nachbarn (Koordinationszahl KZ = Z); die Winkel zwischen den Bindungsrichtungen betragen näherungsweise 180° für Z = 2, 120° für Z = 3 und 109° für Z = 4.

Kovalente Bindungen zwischen gleichartigen Atomen (Elementstrukturen) beobachtet man, wenn $N \ge 4$ wird. Bei N =7 (eine Bindung pro Atom, Z = 1) bilden sich einfache zweiatomige Moleküle aus, wie wir es von den Halogenen her kennen (F2, Cl2, Br2, J2). Sieht man von der Molekülbildung des gasförmigen Sauerstoffs ab, so findet man bei N = 6 zwei sich räumlich gegenüberstehende Bindungen pro Atom (Z = 2). Diese Elemente bilden daher bevorzugt kovalent gebundene Ketten (z. B. Schwefel, Selen, Tellur), die im festen Zustand durch schwache Van-der-Waals-Bindungen verknüpft werden. Folge davon sind niedrige Schmelzpunkte. Elemente mit N = 5 wie Phosphor, Arsen und Antimon, die drei Bindungen pro Atom realisieren können (Z = 3), neigen zur Ausbildung von ebenen Netzstrukturen bzw. von netzartig vermaschten Zickzackketten der Atome (Bindungswinkel nahe 120°). Im festen Zustand werden diese ebenen bzw. gezackten Netze wieder durch schwache Van-der-Waals-Kräfte verknüpft. Auch hier sind die Schmelzpunkte relativ niedrig.

Allein die vierwertigen Elemente wie Kohlenstoff, Silicium, Germanium und Zinn (unterhalb 13,6 °C) mit ihren vier Bindungen, die sich tetraedrisch um jedes Atom mit Bindungswinkeln von 109° anordnen, sind in der Lage, räumliche kovalent gebundene Strukturen zu bilden (tetraedrische Koordination, KZ=4, Diamantstruktur s. Abb. 1.17 a). Sie haben verglichen mit den oben genannten fünf- und sechswertigen Elementen relativ hohe Schmelzpunkte (Ausnahme Zinn, das oberhalb 13,6 °C metallisch wird).

Eine tetraedrische Koordination mit einer der Diamantstruktur verwandten, nämlich der Zinkblendestruktur (Abb. 1.17 b) bzw. Wurtzitstruktur findet man auch bei binären Verbindungen von Hauptgruppenelementen, sofern die mittlere Valenzelektronenzahl vier beträgt (Grimm-



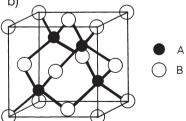


Abb. 1.17 Tetraedrisch koordinierte Strukturen: a) Diamantstruktur (A4), b) Zinkblendestruktur (B3)

Sommerfeld-Phasen). Beispiele dafür sind die A³B⁵-Verbindungen wie GaP, GaAs oder InSb und die A²B⁶-Verbindungen wie ZnS, CdSe oder CdTe.

Wegen der geringen Koordinationszahl von KZ=4 ist die Packungsdichte der Atome in Festkörpern mit Diamant- bzw. Zinkblendestruktur im Vergleich zu den Metallen niedrig. Nimmt man z. B. für C, Si oder Ge an, dass sich die Atome als Kugeln darstellen lassen, die sich in <1 1 >-Richtungen berühren (Abstand $=\frac{1}{4}$ $\sqrt{3}$ a), dann nehmen diese Kugeln nur 34% des gesamten Raumes ein (Raumerfüllung RE=34%).

Bei einer Valenzelektronenzahl N < 4 kann sich eine kovalente Bindung nicht mehr ausbilden. Der Bindungstyp wird unter diesen Bedingungen metallisch.

1.4.3 **Ionenbindung**

Insbesondere die Elemente der 1. bis 3. Gruppe sowie der 6. und 7. Gruppe des Periodensystems sind bestrebt, in den Ionenzustand überzugehen, d.h. durch Abgabe bzw. Aufnahme von Elektronen edelgasähnliche stabile äußere Elektronenkonfigurationen auszubilden. Die positiv geladenen Ionen (Kationen) und die negativ geladenen (Anionen) treten bei gegenseitiger Annäherung in eine starke elektrostatische Wechselwirkung, die als Ionenbindung bezeichnet wird. Die elektrostatische Wechselwirkung ist nicht gerichtet. In einem Ionenkristall, in dem aus Gründen der Ladungsneutralität die Zahl der Kationenladungen gleich der Zahl der Anionenladungen sein muss, ordnen sich die Ionen so an, dass ein Kation von möglichst vielen Anionen und umgekehrt umgeben ist, wobei jedoch gleich geladene Ionen nicht unmittelbar in enge Nachbarschaft geraten dürfen. Würden in der nächsten Nachbarschaft (erste Koordinationssphäre) gleichartige Ionen eng aneinander rücken, käme es zu einer starken abstoßenden Wirkung und damit zu einer Instabilität der Struktur. Um das zu verhindern, müssen in der übernächsten Nachbarschaft (zweite Koordinationssphäre) Ionen mit entgegengesetztem Vorzeichen für eine Abschirmung der Abstoßung der Ionen in der ersten Koordinationssphäre sorgen (alternierende Anordnung der verschieden geladenen Ionen). In diesem Sinn ist die ionische Bindung abgesättigt, d.h. in der Zahl der nächsten Nachbarn begrenzt.

Für ionische Verbindungen ergeben sich oft die typischen Koordinationszahlen von vier, sechs bzw. acht. Welche dieser Varianten sich ausbilden wird, hängt von dem Verhältnis der Radien der Ionen ab. Meist haben die Kationen (r_K) kleinere Radien als die Anionen (r_A) ; die Kationen bilden so in der Regel das Zentrum, um das sich die größeren Anionen als Koordinationspolyeder anordnen.

Aus rein geometrischen Überlegungen zu den zentralen Freiräumen in der Mitte von Koordinationspolyedern ergeben sich folgende Regeln, gültig für zwei Arten der beteiligten Ionen: Wenn r_K/r_A 0,225 bis 0,414 beträgt, wird man eine tetraedrische Koordination (KZ 4) finden (z. B. Si⁴⁺-O²⁻₄-Tetraeder, Abb. 1.18 a). Liegt das Verhältnis zwischen 0,414 bis 0,732, stellt sich eine oktaedrische Koordination mit der KZ 6 ein (Abb. 1.18 b). Ein hexaedrischer Koordinationspolyeder (KZ = 8) ergibt sich für Verhältnisse zwischen 0,732 und 0,904 (Abb. 1.18 c). Die oktaedrische Koordination entspricht der Natriumchlorid- bzw. Steinsalzstruktur, die hexaedrische der Cäsiumchloridstruktur, die in Abb. 1.13 dargestellt wurden.

Insbesondere dann, wenn die Ionenladungen und Radiendifferenzen groß sind, beobachtet man bei den Ionen Polarisa-

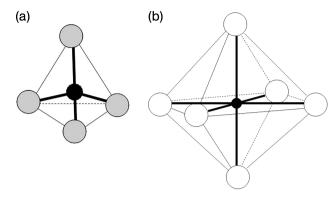
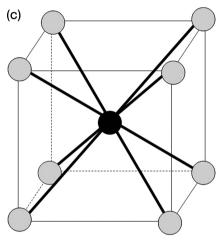


Abb. 1.18 Radienabhängigkeit der Koordination bei Ionenbindung:a) tetraedrische Koordination, b) oktaedrische Koordination, c) hexaedrische Koordination



tionserscheinungen (lokale Ladungsverschiebungen), was bedeutet, dass die Schwerpunkte der Ladungsverteilung vom geometrischen Schwerpunkt der Ionen abweichen wird. Dadurch kommt eine Richtungsbevorzugung der Bindungen zustande oder anders gesprochen: Es treten (gerichtete) kovalente Bindungsanteile hinzu, die zu Verletzungen der genannten Regeln führen können.

Komplizierter werden die Koordinationen dann, wenn keine A₁B₁-Stöchiometrie mehr vorliegt oder wenn gar drei und mehr Ionen am Kristallaufbau beteiligt sind.

Abbildung 1.19 zeigt die sogenannte Fluorit-Struktur (CaF₂). Sie kann verstan-

den werden als Sphaleritstruktur (Abb. 1.17), bei der vier weitere (F¹⁻) Anionen in die bei der Sphaleritstruktur noch unbesetzten Mitten der Achtelwürfel positio-

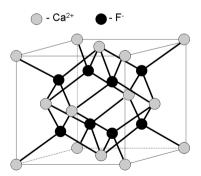


Abb. 1.19 Elementarzelle des Fluorits (CaF₂)

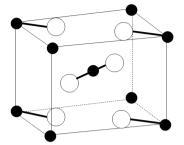


Abb. 1.20 Elementarzelle des Rutils (TiO₂)

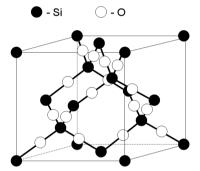


Abb. 1.21 Elementarzelle des Cristobalits (SiO₂)

niert werden. Um die Fluorionen sind die Calciumionen tetraedrisch angeordnet, die Calciumionen weisen dagegen eine hexaedrische Koordination der Fluorionen auf (KZ = 8). In diesem Strukturtyp kristallisieren auch CeO $_2$ oder TeO $_2$. Die Struktur des technisch interessanten ZrO $_2$ stellt eine "verdrückte" Variante des Fluoritgitters dar.

Beim TiO₂ (Rutil) findet man eine in Abb. 1.20 dargestellte Elementarzelle (Rutilgitter). Die Ti⁴⁺-Ionen bilden ein tetragonal- raumzentriertes Teilgitter, in das eine näherungsweise hexagonal dichteste Anordnung der O²⁻-Ionen eingefügt ist. Die Kationen haben je sechs Anionen als nächste Nachbarn, die Anionen dagegen nur drei Kationen. Weitere Vertreter dieses Typs sind z. B. PbO₂, SnO₂ oder MnO₂.

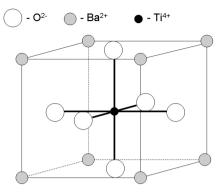


Abb. 1.22 Elementarzelle vom Perowskittyp (BaTiO₃)

Interessant ist die kubische Variante des SiO₂. Wie bereits in Abb.1.18 a dargestellt, bilden O-Ionen ein Tetraeder um die Si-Ionen, die die Mitte des Tetraeders besetzen. Nimmt man diese Tetraeder als Strukturelement und bildet damit ein Diamantgitter (anstelle der Kohlenstoffatome sind nun die Tetraeder getreten), ergibt sich das kubische Cristoballit-Gitter des SiO₂ (Abb. 1.21). Bei diesem sind die genannten Tetraeder mit ihren O-Ecken miteinander verknüpft, d.h. jedes Sauerstoffion gehört somit zwei Tetraedern an.

Liegen Verbindungen mit drei verschiedenen Ionenarten vor, dann ergibt sich eine große Vielfalt von Strukturen, von denen nur auf das Perowskitgitter (Abb. 1.22)und das Spinellgitter (Abb. 1.23) eingegangen werden soll. Vertreter des Perowskitgitters ist z. B. BaTiO₃. In der zugehörigen Elementarzelle besetzen die Ba2+-Ionen die Ecken der kubischen Zelle, die O²⁻-Ionen die Flächenmitten und das Ti⁴⁺-Ion die Zellenmitte. Es ist somit eine kubisch primitive Zelle. Zu diesem Strukturtyp gehören auch CaTiO3, SrTiO₃, KNbO₃ oder CaZrO₃. Kennzeichnend für die Kationen ist, dass deren Wertigkeitssumme 6 ergeben muss.

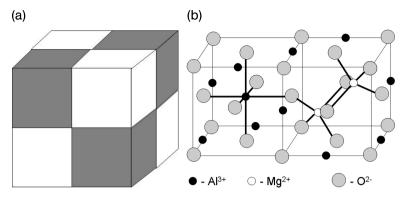


Abb. 1.23 Elementarzelle eines Spinells (MgAl₂O₄): a) Anordnung der beiden Teilzellentypen, b) Struktur der Teilzellen

das Spinellgitter des Um A²⁺B³⁺2C²⁻4 (als Beispiel MgAl₂O₄) verstehen zu können, geht man zunächst von einer einfachen kfz-Anordnung der Sauerstoffionen aus. Diese Teilzelle wird in allen drei Achsrichtungen verdoppelt (Abb. 1.23 a), sodass in einer Spinellzelle mit 8 Teilzellen letztlich 32 Sauerstoffionen Platz finden. Die Teilzellen verfügen über oktaedrische Lückenpositionen (Raum- und Kantenmitten der Teilzellen) als auch je 8 tetraedrische Lücken (vergleiche Abschnitt 1.5.1.2). Zwei mit ihren Flächen aneinander grenzende Teilzellen werden nun mit den A- und B-Ionen (Mg²⁺und Al3+-Ionen) so besetzt, wie es Abb. 1.23 b zeigt. Vier solcher Teilzellenpaare werden dann so zusammengefügt wie es Abb. 1.23 a darstellt. Damit ergeben sich für die gesamte Zelle 16 Positionen für B-Ionen und 8 Positionen für A-Ionen, d. h. alle A-Ionen finden sich auf Tetraederplätzen und alle B-Ionen auf Oktaederplätzen. Das entspricht der normalen Spinellstruktur.

1.4.4 Mischbindungen

In Abschnitt 1.1 wurde bereits darauf hingewiesen, dass in Festkörpern sehr oft die reinen metallischen, ionischen oder kovalenten Bindungen nicht realisiert werden. Vielmehr beobachtet man gemischte Bindungen, deren Festigkeiten ganz erheblich sein können. Dabei können die Bindungen selbst Mischcharakter aufweisen (z. B. GaAs) oder es treten verschiedene Bindungen unterschiedlichen Charakters auf (z. B. TiN). Da sich die Bindungsfestigkeiten der Materialien in ihren Schmelzpunkten widerspiegeln, kann ein Vergleich Schmelzpunkte verschiedener Materialien bei verwandter Struktur zur Beurteilung der Bindungsfestigkeiten herangezogen werden.

Als Beispiele für die hohe Bindungsfestigkeit gemischter Bindungen seien genannt:

GaAs: Zinkblendestruktur mit Koordinationszahl 4 (Abb. 1.17)
 Bindung: gemischt kovalent-ionisch Schmelzpunkte: Ga: 29,5 °C; As: 815 °C; GaAs: 1238 °C
 Der direkte Vergleich der Schmelz-

punkte ist problematisch, da mit der Verbindungsbildung eine dominant kovalente Bindung hergestellt wurde, während Ga dominant metallisch ist. Im Periodensystem der Elemente steht zwischen Ga (Ordnungszahl OZ = 31) und As (OZ = 33) Germanium mit der OZ = 32 und einer Diamantstruktur. Es ist somit das chemisch strukturelle Analogon zu GaAs, hat aber praktisch ein rein kovalente Bindungen. Der Schmelzpunkt beträgt 937 °C. Der rund 300 °C höhere Schmelzpunkt des GaAs ist Folge des Ionenbindungsanteils in dieser Verbindung, der beim Germanium fehlt.

TiN: Steinsalzstruktur mit Koordinationszahl 6 (Abb. 1.13)
 Bindung gemischt metallisch-ionisch Schmelzpunkte: Ti: 1672°C; N: -210°C; TiN: 2950°C

Die Struktur kann verstanden werden als ein kfz Untergitter für die Titanatome mit einer dominant metallischen Bindung zwischen ihnen und Stickstoffatomen auf oktaedrischen Zwischengitterplätzen im Titan-Untergitter, wobei die Wechselwirkung zwischen Ti und N deutlich ionisch ist. Diese Situation ist typisch für carbidische, nitridische oder boridische Hartstoffe.

1.5 Mischkristalle und Überstrukturen

1.5.1 Metalle

Wesentlich für die weite Verbreitung metallischer Werkstoffe in der Technik ist die Möglichkeit der Legierungsbildung zwischen verschiedenen Metallen bzw. mit Nichtmetallen. Darunter versteht man

eine innige Mischung aus mehreren Metallen bzw. Metallen und Nichtmetallen, wobei sich die Eigenschaften der Legierungen gegenüber denen der reinen Komponenten (Metallen) stark verändern können.

Um besser verstehen zu können, welche Erscheinungen bei der Legierungsbildung auftreten können, ist es notwendig näher zu erläutern, was man unter einer Phase versteht. Dabei geht man davon aus, dass in stofflichen Systemen in der Regel Bereiche mit unterschiedlichen Strukturen (verschiedene Kristallstrukturen, aber auch verschiedene amorphe Bereiche) vorliegen. Als Phase fasst man nun die Gesamtheit aller jener Bereiche des Systems zusammen, die eine gleiche bzw. gleichartige Struktur haben. Das Kennzeichen für eine Phase ist also deren Struktur. Daraus folgt natürlich, dass bei Gleichheit der Struktur zwangsläufig die thermodynamischen Eigenschaften (s. auch Kap. 3), die chemische Zusammensetzung und letztlich die physikalisch-chemischen Eigenschaften gleich sind. Die Gleichheit der chemischen Zusammensetzung von Bereichen eines Systems bedeutet umgekehrt nicht, dass diese Bereiche einer Phase zuzuordnen wären. Man beobachtet sehr häufig, dass z.B. reine Metalle in Abhängigkeit von Temperatur und Druck unterschiedliche Strukturen, d.h. unterschiedliche Phasen ausbilden. So existiert reines Eisen in mehreren Strukturvarianten (Modifikationen genannt): α -Fe (ferromagnetisch, krz), β-Fe (paramagnetisch, krz), y-Fe (kfz), δ-Fe (krz bei hohen Temperaturen) und ε-Fe (hdP bei hohen Drücken). Auch bei chemischen Verbindungen beobachtet man nicht selten in Abhängigkeit von Druck und Temperatur verschiedene Strukturen; auch sie bilden verschiedene Phasen aus. Als Beispiel sei SiO2 genannt, für das 12 Strukturmodifikationen, d.h. 12 Phasen bekannt sind. Alle diese Erscheinungen fasst man

unter dem Begriff der Polymorphie (Vielgestaltigkeit) zusammen (s. Abschnitt 1.6).

Eine metallische Legierungsbildung im festen Zustand kann zu folgenden Erscheinungen führen:

- 1. Die beteiligten Komponenten gehen praktisch keine Mischung im atomaren Bereich ein, d. h. sie liegen in der Legierung als getrennte, reine Phasen vor. Beispiele sind die Systeme: Cu-Pb, Fe-Pb, Cu-W. Eine Legierung aus Fe und Pb besteht demnach bei Raumtemperatur aus Eisenkörnern, die praktisch kein Blei enthalten, und aus Bleikörnern, in denen praktisch kein Eisen gelöst ist. Bei genauer Analyse muss man jedoch feststellen, dass sich immer geringe Löslichkeiten der festen Metalle ineinander ergeben, also im streng thermodynamischen Sinn Mischphasen gebildet werden. Diese Löslichkeiten können aber wie in den genannten Beispielen so gering sein, dass sie aus praktischer Sicht vernachlässigbar erscheinen.
- 2. Die Komponenten gehen atomare Mischungen ein, wobei die zu einem Basismetall zulegierten Komponenten auf Gitterplätzen und Zwischengitterplätzen des Basismetalls (Matrix) statistisch verteilt sind. Es bilden sich sogenannte Mischkristalle (Mischphasen) mit der Kristallstruktur des Basismetalls aus, die als feste Lösungen anzusehen sind. In Mischkristallen kann eine begrenzte (z. B. Cu-Zn, Fe-Cr) oder eine lückenlose Löslichkeit für die zulegierten Komponenten auftreten (z. B. Ni-Cu).
- 3. Die Komponenten bilden bei bestimmten Zusammensetzungsverhältnissen chemische Verbindungen, die sich in ihrer Struktur von der der beteiligten Elemente unterscheiden. Solche chemischen Verbindungen mit dominierend metallischem Bindungscharakter be-

zeichnet man als intermetallische Verbindungen bzw. intermetallische Phasen. Beispiele dafür sind die Phasen Ni₃Al, CuZn oder Mg₂Sn. Oft treten diese Phasen mit einem deutlichen Homogenitätsbereich um die stöchiometrische Zusammensetzung auf, was als eine Mischkristallbildung der Phase mit ihren eigenen Komponenten aufgefasst werden kann.

Im Folgenden sollen einige grundsätzliche Bemerkungen über Mischkristalle gemacht werden. Die intermetallischen Phasen und die ihnen nahe stehenden Einlagerungsphasen sind bereits in Abschnitt 1.4.1 behandelt worden.

Mischkristalle können auf dreierlei Art gebildet werden:

- 1. Der Einbau der zulegierten Komponente erfolgt durch örtlich regellose Substitution (Austausch) von Atomen des Basismetalls (Matrix) durch Atome des Legierungselements (Abb. 1.24). Das wesentliche Merkmal dieser sogenannten Substitutionsmischkristalle ist, dass die Zahl der Atome pro Elementarzelle im Vergleich zum Basismetall unverändert bleibt. Wegen der mehr oder weniger ausgeprägten Differenzen der Atomradien der Matrix- und der Legierungsatome wird man aber Verzerrungen in der Umgebung des substituierten Atoms und damit eine Veränderung der Gitterparameter feststellen (Abb. 1.25). Substitutionen können auch bei Verbindungen beobachtet werden. So kann z.B. Aluminium in TiN Titanatome (Bildung von Ti_{1-x} $A_{lx}N$) oder Kohlenstoff die Stickstoffatome (Bildung von $TiN_{1-v}C_v$) substituieren.
- 2. Die zulegierten Atome werden in vorhandene Gitterlücken des Basismetalls eingebaut bzw. eingelagert (Abb. 1.24).

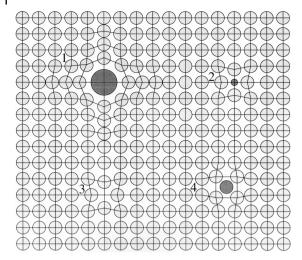


Abb. 1.24 Möglichkeiten der Mischkristall- bzw. Punktdefektbildungen, 1 Substitution durch ein großes Atom, 2 Substitution durch ein kleines Atom, 3 Leerstelle, 4 eingelagertes Atom

Es entstehen sogenannte Einlagerungsmischkristalle, bei denen die mittlere Zahl der Atome pro Elementarzelle im Vergleich zum Basismetall vergrößert wird. Gelegentlich wird dafür auch die Bezeichnung Additionsmischkristall verwendet. Bei Einlagerungsmischkristallen beobachtet man stets eine Zunahme der Gitterparameter mit der Konzentration.

Bei einer chemischen Verbindung können Leerstellen, d. h. unbesetzte Gitterplätze, im Gitter gebildet werden.

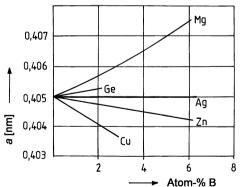


Abb. 1.25 Gitterparameter von Aluminiummischkristallen

Damit fehlen Atome einer oder mehrerer Komponenten der Verbindung, es tritt eine Abweichung von der korrekten stöchiometrischen Zusammensetzung auf. Die Zahl der Atome (besetzten Gitterplätze) pro Elementarzelle verringert sich in diesem Fall. Man bezeichnet das als Subtraktionsmischkristallbildung.

1.5.1.1 Substitutionsmischkristalle

Eine ausgeprägte Löslichkeit einer Komponente B in einem Basismetall A ist dann zu erwarten, wenn

- beide Komponenten im gleichen Gittertyp oder zumindest in einem verwandten Gittertyp kristallisieren,
- sich die Radien der kugelig gedachten Atome nur wenig voneinander unterscheiden (relative Radiendifferenzen nicht größer als 10 bis 15 %) und
- eine chemische Ähnlichkeit der Komponenten gegeben ist (Ähnlichkeit der Valenzelektronenstruktur).

Diese Regeln sind nicht als strenge Bedingungen aufzufassen und lassen sich auch

nur schwer oder unzureichend quantifizieren. Sie erlauben aber in vielen praktischen Fällen eine zufrieden stellende Vorhersage über das zu erwartende Mischkristallverhalten.

Als Folge der Radienunterschiede zwischen den Atomen des Basismetalls und der zulegierten (gelösten) Komponente ergeben sich in der Umgebung der substituierten Atome Gitterverzerrungen (Abb. 1.24, 1 und 2). Sie führen zu einer Änderung der Gitterparameter, die sich im Fall idealer Mischkristallbildungen linear mit der Konzentration der Komponente B verändern (Vegard'sche Regel). Für kubische Substanzen gilt

$$\Delta a = a_{AB} - a_A = a_A x_B (r_B/r_A - 1)$$
 (1.15)

 $m{a}_{ ext{AB}}, \, m{a}_{ ext{A}}$ Gitterparameter des Mischkristalls bzw. des Basismetalls $r_{ ext{A}}, \, r_{ ext{B}}$ Atomradius des Basismetalls bzw. des zulegierten Elements $m{x}_{ ext{B}}$ Atomanteil des zulegierten Elements

(Zahl der B-Atome bezogen auf die Gesamtzahl der Atome im System)

Abbildung 1.25 zeigt die Konzentrationsabhängigkeiten der Gitterparameter von kubischen Aluminiummischkristallen. Für $r_{\rm B} > r_{\rm A}$ beobachtet man eine Zunahme des Gitterparameters mit steigendem $x_{
m B}$ (Al-Mg, Al-Ge), für $r_{\rm B} < r_{\rm A}$ eine Abnahme (Al-Zn, Al-Cu) und für $r_{\rm B} \approx r_{\rm A}$ praktisch eine Unabhängigkeit (Al-Ag). Nicht selten beobachtet man, dass sich der Atomradius eines Metalls im Mischkristall von dem des reinen Metalls unterscheidet. So beträgt beispielsweise der Atomradius des Cu im elementaren Zustand r_{Cu} = 0,1278 nm, im Al-Cu-Mischkristall dagegen 0,1246 nm. Diese Änderungen der Atomradien im Mischkristall sind Ausdruck der dabei auftretenden Modifizierungen der Elektronenstruktur und zeigen eine Abweichung vom idealen Mischkristallverhalten an (reale Mischkristalle).

Die Mischkristallbildung wird durch eine mäßige chemische Affinität der Legierungspartner gefördert. Eine fehlende chemische Affinität führt zu einer drastischen Reduzierung der Löslichkeiten, wie es im System Ag-W zu verzeichnen ist. Obwohl der Atomradienunterschied hier nur 5% beträgt, tritt aus diesem Grund eine sehr geringe gegenseitige Löslichkeit auf. Dagegen beobachtet man im System Ag-Zn trotz eines Atomradienunterschieds von 8% eine Löslichkeit bis zu 35 Atom-% Zn. Bei starken chemischen Affinitäten werden die Bindungen zwischen den ungleichartigen Legierungspartnern bevorzugt, was die Mischkristallbildung fördert, aber auch zu Ordnungserscheinungen oder gar zur Bildung intermetallischer Phasen Anlass geben kann.

Das Verhalten realer Mischkristalle lässt sich am einfachsten mithilfe der Wechselwirkungsenergien zwischen den artgleichen (E_{AA} bzw. E_{BB}) und den artfremden (E_{AB}) Atomen beschreiben (s. Abschnitt 3.1.2): Ist E_{AB} etwa so groß wie der Mittelwert der Wechselwirkungsenergien zwischen den arteigenen Atomen $1/2(E_{AA} +$ $E_{\rm BB}$), so stellt sich eine weitgehend statistische Verteilung der Partner auf die Gitterplätze ein (Abb. 1.26 a). Bei $2E_{AB} < E_{AA} +$ $E_{\rm BB}$ werden die Bindungen zwischen den arteigenen Legierungspartnern bevorzugt, die Atome werden sich nach Möglichkeit mit arteigenen Nachbarn umgeben. In diesem Fall spricht man von einer Nahentmischung oder Clusterbildung (Abb. 1.26 d), die letztlich bis zu einer vollständigen Entmischung bzw. Ausscheidung führen kann.

Wird $2E_{\rm AB} > E_{\rm AA} + E_{\rm BB}$, werden sich die Atome im Mischkristall so anordnen, dass sich jedes B-Atom mit möglichst vielen A-Atomen und umgekehrt umgeben wird,

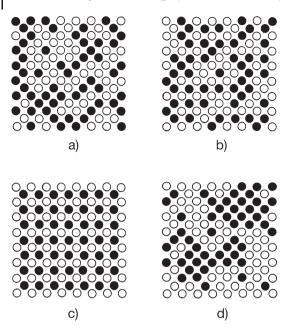


Abb. 1.26 Reale Mischkristallstrukturen: a) idealer Mischkristall, b) nah geordneter Mischkristall, c) fern geordnete Überstruktur, d) nah entmischter Mischkristall

da damit die höchste Zahl der energetisch AB-Bindungen bevorzugten realisiert wird. Die Atomanordnung ist nicht mehr statistisch, sondern es bildet sich eine geordnete Verteilung der Komponenten aus (Abb. 1.26 b). Findet eine Ordnung nur in der nächsten oder übernächsten Nachbarschaft statt, spricht man von einer Nahordnung. In vielen Fällen ist die Ordnungstendenz jedoch so stark, dass der gesamte Kristall weit reichend geordnet wird; es tritt eine Fernordnung oder Überstruktur auf (Abb. 1.26 c). Beispiele für Überstrukturen vom Typ A₃B sind Cu₃Au und Ni₃Fe, vom Typ AB CuAu und CuZn. Die zugehörigen Elementarzellen sind in Abb. 1.27 dargestellt. Neben dem Auftreten einer kritischen Ordnungstemperatur, bei der ein Übergang vom ungeordneten Mischkristall in den geordneten stattfindet, ist für eine Überstruktur kennzeichnend, dass die Gitter des Mischkristalls und der Überstruktur in ihren geometrischen Beziehungen und Koordinationen gleich sind. Allerdings tritt bei Ausbildung einer Überstruktur

eine Symmetrieerniedrigung auf. So weist der Mischkristall mit 75 Atom-% Ni und 25 Atom-% Fe ein kubisch flächenzentriertes Gitter auf, die Überstruktur Ni $_3$ Fe dagegen ein kubisch primitives Gitter, da hier die Atomposition mit den Koordinaten 0 0 0 den Positionen $\frac{1}{2}$ $\frac{1}{2}$ 0, 0 $\frac{1}{2}$ $\frac{1}{2}$ oder $\frac{1}{2}$ 0 $\frac{1}{2}$ nicht mehr äquivalent ist. Sogar eine Änderung des Kristallsystems kann auftreten, wie man es bei der tetragonalen Überstruktur CuAu I beobachtet (Abb. 1.27).

1.5.1.2 Einlagerungsmischkristalle

Die Kristallstrukturen der meisten reinen Metalle können als Kugelpackungen aufgefasst werden, wobei die Packungsdichte für die kubisch dichteste (kdP) und die hexagonal dichteste (hdP) Packung 74%, für die kubisch raumzentrierte Struktur (krz) 68% erreicht. Das bedeutet, dass zwischen den kugelförmig gedachten Atomen noch Freiräume bleiben, die als Zwischengitterplätze bzw. Gitterlücken bezeichnet werden. In diese können Atome mit geringen

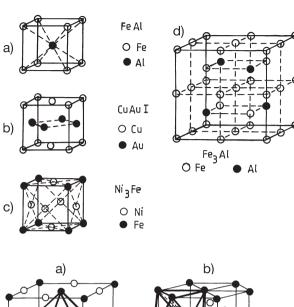


Abb. 1.27 Elementarzellen von Überstrukturen: a) FeAl (kubisch primitiv), b) CuAu I (tetragonal), c) Ni₃Fe (kubisch primitiv), d) Fe₃Al (kubisch flächenzentriert)

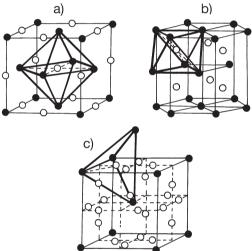


Abb. 1.28 Gitterlücken in der a) kdP-, b) hdP-, c) krz-Kugelpackung

Atomradien wie Wasserstoff (0,045 nm), Kohlenstoff (0,077 nm), Stickstoff (0,070 nm) und Bor (0,088 nm) eingelagert werden (Abb. 1.28). Dieser Einbau auf Gitterlücken führt zu Einlagerungsmischkristallen, bei denen sich im Gegensatz zu den Substitutionsmischkristallen die Zahl der Atome pro Elementarzelle verändert (vergrößert). Anhand dieses Befunds können auch diese beiden Mischkristalltypen voneinander unterschieden werden. Eine ausgeprägte Neigung zur Bildung von Ein-

lagerungsmischkristallen zeigen die Übergangsmetalle insbesondere mit den Elementen Kohlenstoff und Stickstoff.

Betrachten wir die Geometrie der Gitterlücken etwas näher. In der kdP (kfz-Gitter) befindet sich die größte Gitterlücke in der Position $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$, in die eine Kugel mit dem Radius von r=0,414 $r_{\rm A}$ ($r_{\rm A}=$ Atomradius des Wirtsmetalls) so eingepasst werden kann, dass sie die sechs benachbarten Wirtsmetallatome gerade berührt. Diese bilden zusammen ein Oktaeder, weshalb diese

Lücke als Oktaederlücke bezeichnet wird. Äquivalente Gitterlücken befinden sich in den Positionen $\frac{1}{2}$ 0 0, 0 $\frac{1}{2}$ 0 und 0 0 $\frac{1}{2}$, ihre Zahl pro Elementarzelle beträgt also vier (Abb. 1.28 a). (Es ist zu beachten, dass Positionen in den Kantenmitten, in denen sich vier Elementarzellen treffen, nur zu einem Viertel der Elementarzelle zuzurechnen sind.) Darüber hinaus existieren aber noch acht tetraedrische Lücken mit kleinerem Freiraum ($r = 0.23 r_A$) in den Positionen \(\frac{1}{4}\)\(\frac{1}\)\(\frac{1}{4}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}{4}\)\(\frac{1}\)\(\frac{1}4\)\(\frac{1}4\)\(\frac{1}4\)\(\frac{ und $\frac{3}{4}$ $\frac{3}{4}$ In der Regel werden die größeren Oktaederlücken mit Zwischengitteratomen besetzt, um die mit der Einlagerung verbundenen Gitterverzerrungen gering zu halten.

Bei der hdP ergeben sich wie bei der kdP oktaedrische Gitterlücken in $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{4}$ und $\frac{1}{3}$ $\frac{2}{3}$ $\frac{3}{4}$ und gleichem Innenradius von r=0,414 $r_{\rm A}$ (Abb. 1.28 b). Die kleineren tetraedrischen Lücken liegen in $\frac{1}{3}$ $\frac{2}{3}$ $\frac{1}{4}$ und $\frac{2}{3}$ $\frac{1}{3}$ $\frac{3}{4}$.

In einer Kugelpackung mit krz-Gitter (Abb. 1.28 c) sind die sechs oktaedrischen Lücken in $\frac{1}{2}$ 0 0, 0 $\frac{1}{2}$ 0, 0 0 $\frac{1}{2}$, $\frac{1}{2}$ $\frac{1}{2}$ 0, $\frac{1}{2}$ 0 $\frac{1}{2}$ und 0 $\frac{1}{2}$ mit r=0,155 $r_{\rm A}$ kleiner als die 12 möglichen tetraedrischen Lücken mit r=0,291 $r_{\rm A}$ in den Positionen $\frac{1}{2}$ $\frac{1}{4}$ 0, $\frac{3}{4}$ $\frac{1}{2}$ 0, $\frac{1}{4}$ $\frac{1}{2}$ $\frac{3}{4}$ 0, $\frac{1}{2}$ 0 $\frac{1}{4}$, $\frac{1}{2}$ 0 $\frac{3}{4}$, $\frac{1}{4}$ 0 $\frac{1}{2}$, $\frac{3}{4}$ 0 $\frac{1}{2}$, 0 $\frac{1}{2}$ $\frac{1}{4}$, 0 $\frac{1}{2}$ $\frac{3}{4}$. Es werden sich daher interstitielle Atome bevorzugt in den tetraedrischen Lücken finden, die jedoch immer noch kleiner als die oktaedrischen im kfz-Gitter sind.

Auch für die Bildung von Einlagerungsmischkristallen lassen sich Regeln formulieren:

Die Legierungsatome werden so eingelagert, dass möglichst geringe Verzerrungen des Grundgitters auftreten. Gewöhnlich werden daher die größten Gitterlücken besetzt. Die Löslichkeiten steigen, je geringer die erzeugten Gitterverzerrungen sind, d.h. je kleiner die relativen

- Atomradiendifferenzen zwischen $r_{\rm E}$ (Radius des Einlagerungsatoms) und r (Lückenradius) sind.
- Ist der Atomradius des einzulagernden Elements kleiner als der größte Lückenradius, werden Lücken mit kleinerem Innenradius belegt, denn die eingelagerten Atome müssen mit den benachbarten Wirtsatomen in Kontakt kommen, sie dürfen nicht "klappern". Wasserstoff wird in Zirkon wegen $r_{\rm H}/r_{\rm Zr}=0,29$ nicht in den oktaedrischen Gitterlücken, sondern in den tetraedrischen eingebaut.

Da die kdP und die hdP größere Gitterlücken aufweisen als das krz-Gitter, ist zu verstehen, warum die kfz und die hexagonalen Metalle größere Löslichkeiten für interstitielle (eingelagerte) Atome zeigen als die krz-Metalle. So beträgt die Kohlenstofflöslichkeit des kfz γ-Fe (Austenit) bei einer Temperatur von 723°C 0,8 Masse-%, die des krz α-Fe (Ferrit) dagegen nur 0,02 Masse-%. Die maximale Löslichkeit des γ-Fe erreicht sogar 2,06 Masse-% bei 1147 °C. Ähnliches lässt sich auch im System Fe-N feststellen: α-Fe löst bei 591°C etwa 0,1 Masse-% N, γ-Fe dagegen 2,35 Masse-%. Die größeren Löslichkeiten des Eisens für Stickstoff erklären sich aus dem geringeren Atomradius des Stickstoffs im Vergleich zu dem des Kohlenstoffs.

Wie auch bei den Substitutionsmischkristallen ist eine geordnete Verteilung der gelösten Atome auf die Gitterplätze möglich. Im Fall einer Fernordnung entstehen Verbindungen, die als Einlagerungsphasen bezeichnet und in Abschnitt 1.4.1.3 besprochen worden sind.

1.5.1.3 Subtraktionsmischkristalle

Als Gegenstück zu den bereits besprochenen Einlagerungsmischkristallen können die Subtraktionsmischkristalle angesehen werden. Sie treten insbesondere bei den in den Abschnitten 1.4.1.2 und 1.4.1.3 näher erläuterten intermetallischen Verbindungen und Einlagerungsphasen auf, die in der Regel deutliche Abweichungen von den streng stöchiometrischen Zusammensetzungen aufweisen. Sie sind in vielen Fällen das Resultat eines Leerstelleneinbaus in eines der Teilgitter der beteiligten Komponenten. So neigen z.B. die Nitride der Übergangsmetalle dazu, durch einen erheblichen Leerstelleneinbau auf Stickstoffgitterplätzen bezüglich des Stickstoffs unterstöchiometrisch zu werden, ohne dass dabei die für diese Nitride typische Steinsalzstruktur verloren geht. Als Kennzeichen der Subtraktionsmischkristalle tritt dabei eine Verringerung der mittleren Zahl der Atome pro Elementarzelle auf, die z.B. für eine stöchiometrische Verbindung mit Steinsalzstruktur acht beträgt.

1.5.2 Keramische Werkstoffe

Keramische Phasen zeigen hinsichtlich ihres Mischungsverhaltens das gleiche Erscheinungsbild wie die bisher besprochenen metallischen Phasen. Es können Gemenge zwischen praktisch reinen Phasen, Mischphasen (Mischkristalle) oder Verbindungen mit eigener Struktur gebildet werden.

Die Mischphasenbildung gehorcht adäquaten Regeln wie bei den Metallen, d.h. es treten sowohl Substitutionsmischkristalle, Einlagerungsmischkristalle als auch Subtraktionsmischkristalle auf. Auf einen besonderen Aspekt bei der Mischkristallbildung muss aber hingewiesen werden: Eine Substitution eines Ions/Atoms ist nur dann in diesen Systemen mit lokalisierten Elektronen einfach möglich, wenn die Wertigkeiten der sich substituierenden Atomen gleich sind. So können z.B. Na-Ionen relativ einfach durch K-Ionen ersetzt werden.

eine Substitution von einwertigen Ionen A^+ (z. B. K^+) durch zweiwertige B^{++} (z. B. Ca⁺⁺) würde zu einer Verletzung der Ladungsneutralität führen. Sie ist dann möglich, wenn B⁺⁺ gleichzeitig zwei A⁺ ersetzt. Das bedeutet aber, dass dabei neben dem Ersatz eines A⁺ durch B⁺⁺ ein weiteres A⁺ eliminiert werden muss, also eine Leerstelle im A+-Teilgitter entsteht (s. auch Abschnitt 1.7).

1.6 Polymorphie, Polytypie

Von vielen metallischen und keramischen Phasen ist bekannt, dass sie in Abhängigkeit von Temperatur und Druck unterschiedliche Kristallstrukturen ausbilden. Diese Erscheinung bezeichnet man als Polymorphie (Vielgestaltigkeit) und die in ihrer Struktur unterschiedlichen Phasen als polymorphe Modifikationen. Bei reinen Metallen und stöchiometrischen Verbindungen treten die Modifikationswechsel bzw. Phasenumwandlungen bei definierten Temperaturen auf, sofern es sich um Gleichgewichtszustände handelt. (Im Fall reiner Elemente wird diese Strukturumwandlung auch als Allotropie bezeichnet.) Umwandlungen zwischen stabilen Phasen verlaufen reversibel, d.h. sie sind mit Umkehrung der Temperatur- bzw. Druckveränderung umkehrbar.

Das bekannteste Beispiel dafür ist das Eisen. Im Temperaturbereich bis 768 °C besitzt es eine krz-Struktur und ist ferromagnetisch (α-Fe), zwischen 768 °C und 911 °C ist es ebenfalls krz, aber paramagnetisch (β-Fe), zwischen 911 °C und 1392 °C ist die kfz-Struktur stabil (γ-Fe) und von 1392 °C bis zum Schmelzpunkt von 1536 °C tritt wieder die krz-Struktur in Erscheinung (δ-Fe). Darüber hinaus existiert bei Drücken oberhalb von etwa 12 GPa

Tab. 1.7 Allotrope Modifikationen wichtiger Metalle

Metall	Modifikation	Existenzbereich [°C]	Kristallstruktur ^a
Eisen	α-Fe	≤ 768	A2, ferromagnetisch
	β-Fe	768-911	A2, paramagnetisch
	γ-Fe	911-1392	A1
	δ-Fe	1392-1536	A2
Cobalt	α-Co	≤ 420	A3, ferromagnetisch
	β-Со	420-1140	A1, ferromagnetisch
	γ-Co	1140-1495	A1, paramagnetisch
Mangan	α-Mn	≤ 727	A12
	β-Mn	727-1095	A13
	γ-Mn	1095-1133	A1
	δ-Mn	1133-1245	A2
Titan	α-Ti	≤ 882	A3
	β-Ti	882-1668	A2
Zirconium	α-Zr	≤ 840	A3
	β-Zr	840-1852	A2
Zinn	•		
	α-Sn	≤ 13,2	A4
	β-Sn	13,2-232	A5

^aA1 kfz (Kupfer-Typ), A2 krz (Wolfram-Typ), A3 hdP (Magnesium-Typ), A4 kfz (Diamant-Typ), A5 tetragonal, A12 kubisch (58 Atome in Elementarzelle), A13 kubisch (20 Atome in Elementarzelle).

noch eine hexagonale Modifikation, die als ϵ -Fe bezeichnet wird. Die (allotropen) Modifikationen wichtiger Metalle sind in Tab. 1.7 aufgeführt.

In der allgemeinen Praxis werden häufig die verschiedenen magnetischen Ordnungszustände nicht als gesonderte Phasen geführt. Typisches Beispiel dafür ist das α -Fe, dessen Umwandlung in das β -Fe nicht beachtet wird, sein Existenzgebiet also wegen des gleich bleibenden Bravais-Typs (krz) vereinfachend bis 911 °C angenommen wird.

Die Phasenumwandlungen sind mit Änderungen von Eigenschaften (z. B. des spezifischen Volumens, der elektrischen Leitfähigkeit, der elastischen Moduln) und Wärmetönungen verknüpft, anhand derer sie experimentell verfolgt werden können

(Differenzialthermoanalyse, Dilatometrie, s. Abschnitt 3.7).

Als Beispiel für die Polymorphie von keramischen Phasen sei auf SiO_2 verwiesen. Am bekanntesten ist der trigonale Tiefquarz (α -Quarz), der bei $573\,^{\circ}$ C in den sogenannten hexagonalen β - Hochquarz übergeht. Weiterhin existiert der sogenannte Cristobalit als tetragonaler α -Tiefcristobalit und als kubischer β -Hochcristobalit (s. Abb. 1.21). Durch Hinzufügen kleiner Mengen an Drittelementen können weitere Varianten gebildet werden.

Das Element Kohlenstoff begegnet uns als Diamant mit einem typischen Gitter, das in Abb. 1.17 dargestellt ist (Diamantgitter). Meistens finden wir den Kohlenstoff jedoch als Grafit, der ein hexagonales Schichtgitter ausbildet. Auf synthetischem

Wege gelingen auch fußballähnliche Atomanordnungen (sogenannte Fullerene) und röhrenförmige Makromoleküle (Nanotubes).

In Verbindungen, deren Strukturen als Stapelung ebener Atomanordnungen aufgefasst werden können, beobachtet man oft eine Vielfalt von periodischen Stapelfolgen. Die sich ergebenden Strukturen bezeichnet man als Polytype.

Klassisches Beispiel ist SiC (Siliciumcarbid). Man beobachtet es gewöhnlich in der hexagonalen Wurtzitstruktur (hexagonale Phase des ZnS) mit einer zweilagigen Periodizität der Art ...abab ... oder in der Zinkblendestruktur Sphaleritbzw. (Abb. 1.17) mit einer dreilagigen Periodizität ... abcabc Darüber hinaus existieren aber noch eine Vielzahl von periodischen Stapelfolgen, deren Kennzeichnung folgendermaßen vorgenommen wird: Eine Zahl gibt an, wie viele Ebenen einen periodisch wiederkehrenden Stapel bilden (2, 3, 4, ...) und ein Buchstabensymbol dient zur Charakterisierung des Kristallsystems (z. B. C für kubisch, H für hexagonal, R für rhomboedrisch). So bedeuten: SiC-4H ein Siliciumcarbid mit einer periodischen Stapelfolge ... abcb..., SiC-6H eines mit einer Folge ...abcacb..., beides mit hexagonaler Struktur. Der Zinkblendestruktur entspricht also die Symbolik 3C, der Wurtzitstruktur 2H.

Phasenumwandlungen in Mischkristallen sind in der Regel mit Konzentrationsänderungen bzw. der Bildung weiterer Phasen verbunden. Die Umwandlungen vollziehen sich daher nicht mehr bei einer definierten Temperatur, sondern in einem Temperaturintervall (s. auch Kap. 3).

Kristallbaufehler

171

Klassifizierung von Kristallbaufehlern

Die Darstellung eines Kristalls als eine perfekte Anordnung von Atomen, Ionen oder Molekülen in einem (unendlich gedachten) Raumgitter entspricht bei genauerer Betrachtung nicht der Wirklichkeit. Jeder Kristall (Kristallit) weist eine Reihe von Kristallbaufehlern oder Gitterfehlern im Sinn von Abweichungen der realen Kristalle/Kristallite von der idealen, perfekten Anordnung der atomaren Bausteine auf. Die Summe dieser Abweichungen bezeichnet man als Realstruktur. Diese Abweichungen treten teilweise sogar im thermodynamischen Gleichgewicht auf, was bedeutet, dass die entsprechenden Fehler bei einer gegebenen Temperatur unvermeidlich mit einer bestimmten Dichte in Erscheinung treten. Viele Eigenschaften der Kristalle (Kristallite) lassen sich nur verstehen, wenn man die Existenz von Gitterfehlern voraussetzt. Dazu gehören z.B. die plastischen Eigenschaften und das Diffusionsverhalten. Daraus folgt, dass sowohl die Kenntnis der Fehler- bzw. Defektstrukturen als auch deren Manipulierbarkeit einen bedeutsamen Bereich der Werkstoffwissenschaft und damit der Metallkunde darstellen.

Man unterscheidet zwei grundsätzliche Gitterfehlerarten: die lokalisierbaren und die delokalisiert auftretenden. Während im ersten Fall der Gitterfehler während Beobachtungsdauer an einem bestimmten Ort im Kristall zu finden ist (z. B. eine Leerstelle oder eine Ansammlung von Fremdatomen, auch Cluster genannt), zeichnen sich die delokalisierten Gitterfehler dadurch aus, dass an dieser Fehlerkonfiguration sehr viele, meist alle

Atome/Ionen eines Kristalls in kollektiver Weise beteiligt sind (Eigenspannungszustände, thermisch bedingte Gitterschwingungen). Trotz der großen technischen Bedeutung auch der delokalisiert auftretenden Gitterfehler versteht man unter Gitterfehlern im engeren Sinn lediglich die lokalisierbaren.

Um eine sinnvolle Einteilung der lokalisierbaren Gitterfehler vornehmen zu können, betrachtet man die räumliche Ausdehnung des betreffenden Fehlergebiets, d. h. man kennzeichnet die Zahl der räumlichen Dimensionen, in denen der Gitterfehler mehr als etwa atomare Ausdehnung besitzt (Dimensionalität der Gitterfehler). Damit ergibt sich folgende allgemein verwendete Einteilung der Gitterfehler/Kristallbaufehler:

- nulldimensionale Baufehler oder Punktdefekte mit gestörten Bereichen, die in allen Raumrichtungen nur atomare bzw. nur wenig größere als atomare Abmessungen aufweisen (Leerstellen, arteigene oder fremde Atome auf Zwischengitterplätzen, substituierte Fremdatome);
- eindimensionale Baufehler oder Liniendefekte mit gestörten Bereichen, die nur in einer Raumrichtung eine größere als atomare Dimension haben (Versetzungen, Ketten von Punktdefekten);
- zweidimensionale Baufehler oder Flächendefekte, die nur noch in einer Dimension etwa atomare Ausdehnung aufweisen (Stapelfehler, Antiphasengrenzen, Subkorngrenzen);
- dreidimensionale Baufehler oder Volumendefekte (Poren, Ausscheidungen, Einschlüsse). Sie entstehen üblicherweise aus einer Agglomeration von Punktdefekten.

1.7.2

Punktdefekte

1.7.2.1 Leerstellen

Eine Leerstelle in Metallen entsteht durch Entfernen eines Atoms von seinem Gitterplatz, wie es schematisch in Abb. 1.29 dargestellt ist. Die der Leerstelle benachbarten Atome verschieben sich dabei so aus ihren idealen Positionen heraus, dass sich das gestörte Gebiet nicht nur auf das des entfernten Atoms beschränkt. Dieses gestörte Gebiet ist aber schon in sehr wenigen Atomabständen nicht mehr spürbar.

Wichtig für das Verständnis vieler metallkundlicher Erscheinungen ist, dass Leerstellen bei jeder Temperatur T im thermodynamischen Gleichgewicht auftreten, wobei ihre Konzentration c_L gegeben ist zu

$$c_{\rm L} = \exp(-H_{\rm BL}/kT) \exp(S_{\rm BL}/k)$$
 (1.16)

 $H_{\rm BL}$ Bildungsenthalpie für eine Leerstelle

 S_{BL} Bildungsentropie für eine Leerstelle k Boltzmann-Konstante

Als Regel gilt, dass die Bildungsenthalpien für Leerstellen proportional zur Schmelztemperatur T_S der Metalle sind.

$$H_{\rm BL} \approx 9 \ k \ T_{\rm S} \tag{1.17}$$

Die Bildungsentropien betragen für die Metalle etwa (1–5) k. Damit ergeben sich

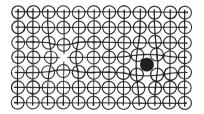


Abb. 1.29 Konfiguration einer Leerstelle und eines Zwischengitteratoms

für die Leerstellenkonzentrationen in Metallen unmittelbar unterhalb von T_S Werte zwischen 10⁻³ und 10⁻⁴. Das bedeutet, dass der mittlere Abstand zwischen den Leerstellen wenig mehr als 10 Atomabstände beträgt. Erniedrigt man die Temperatur, gehen die Leerstellenkonzentrationen drastisch zurück. So betragen sie bei $T \approx 0.4 T_{\rm S}$ nur noch 10^{-9} .

Leerstellen können sich im Kristall bewegen. Dabei springt ein benachbartes Atom in die Leerstelle hinein, wodurch eine solche an der Stelle des gesprungenen Atoms entsteht, die Leerstelle hat sich um einen Atomabstand weiterbewegt. Dies ist ein thermisch aktivierbarer Prozess; die notwendige Aktivierungsenthalpie H_{WI} für diese Wanderung bestimmt die Frequenz v, mit der eine Leerstelle den Gitterplatz wechselt. Es ergibt sich bei Vernachlässigung eines Entropiefaktors die Beziehung

$$v = v_0 \exp(-H_{WI}/kT)$$
 (1.18)

Dabei gilt für Metalle in guter Näherung $H_{\rm WL} \approx H_{\rm BL}$. Der Frequenzfaktor v_0 (etwa Frequenz, mit der die Atome im Gitter bei der gegebenen Temperatur um ihre Ruhelage schwingen) hat die Größenordnung von 10¹³ s⁻¹. Kurz unterhalb des Schmelzpunkts ergibt sich damit eine Platzwechselfrequenz der Leerstellen von etwa 10¹⁰ s⁻¹. Bedenkt man, dass der Atomabstand ca. 0,3 nm beträgt, ergibt sich für die Geschwindigkeit der zickzackförmigen Leerstellenbewegung im Kristall ein Wert um 3 m s⁻¹. Wie die thermisch bedingte Leerstellenkonzentration sinkt die Platzwechselfrequenz und damit die Wanderungsgeschwindigkeit der Leerstellen stark mit der Temperatur (bei $T \approx 0,4 T_S$ nur noch $10^4 \text{ s}^{-1} \text{ bzw. } 3 \cdot 10^{-6} \text{ m s}^{-1}$). Vollführt kurz unterhalb des Schmelzpunkts jedes Atom pro Sekunde etwa 10⁷ Platzwechsel, so sind es bei $T \approx 0.4 T_{\rm S}$ nur noch ein Sprung pro 10⁵ s oder pro reichlich einen Tag!

Leerstellen können sich zusammenlagern und auf diese Weise Doppel-, Dreifach- oder Mehrfachleerstellen formieren (Agglomeration), woraus bei einem Überangebot von Leerstellen auch Mikroporen entstehen können.

Leerstellen können durch Abschrecken von hohen Temperaturen, bei einer plastischen Verformung oder bei Einwirken hochenergetischer Strahlungen (z.B. Elektronen, Neutronen) mit Konzentrationen gebildet werden, die erheblich größer sind als die thermisch bedingten Konzentrationen. Bei niedrigen Temperaturen $T < 0.3 T_s$, denen Platzwechselfrequenzen von kleiner als etwa 1 s⁻¹ entsprechen, bleiben diese Leerstellen im Kristall über längere Zeiträume erhalten. Erhöht man jedoch die Temperatur, dann agglomerieren sie oder wandern an Oberflächen, Korngrenzen bzw. Versetzungen und heilen dort aus, die Konzentration nähert sich wieder der thermischen Gleichgewichtskonzentration an.

In keramischen Materialien können ebenfalls Leerstellen gebildet werden. Dabei muss jedoch berücksichtigt werden, dass in Systemen mit Ionenbindungen bzw. Ionenbindungsanteilen die Entfernung eines Kations zwangsläufig auch die eines Anions gleicher Ladungszahl bedingt, also Kationen- und Anionenleerstellen im Verbund auftreten. Wie bereits in Abschnitt 1.5.2 dargelegt wurde, können auch Leerstellen dadurch gebildet werden, dass man ein niederwertiges Kation durch ein höherwertiges substituiert, z.B. K⁺ durch Ca⁺⁺ unter Bildung einer Kationenleerstelle, damit die Ladungsneutralität gewahrt bleibt.

1.7.2.2 Zwischengitteratome

Ein Zwischengitteratom in metallischen Strukturen entsteht durch Einbau eines arteigenen Atoms auf einer Position im Gitter, auf der im ungestörten Kristall kein Atom zu finden ist (vergleiche Abb. 1.29). Bei den Positionen handelt es sich um jene Gitterlücken, die bereits in Abschnitt 1.5.1.2 bei den Einlagerungsmischkristallen besprochen wurden (z. B. Oktaederoder Tetraederlücken). In Analogie zu den Leerstellen können sie auch im thermodynamischen Gleichgewicht auftreten, jedoch ist ihre Bildungsenthalpie wegen der großen elastischen Deformation in ihrer Nachbarschaft etwa dreimal so groß wie die der Leerstellen, was bedeutet, dass ihre Gleichgewichtskonzentrationen vernachlässigbar klein sind. Selbst nahe dem Schmelzpunkt ist diese Konzentration um den Faktor 108 niedriger als die der Leerstellen. Die Beweglichkeit der Zwischengitteratome ist dagegen viel höher als die der Leerstellen; sie können demzufolge bei niedrigeren Temperaturen ausheilen als Leerstellen.

Sowohl durch eine plastische Verformung als auch durch Bestrahlen von Metallen können Atome des Gitters auf Zwischengitterplätze gebracht werden. Sie heilen wie die Leerstellen an Oberflächen, Korngrenzen oder Versetzungen aus. Trifft ein Zwischengitteratom bei seiner Wanderung durch das Gitter auf eine Leerstelle, so verschwinden beide bei ihrer Vereinigung (Annihilation).

Kovalent gebundene Strukturen (Si, Ge, BN, GaAs ...) zeichnen sich in der Regel durch geringe Packungsdichten aus, so dass Zwischengitteratome im Vergleich zu dichtest gepackten Strukturen (Metalle) relativ leicht gebildet werden können.

1.7.2.3 Fremdatome

Als Punktdefekte wirken auch Fremdatome, die in das Gitter eingebaut worden sind. Dieser Einbau kann sowohl durch Substitution als auch durch Einlagerung auf Zwischengitterplätzen erfolgen. Er entspricht einer ungewollten Mischkristallbildung, die bereits in Abschnitt 1.5 besprochen wurde.

Fremdatome können mit anderen Gitterfehlern in Wechselwirkung treten. Sie bilden z.B. mit Leerstellen Komplexe oder wandern bevorzugt in die um Versetzungen auftretenden elastisch verzerrten Gebiete (Wolkenbildung). Bekanntes Beispiel dafür sind die sogenannten Cottrell-Wolken als Ansammlung von interstitiellen Atomen in der Nähe von Versetzungen.

Lagern sich Fremdatome zusammen, entstehen Fremdatomcluster, aus denen gegebenenfalls Ausscheidungen entstehen können.

1.7.3

Versetzungen

Die plastische Deformation der Metalle vollzieht sich durch Abgleiten zweier Kristallbereiche auf einer gemeinsamen kristallografischen Netzebene, der sogenannten Gleitebene. Nimmt man an, dass diese Abgleitung über die gesamte Gleitebene, d. h. über den gesamten Kristallquerschnitt, gleichzeitig erfolgt, so wäre dafür eine Schubspannung notwendig, die die experimentell beobachtete um einige Größenordnungen übersteigt. Diese Diskrepanz lässt sich überwinden, wenn man annimmt, dass sich dieser Abgleitprozess nicht geschlossen über die Gleitebene vollzieht. sondern bereichsweise. Das heißt aber. dass es auf einer Gleitebene eine Grenze geben muss, die den bereits abgeglittenen Bereich von dem noch nicht abgeglittenen Bereich trennt. Diese Grenze stellt eine li-

nienhafte Gitterstörung dar, der man die Bezeichnung "Versetzung" gegeben hat (Taylor, Elam 1934). Folgendes leicht nachzuvollziehendes Experiment soll das illustrieren. Wenn man einen langen und schweren Teppichläufer über den Fußboden bewegen will, gibt es dafür zwei Möglichkeiten: Entweder zieht man am Ende des Läufers in die Richtung der beabsichtigten Verschiebung (die Gleitung erfolgt dabei über die gesamte Läuferlänge gleichzeitig) oder man wirft am entgegengesetzten Ende eine Falte auf, die sich dann leicht in Richtung der beabsichtigten Verschiebung bewegen lässt (Abb. 1.30). Die Verschiebung breitet sich dabei über die Läuferlänge sukzessive aus. Es ist leicht einzusehen, dass für die letztere der beiden Varianten sehr viel weniger Kraft (Schubspannung) aufgewendet werden muss. Die erzeugte Teppichfalte stellt das Analogon zur Versetzung dar. Auch sie ist unter der Einwirkung geringer Schubspannungen in der Gleitebene relativ leicht zu bewegen.

Die atomistische Struktur der Versetzungen lässt sich folgendermaßen verstehen (Abb. 1.31): Ein Kristallblock wird zunächst in der Ebene ABCD halb aufgeschnitten (Abb. 1.31 a). Verschiebt man nun den Kristallteil oberhalb der Schnittfläche um einen vollständigen Gitterabstand in Richtung 1, entsteht im Bereich der Verbindungslinie AB eine Atomkonfiguration, wie sie in Abb. 1.31 b) zu sehen ist. Oberhalb der Schiebungs- oder Gleitebene befindet sich senkrecht zu ihr eine Netzebene, die sich nicht im unteren Kristallteil fortsetzt.

Diese linienhafte Störung, in der die Koordination der nächst benachbarten Atome gestört ist, trennt den abgeglittenen Kristallbereich vom nicht abgeglittenen, man bezeichnet sie als Stufenversetzung. ABCD ist die Gleitebene. Den elementaren Schiebungsbetrag, den diese Versetzung erzeugt, nennt man den Burgers-Vektor b_1 ; er stellt einen vollständigen Gittervektor dar und steht senkrecht auf der Versetzungslinie AB. Wirkt in der Gleitebene in Richtung von b eine Schubspannungskomponente, wird sich die Versetzungslinie in Richtung 1 fortbewegen und damit eine weitere Ausdehnung des abgeglittenen Kristallteils bewirken (vergleiche die sich bewegende Teppichfalte). Die dafür notwendige Schubspannung (üblicherweise wenige MPa) ist um Größenordnungen kleiner als die theoretische Schubfestigkeit eines ungestörten Kristalls, die etwa $G/2\pi$ beträgt (G Schubmodul). Die plastische Deformation metallischer Kristalle verkörpert also hier die (Bildung und) Bewegung von Versetzungen in einer für sie charakteristischen Gleitebene.

Eine Verschiebung oder Abgleitung des halb aufgeschnittenen Kristallblocks kann aber auch in die Richtung 2, d.h. parallel zu AB erfolgen. Die sich dabei ergebende Atomkonfiguration ist in Abb. 1.31 c zu sehen. Die Netzebenen senkrecht zu Richtung 2 sind schraubenartig verwunden, weshalb man diesen Versetzungstyp als Schraubenversetzung bezeichnet. Im Gegensatz zur Stufenversetzung verläuft der Burgers-Vektor b₂ der Schraubenverset-

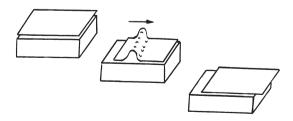


Abb. 1.30 Teppichfaltenmodell zur Erklärung von Versetzungen

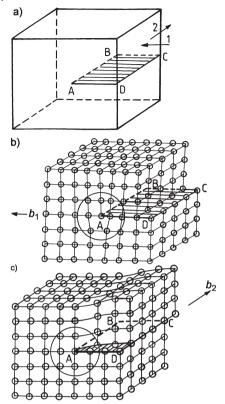


Abb. 1.31 Zur Erklärung von Stufen- und Schraubenversetzungen: a) halbgeschnittener Kristall, b) Stufenversetzung, c) Schraubenversetzung

zung jetzt parallel zur Versetzungslinie AB. Auch sie wird sich bei Einwirkung einer Schubspannungskomponente in Richtung von b_2 senkrecht zu AB verschieben und so eine weitere Abgleitung in Richtung b_2 bewirken.

Die durch eine Versetzungsbewegung hervorgerufene kristallografische Gleitung wird charakterisiert durch die Gleitebene, in der der Burgers-Vektor und die Versetzungslinie liegen (Versetzungslinie und Burgers-Vektor definieren die Gleitebene), sowie die Gleitrichtung, die mit der Richtung des Burgers-Vektors zusammenfällt. Gleitrichtungen in Metallen sind stets dichtest gepackte Gitterrichtungen, d. h Richten

tungen mit minimalen Translationsperioden. Ursache dafür ist, dass einmal die Energie pro Einheitslänge einer Versetzung näherungsweise $\frac{1}{2}$ G b^2 beträgt, also kleine Burgers-Vektoren bevorzugt werden, und dass dafür die minimalen Schubspannungen für die Versetzungsbewegung am kleinsten sind. Als Gleitebenen treten möglichst dicht gepackte Gitterebenen in Erscheinung, in denen die Versetzungsbewegung am leichtesten ist. Die Gleitelemente (Gleitebene und Gleitrichtung) für die wichtigsten metallischen Strukturen finden sich in Tab. 1.8.

Erfolgt die Bewegung der Versetzungen in ihrer durch den Burgers-Vektor und die Versetzungslinie gegebenen Gleitebene, spricht man von einer konservativen Versetzungsbewegung (keine Bildung oder Absorption von Punktdefekten). Bei entsprechender thermischer Aktivierung ($T > 0.5 \ T_{\rm S}, \ T_{\rm S}$ Schmelzpunkt in K) können Stufenversetzungen z. B. unter Absorption oder Emission von Leerstellen ihre Gleitebenen verlassen (Bewegungskomponente senkrecht zur Gleitebene), was als nichtkonservative Versetzungsbewegung (Klettern) bezeichnet wird.

Die plastische Deformation von Metallen bedeutet im Wesentlichen die Bildung bzw. Vervielfachung von Versetzungen und ihre Bewegung im Kristall. Versetzungen werden nicht nur bei einer plastischen Deformation gebildet, sie entstehen auch bei der Kristallisation aus der Schmelze oder bei Phasenumwandlungen. Selbst nach

Tab. 1.8 Gleitelemente metallischer Strukturen

Struktur	Gleitebenen	Gleit- richtungen
kfz	{1 1 1}	<1110>
krz	{1 1 0}, {1 1 2}, {1 2 3}	<1111>
hdP	{0 0 1}, {1 0 0}, {1 0 1}	<110>

einer Rekristallisation (Gefügeneubildung durch Wärmebehandlung nach einer plastischen Deformation) liegen in den Kristalliten noch verhältnismäßig hohe Versetzungsdichten zwischen 10⁷ und 10⁸ cm⁻² vor. (Als Dichte der Versetzungen gibt man die gesamte Länge der Versetzungslinien in einem Volumen von 1 cm³ an. Eine Dichte von 10^8 cm⁻² = 10^8 cm cm⁻³ entspricht also einer gesamten Versetzungslänge von 108 cm oder 1000 km in einem Kubikzentimeter! Versetzungsdichten werden auch häufig in m⁻² angegeben, wobei sich dann die Zahlenwerte um 4 Zehnerpotenzen erhöhen. 10^8 cm⁻² = 10¹² m⁻²). In hoch verformten Metallen beobachtet man Versetzungsdichten bis zu 10¹² cm⁻². Ließen sich diese Versetzungen pro cm³ zu einem Faden aneinanderfügen, könnte man mit ihm die Erde etwa 250-mal umwickeln!

Einige wichtige Eigenschaften von Versetzungen seien an dieser Stelle ohne weitere Beweisführung genannt:

- 1. Versetzungen können nicht frei in einem Kristall enden. Das ist nur an Ober- und Grenzflächen oder durch Bildung von sogenannten Versetzungsknoten möglich. Das ist Grund für eine intensive zwei- und dreidimensionale Netzwerksbildung der Versetzungen in Kristallen.
- 2. Die Energie W pro Einheitslänge einer Versetzung beträgt in guter Näherung $W = 1/2 G b^2$ (G Schubmodul des Metalls). Das erklärt, warum die gleitfähigen Versetzungen minimale Burgers-Vektoren bzw. Burgers-Vektoren haben. die den kürzesten Gittervektoren entsprechen.
- 3. Eine Schubspannung τ in der Gleitebene parallel zum Burgers-Vektor b erzeugt eine Kraft $F = \mathbf{b} \tau$, die auf die Versetzungslinie pro Längeneinheit wirkt.

- Überschreitet die Kraft bzw. die Spannung einen kritischen Wert, so bewegt sich die Versetzung in Richtung der wirkenden Kraft. Die für die Bewegung einer einzelnen Versetzung in einem sonst ungestörten Kristall notwendige Spannung wird als Peierlsspannung bezeichnet.
- Versetzungen sind mit weit reichenden Verzerrungs- bzw. Spannungsfeldern umgeben. Dabei können sowohl Gebiete mit Dilatationen (Zugspannungen) als auch solche mit Kompressionen (Druckspannungen) auftreten. Die Komponenten dieser Felder sind umgekehrt proportional zum Abstand r von der Versetzungslinie.
- 5. Aufgrund dieser Spannungsfelder wechselwirken die Versetzungen mit allen Defekten und Konfigurationen, die ihrerseits Spannungsfelder um sich herum ausbilden (Punktdefekte, Volumendefekte, Versetzungen selbst).
- 6. Wegen der Spannungswechselwirkung zwischen den Versetzungen selbst steigt bei zunehmender Versetzungsdichte (d. h. geringeren Versetzungsabständen) die für eine Versetzungsbewegung notwendige Schubspannung an. Da die Versetzungsdichte mit dem Verformungsbetrag sehr stark ansteigt, beobachtet man also bei einer Verformung von Metallen einen Verfestigungseffekt (s. Abschnitt 4.2).
- 7. Begegnen sich bei der Verformung Versetzungen auf unterschiedlichen Gleitebenen, entstehen als Folge der notwendigen Durchschneidung sogenannte Versetzungssprünge (Doppelknicke im Verlauf der Versetzungslinien). Bestimmte Arten der Sprünge erzeugen bei ihrer Weiterbewegung Punktdefekte (Leerstellen oder Zwischengitteratome).
- 8. Versetzungsbewegungen werden nicht nur durch andere Versetzungen behin-

dert, sondern auch durch gelöste Fremd- oder Legierungsatome, Ausscheidungen und feinst verteilte Fremdphasen (Dispersoide) und Grenzflächen. Diese Effekte können also zur Festigkeitssteigerung metallischer Werkstoffe ausgenutzt werden (Abschnitt 4.2.1.4).

Versetzungen können auch in keramischen Materialien existieren. Ihre Bildungsenergien sind wegen der in der Regel größeren Burgers-Vektoren und der Gerichtetheit der Bindungen deutlich größer. Ihre Peierlsspannungen sind sehr hoch und damit ihre Beweglichkeit meist vernachlässigbar klein. Diese Materialien lassen sich also kaum durch Versetzungsbewegungen plastisch verformen, sie sind spröde.

1.7.4 Flächendefekte

Zweidimensionale Gitterfehler oder Flächendefekte stellen ebene Grenzflächen zwischen zwei Kristallbereichen dar, die gegeneinander um einen unvollständigen Gittervektor verschoben (Translationsgrenzen) oder gegeneinander um einen geringen Winkelbetrag verdreht worden sind (Verdrehgrenzen).

Für die *Translationsgrenzen* bedeutet das, dass die Orientierung der beiden Kristallbereiche erhalten geblieben ist (die kristallografischen Achsen verlaufen nach wie vor parallel zueinander), jedoch sind die Atompositionen des einen Bereichs gegenüber denen des anderen alle um den gleichen Vektor t so verschoben, dass sich keine Identität der Gitter einstellt. Dieser Verschiebungsvektor liegt sehr oft in der Ebene des Defekts, er muss es aber nicht. Charakterisiert werden diese Flächendefekte durch die Angabe der kristallografischen Ebene, in der der Defekt liegt, und

des (unvollständigen) Verschiebungsvektors t.

Flächendefekte dieser Art können an Ober- und Grenzflächen enden. Wenn sie in ihrer Ausdehnung diese Grenzflächen nicht erreichen, d. h. sie "enden" im Kristallvolumen, so müssen sie von einer Versetzung mit unvollständigem Burgers-Vektor berandet sein.

Man unterscheidet zwei Typen von flächenhaften Translationsgrenzen: Stapelfehler und Antiphasengrenzen. Vielfach lassen sich Kristallgitter interpretieren als periodische Aufeinanderfolge (Stapelung) von dicht oder dichtest gepackten Netzebenen (s. Abschnitt 1.4.1.1). Wird die periodische Stapelfolge durch Fehlstapelungen gestört (bestimmte Stapelebenen fehlen oder werden hinzugefügt), ergeben sich die Stapelfehler. Antiphasengrenzen können in zwei- oder mehrkomponentigen Verbindungen oder geordneten Mischkristallen auftreten, wobei durch die Verschiebung um *t* formal die Geometrie der Gitterplätze erhalten bleibt, jedoch ihre Besetzung mit den verschiedenen Atomarten verändert wird. Die Besetzung der Gitterpunkte befindet sich nicht mehr "in Phase", es entstehen Antiphasengrenzen.

Für die Bildung von Translationsgrenzen wird pro Flächeneinheit eine Energie benötigt, die man als Stapelfehlerenergie bzw. als Antiphasengrenzenergie bezeichnet. Sie nehmen bei metallischen Werkstoffen Werte zwischen etwa 5 und 500 mJ m⁻² an. Je niedriger diese Energien sind, desto einfacher können die betreffenden Defekte gebildet werden.

Bei den Verdrehgrenzen – sie werden üblicherweise als Kleinwinkel- oder Subkorngrenzen bezeichnet – handelt es sich um flächenhafte periodische Anordnungen von Versetzungen in "Wänden", die die gegenseitige Verdrehung (Verkippung) der beiden betrachteten Kristallbereiche bewir-

ken. Eine solche Anordnung von Versetzungen ist energetisch günstiger im Vergleich zu einer räumlich verteilten Anordnung der gleichen Versetzungen. Das heißt, dass regellos verteilte Versetzungen in Kristallen durch eine entsprechende thermisch aktivierte Umordnung (Gleiten und Klettern) Versetzungswände bilden werden. Dieser Prozess wird Polygonisation genannt (s. Abschnitt 4.2.2.1).

1.7.4.1 Stapelfehler

Bei den Metallen lassen sich die kubisch und hexagonal dichtest gepackten Strukturen (kdP bzw. hdP) als Stapelung dichtest gepackter Ebenen verstehen (vergleiche Abschnitt 1.4.1.1). Bei der kdP (kfz Struktur) sind das die {1 1 1}-Ebenen, die in Richtung $< 1 \ 1 \ 1 >$ gestapelt werden. Die drei Ebenen umfassende Periodizität der Stapelung lässt sich symbolisch darstellen als

...
$$A - B - C - A - B - C - ...$$

Für eine fehlerhafte Stapelfolge existieren zwei Möglichkeiten:

1. Man schiebt in die ideale Folge eine Ebene A zusätzlich ein, sodass sich z. B. die Stapelfolge

$$...\ A-B-\textbf{A}-\textbf{C}-A-B-\textbf{C}-...$$

ergibt. Diese Konfiguration stellt einen extrinsischen Stapelfehler dar.

2. Man entfernt eine Ebene A, was zu einer Folge

...
$$A - B - C - B - C - A - B - C - ...$$

führt, die als intrinsischer Stapelfehler bezeichnet wird. Ein intrinsischer Stapelfehler verkörpert eine nur vier Ebenen umfassende hexagonale Stapelfolge B - C - B - C, bei der die Periodizität zwei Ebenen umfasst. Er entsteht auch, wenn ein Kristallteil um den unvollständigen Gittervektor $a/6 < 1 \ 1 \ 2 > ver$ schoben wird. Im verschobenen Kristallbereich werden dann die A-Ebenen zu B-Ebenen, die B-Ebenen zu C-Ebenen und die C-Ebenen zu A-Ebenen.

Bei der hdP erfolgt eine Stapelung der $\{0\ 0\ 1\}$ -Ebenen in Richtung $< 0\ 0\ 1>$, wobei alle zwei Netzebenen Identität auftritt. Die Stapelfolge lautet daher

...
$$A - B - A - B - A - B$$
 ...

Ein Stapelfehler liegt hier vor, wenn eine C-Ebene zusätzlich eingefügt wird (extrinsischer Stapelfehler).

...
$$A - B - C - A - B - A$$
 ...

Das Entfernen einer Ebene ist bei der hdP nicht möglich, da dabei zwei gleichartige dichtest gepackte Ebenen aufeinander treffen würden, was zu einer Zerstörung der dichtesten Packung führt. Existent sind dagegen intrinsische Stapelfehler, die durch Verschieben eines Kristallteils um den unvollständigen Gittervektor a/3 < 2 1 0 > entstehen. Im verschobenen Kristallteil werden damit B-Ebenen zu C-Ebenen und A-Ebenen zu B-Ebenen. Die Stapelfolge lautet nun

$$\dots A - B - C - A - C - A \dots$$

Stapelfehler können in vielen kfz bzw. hexagonalen Metallen und Legierungen (Mischkristallen) bei der Kristallisation, einer plastischen Verformung oder einer Phasenumwandlung entstehen. Das wird umso leichter sein, je geringer die für die Bildung eines Stapelfehlers notwendige Energie pro Flächeneinheit ist. Diese Energie wird als Stapelfehlerenergie γ bezeichnet. Sie beträgt z. B. für Silber 20 mJ m $^{-2}$, für Kupfer 60 mJ m $^{-2}$, für Aluminium 200 mJ m $^{-2}$, für Nickel 300 mJ m $^{-2}$ und für Zink 250 mJ m $^{-2}$.

Obwohl bei den Metallen mit krz Struktur keine dichtest gepackte Kugelanordnung vorliegt, kann man auch diese Struktur als Stapelung von {2 1 1}-Ebenen mit verhältnismäßig dichter Atombelegung verstehen. Die Stapelfolge hat dabei eine sechs Ebenen umfassende Periodizität

$$...-A-B-C-D-E-F-...$$

(Abb. 1.32), die in vielfältiger Weise gestört werden kann. Da die Stapelfehlerenergie der krz Metalle in der Regel recht hoch ist, d. h. die Stapelfehler nur geringe Ausdehnung besitzen oder nicht auftreten, soll auf eine detaillierte Darstellung an dieser Stelle verzichtet werden.

Enden Stapelfehler innerhalb eines Kristalls, werden sie von Versetzungen berandet, deren Burgers-Vektoren jedoch keine vollständigen Gittervektoren mehr sind. Diese Versetzungen werden als Halbversetzungen, Partialversetzungen oder unvollständige Versetzungen bezeichnet.

In Verbindungen können ebenfalls Stapelfehler gebildet werden, sofern ihre

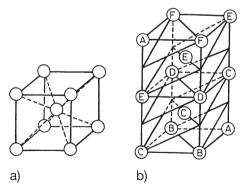


Abb. 1.32 Stapelfolge der {2 1 1}-Ebenen in krz-Metallen (nach Bohm)

Strukturen als Stapelung von ebenen Atomanordnungen aufgefasst werden können (z. B. SiC, GaAs, ...).

1.7.4.2 Antiphasengrenzen

Antiphasengrenzen können in kovalenten und insbesondere in intermetallischen Verbindungen sowie in geordneten Mischkristallen (Überstrukturen) auftreten und sind dadurch charakterisiert, dass sich in ihnen die Arten der nächsten Nachbarn eines Atoms bei Wahrung der Koordinationszahl verändern. Abbildung 1.33 veranschaulicht das in einem zweidimensionalen Modell mit zwei Atomarten. Während sich im ungestörten Kristallbereich nur ungleichartige Atome unmittelbar gegenüberstehen (jedes schwarze Atom ist von vier weißen umgeben und umgekehrt), treten in den Antiphasengrenzen gleichartige Atome als nächste Nachbarn in Erscheinung. Die Antiphasenbereiche, auch Domänen genannt, weisen eine Verschiebung um einen Translationsvektor t gegeneinander auf, der der

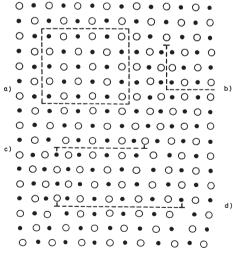


Abb. 1.33 Antiphasengrenzen in einer zweidimensionalen Struktur mit zwei Atomarten (nach Bohm)

(vertikalen) Verschiebung eines schwarzen Atoms auf die Position, die vormals durch ein weißes Atom eingenommen wurde, entspricht. Domänen können durch sich zu einem Polyeder ergänzende Antiphasengrenzen gebildet werden (Abb. 1.33 a), können an Oberflächen enden (Abb. 1.33 b) oder durch unvollständige Versetzungen begrenzt werden (Abb. 1.33 c, d).

Subkorngrenzen 1.7.4.3

Sehr oft beobachtet man im Inneren von metallischen, aber auch keramischen Einkristallen oder Einzelkristalliten flächenhafte Anordnungen von Versetzungen zwischen Kristallbereichen, deren Gitter sich nur um wenige Grade oder Bruchteile davon in ihrer Orientierung unterscheiden. Diese Anordnungen werden Subkorn- oder Kleinwinkelkorngrenzen, die benachbarten Kristallbereiche Subkörner genannt. Der Desorientierungswinkel β zwischen den Subkörnern wird durch die Versetzungsabstände und deren Burgers-Vektoren bestimmt. Abbildung 1.34 zeigt den Aufbau einer Subkorngrenze, die aus parallelen Stufenversetzungen senkrecht zur Zeichenebene gebildet wird. In diesem Fall beträgt die Desorientierung

$$\beta \, [^{\circ}] = b/l \cdot 180/\pi. \tag{1.19}$$

l Abstand der Versetzungen in der Wand

Subkorngrenzen können sich nur aus Stufenversetzungen (Tilt-Grenzen), nur aus Schraubenversetzungen (Twist-Grenzen) oder aus beiden Arten gemeinsam aufbauen (gemischte Subkorngrenzen).

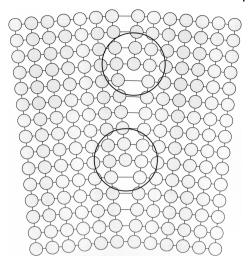


Abb. 1.34 Aufbau einer Subkorngrenze aus Stufenversetzungen

1.7.5

Volumendefekte

Zu den wichtigsten Volumendefekten innerhalb eines Kristalls (Kristallits) zählen Ausscheidungen und Mikroporen.

1.7.5.1 Ausscheidungen

Viele Mischkristallsysteme zeichnen sich durch eine deutliche Temperaturabhängigkeit der maximalen Löslichkeiten für die zulegierten Elemente aus.

Damit können durch rasches Abkühlen von hohen Temperaturen thermodynamisch instabile, an den Legierungselementen übersättigte Zustände erzeugt werden, die im Verlauf einer anschließenden Wärmebehandlung durch Ausscheiden der Legierungselemente in elementarer Form oder in Form von Verbindungen in den Gleichgewichtszustand übergehen können. Ein solcher Prozess kann sowohl zu thermodynamisch stabilen Ausscheidungen als auch zu metastabilen Vorausscheidungen führen (s. Abschnitt 3.6.2). Beispiele für metastabile Vorausscheidungen sind die häufig auftretenden Guinier-Preston-Zonen, insbesondere in Aluminiumlegierungen. Sie stellen meist platten- oder kugelförmige Ansammlungen der Legierungselemente dar, wobei die grundsätzliche Struktur der Matrix erhalten bleibt.

Ausscheidungen können eine vollständige oder eine teilweise Kohärenz zum Matrixgitter aufweisen; oft sind sie aber gänzlich inkohärent zu ihm, was jedoch bestimmte Orientierungsbeziehungen zwischen Ausscheidung und Matrixgitter nicht ausschließt (Abb. 1.35). Die für die Bildung der Grenzfläche zwischen dem Ausscheidungsbereich und der Matrix notwendigen Grenzflächenenergien γ hängen stark vom Kohärenzgrad ab. Es gilt $\gamma_{\rm koh} < \gamma_{\rm teilkoh} < \gamma_{\rm inkoh}$.

Vorausscheidungen und Ausscheidungen stellen also in diesem Sinn kleine Gebiete mit veränderter Struktur bzw. chemischer Zusammensetzung dar, um die in der Regel starke Verzerrungen des Matrixgitters zu verzeichnen sind. Sie zählen deshalb zu den dreidimensionalen Gitterfehlern.

1.7.5.2 Mikroporen

Die Entstehung von Mikroporen innerhalb von Kristallen (Kristalliten) kann zwei wesentliche Ursachen haben:

- Agglomeration von Leerstellen, die sich nicht im thermodynamischen Gleichgewicht befinden (z. B. in abgeschreckten, bestrahlten und verformten Metallen);
- Rekombination gelöster Gase zu Molekülen (N₂-Rekombination beim Nitrieren von Werkstoffen, H₂-Rekombination).

Auch Sinterprozesse in der Pulvermetallurgie bzw. bei der Herstellung keramischer Werkstoffe führen in Verbindung mit Korngrenzenwanderungen zu Poren innerhalb der Kristallite. Fehlen die Korngrenzenwanderungen, was meist der Fall ist, verbleiben die Poren an den Korngrenzenzwickeln (Restporosität).

1.8 Amorphe Materialien, Gläser

Metallische und keramische Phasen können nicht nur in kristallinen Strukturen auftreten, sondern sie zeigen sich nicht selten als amorph ("gestaltlos"). Das bedeutet

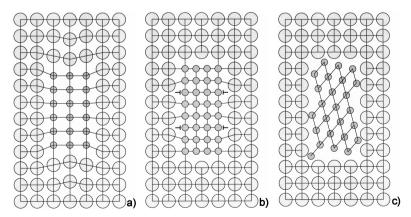


Abb. 1.35 Kohärenzbeziehungen zwischen Ausscheidungen und der Matrix a) kohärente, b) teilkohärente und c) inkohärente Ausscheidung

nun, dass die atomaren Anordnungen Translationseigenschaften damit Symmetriebeziehungen wie in kristallinen Strukturen aufweisen bzw. eine Elementarzelle als Strukturbaustein nicht mehr definierbar ist. Das bedeutet auch, dass in einer amorphen Phase keine Korngrenzen existieren können. Während die kristallinen Festkörper eine ausgeprägte Anisotropie der Eigenschaften, d. h. Abhängigkeit der betrachteten Eigenschaft von der kristallografischen Richtung zeigen, sind amorphe Festkörper bzw. amorphe Materialien isotrop.

In Kristallen haben die nächsten Nachbarn eines herausgegriffenen Atoms in der sogenannten ersten Koordinationssphäre einen ganz definierten Abstand, auch die Bindungsrichtungen und die Koordinationszahlen (Zahl der nächsten Nachbarn) sind feststehende Größen. Bei amorphen Festkörpern weisen die nächsten Nachbarschaftsabstände Schwankungen um einen Zentralwert auf, der selbst etwas größer als der nächste Nachbarschaftsabstand im kristallinen Zustand ist. Die mittlere Koordinationszahl ist niedriger als im kristallinen Zustand, die Bindungsrichtungen schwanken (vergleiche Abb. 1.2). Es existiert bei den amorphen Festkörpern im statistischen Sinn nur eine Nahordnung, sie verliert sich aber im Gegensatz zu den kristallinen mit zunehmendem Abstand vom betrachteten Atom bzw. der Molekülgruppe rasch. Die atomare Packungsdichte z. B. der amorphen Metalle erreicht nicht die der kristallinen, die sich bekanntlich durch Maximalwerte auszeichnet. Das gilt nicht allgemein für alle amorphen Festkörper. So ist die Packungsdichte im amorphen Silicium höher als im kristallinen Zustand, in dem als Konsequenz der kovalenten Bindung mit der niedrigen Koordinationszahl von vier nur eine geringe Raumerfüllung von 34% erreicht

werden kann. Im amorphen Zustand des Siliciums ist die mittlere Koordinationszahl größer als vier, aber immer noch geringer als bei einer dichten Kugelpackung.

Die Erzeugung amorpher Metalle setzt voraus, dass man aus dem schmelzflüssigen oder gasförmigen Zustand mit sehr hoher Geschwindigkeit auf relativ niedrige Temperaturen abkühlt, bei denen die Beweglichkeit (Diffusion) der Atome praktisch "eingefroren" ist, also eine Kristallisation unterdrückt wird. Man kann das erreichen durch

- · Verdüsen einer Schmelze auf ein gekühltes, schnell umlaufendes Rad (melt spinning mit spaltförmigen Düsen zur Erzeugung dünner Bänder);
- · Abschrecken einer Schmelze zwischen zwei Kühlplatten bzw. umlaufenden Walzen mit (Walz-)Spaltabmessungen im Bereich von 10⁻² mm;
- Sublimation einer Gasphase, erzeugt z. B. durch thermisches Verdampfen, Sputtern oder Lasereinwirkung, auf eine gekühlte Unterlage (Substrat);
- elektrolytische Abscheidung mit hohen Stromdichten.

Die Abkühlgeschwindigkeiten für Schmelzen erreichen Werte von 10⁴ bis 10⁶ K s⁻¹. Bei der Sublimation von Gasphasen erzielt man auch noch höhere Werte (effektive Abkühlgeschwindigkeiten).

Welche Elemente lassen sich amorph darstellen? Es sind die Elemente mit kovalenter Bindung (C, Si, Ge) bzw. dominierenden kovalenten Bindungsanteilen (B, As, P, S) sowie die sogenannten Halbmetalle (Se, Te, Sb, Bi). Die reinen Metalle lassen sich zwar durch die hohen Abkühlgeschwindigkeiten in einen nanokristallinen Zustand (Kristallitgrößen im Bereich um 10 nm), nicht jedoch in einen amorphen Zustand versetzten. Durch eine gezielte Legierungsbildung kann man jedoch erreichen, dass metallische Schmelzen durch Abschrecken in feste amorphe Zustände überführt werden können, auch wenn man keine extremen Abkühlgeschwindigkeiten anwendet. Dabei macht man sich zwei verschiedene Mechanismen zunutze:

- 1. Stabilisierung von interatomaren Freiräumen bereits in der Schmelze durch
 Elemente mit entsprechend kleinen
 Atomradien, wodurch die damit verbundenen unregelmäßigen Koordinationspolyeder beim Abschrecken in den festen (amorphen) Zustand "hinübergerettet" werden können. Diese Legierungen
 bestehen meist aus den Übergangsmetallen Cr, Mn, Fe, Co, Ni (Me) und den
 Nichtmetallen C, P, B, Si (X), wobei
 sich ein Atomverhältnis von 80:20 als
 besonders günstig erweist (Me₈₀X₂₀-Legierungen).
- 2. Erzeugung von metallischen Legierungen, bei denen die Erstarrungstemperatur (Liquidustemperatur) so niedrig ist, dass eine hohe Viskosität (geringes Diffusionsvermögen der Atome) vorliegt, die eine Kristallisation verhindert. Es sind meist mehrkomponentige Legierungen aus Be, Mg, Ca, Sr, Sc, Ti, V, oder Zr und Edelmetallen bzw. Al.

Kompliziertere Strukturen ergeben sich bei den silikatischen Gläsern. Auch sie haben nur eine Nahordnung. Ihre Struktur wird verständlicher, wenn man annimmt, dass die SiO₄- Tetraeder die eigentlichen Strukturbausteine sind, die miteinander über Kanten und besonders Ecken, in denen die Sauerstoffionen sitzen, verknüpft sind. In den Glaszuständen formen diese Tetraeder nicht mehr weitreichende dreidimensionale Muster, wie wir es z. B. vom Cristobalit kennen (Abb. 1.21), sondern unregelmäßige Netzstrukturen, wie sie für einen zweidimensionalen Fall in Abb. 1.36 dargestellt worden sind. Durch Zugabe von Oxi-

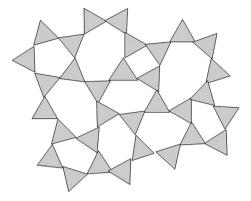


Abb. 1.36 Strukturmodell für amorphes SiO₂

den anderer Wertigkeit (z. B. Na₂O) können die Bindungsbrücken selbst noch aufgebrochen werden, womit der Grad der Nahordnung noch weiter herunter gesetzt wird.

1.9 Gefüge von Werkstoffen

1.9.1 **Gefügebegriff, innere Grenzflächen**

Bereits zu Beginn des Abschnitts 1.1 wurde darauf hingewiesen, dass die weitaus meisten metallischen und keramischen Körper nicht aus einem einzigen Kristall bestehen, sondern aus einer lückenlosen Aneinanderfügung unregelmäßig begrenzter Kristallite mit mittleren Durchmessern von wenigen Nanometern bis Zentimetern. Einen solchen Festkörper bezeichnet man als einen Viel- oder Polykristall; er stellt einen Festkörper mit inhomogener Punktstruktur dar. (Jeder einzelne Kristallit verkörpert einen Bereich mit homogener Punktstruktur, d.h. einen Bereich, innerhalb dessen das Kristallgitter nicht durch Grenzflächen hinsichtlich seiner Struktur und Orientierung unterbrochen wird.) Als Gefüge bezeichnet man nun die innere Gliederung

einphasige Vielkristalle

(reine Metalle, Mischkristalle, intermetallische Verbindungen)

Gefüge enthält nur Korngrenzen (einphasiges oder homogenes Gefüge)

Schema 11

eines solchen Vielkristalls, sein Kennzeichen ist das Auftreten von Grenzflächen zwischen den Kristalliten (Körnern).

Diese Definition muss dann erweitert werden, wenn im Werkstoff auch amorphe Bereiche vorliegen, die zwar eine für sie charakteristische Festkörperstruktur besitzen, jedoch nicht kristallin sind. Es ist daher besser zu formulieren: Das Gefüge eines Werkstoffs (Materials) wird durch eine lückenlose Aneinanderfügung von Ordnungsbereichen kristalliner oder amorpher Art mit dazwischen befindlichen Grenzflächen gebildet. Für die weiteren Betrachtungen werden amorphe Objektbereiche vernachlässigt.

Die Art der inneren Grenzflächen hängt von der Art der sich berührenden Kristallite bzw. Körner ab. Stehen sich strukturell äquivalente Kristallite gegenüber (Kristallite, die der gleichen Phase angehören), spricht man von Korngrenzen. So enthält das Gefüge eines reinen Metalls nur Korngrenzen, die Bereiche verschiedener Orientierung voneinander abgrenzen. (Unter Orientierung eines Kristallits versteht man die räumliche Lage seiner kristallografischen Hauptachsen bezüglich eines probenbezogenen Koordinatensystems, auch Abschnitt 2.6.4.5). Einphasige Körper, die aus Mischkristallen oder chemischen (z. B. intermetallischen) Verbindungen gebildet werden, enthalten ebenfalls nur

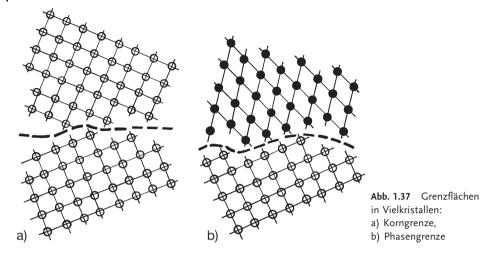
mehrphasige Vielkristalle

(Gemenge aus mehreren reinen Metallen, Mischkristallen bzw. intermetallischen Verbindungen) Gefüge enthält sowohl **Korngrenzen**

Gefüge enthält sowohl **Korngrenzen** als auch **Phasengrenzen** (mehrphasiges oder **heterogenes Gefüge**)

Korngrenzen. Bestehen die vielkristallinen Körper aus mehr als einer Phase, können sich auch Grenzflächen zwischen strukturell nicht äquivalenten Kristalliten ausbilden, die man als Phasengrenzen bezeichnet. Dies ist in Schema 1.1 vereinfacht dargestellt.

Korngrenzen stellen einen stark gestörten Bereich mit einer Dicke von wenigen Atomdurchmessern dar (Abb. 1.37). Sie müssen einen relativ großen Orientierungsunterschied zwischen den benachbarten Körnern vermitteln. Im Unterschied zu den bereits besprochenen Kleinwinkeloder Subkorngrenzen bezeichnet man sie deshalb auch als Großwinkelkorngrenzen, ihre strukturelle Beschreibung ist mit den einfachen planaren Versetzungsmodellen, wie sie für die Subkorngrenzen anwendbar sind, nur noch in Einzelfällen möglich. Im Allgemeinen ist die mittlere Koordinationszahl der Atome in der Korngrenze deutlich geringer und die mittleren Atomabstände sind entsprechend größer als in den kristallinen Bereichen. Besondere Bedingungen ergeben sich dann, wenn eine Reihe von Atompositionen in der Korngrenze gleichzeitig Gitterpositionen beider Kristallite darstellen (sogenannte Koinzidenzkorngrenzen). Derartige Korngrenzen zeichnen sich durch verhältnismäßig geringe Korngrenzenenergien aus. Als ein spezieller Fall der Koinzidenzkorngrenzen erweist



sich die Zwillingsgrenze, bei der alle Atompositionen in der Grenzfläche beiden Gittern zuzuordnen sind bzw. keine Störung der nächsten Nachbarschaftsbeziehungen (Koordination) auftritt (Abb. 1.38). Die energetische Bevorzugung von Korngrenzen mit hohem Koinzidenzgrad führt zu deutlichen Minima im Verlauf der Korngrenzenenergien in Abhängigkeit von der Desorientierung, wie es Abb. 1.39 am Beispiel von Aluminium zeigt.

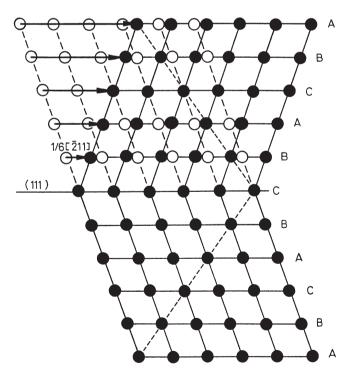


Abb. 1.38 Zwillingsgrenze

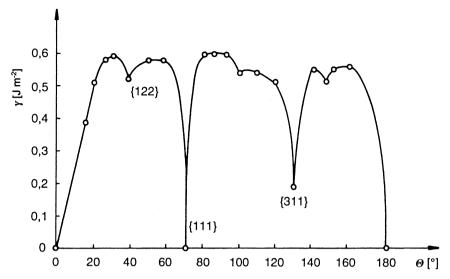


Abb. 1.39 Abhängigkeit der Energie von < 1 1 0 >-Tiltkorngrenzen vom Desorientierungsgrad für Al (nach Gottstein)

Phasengrenzen ähneln in ihrem geometrischen Aufbau den Korngrenzen, da auch sie im Allgemeinen einen großen Orientierungsunterschied überbrücken müssen. Außerdem stellen sie den Übergangsbereich zwischen zwei verschiedenen Strukturen (Phasen) dar. Für die Atompositionen in der Phasengrenze lassen sich unter bestimmten Bedingungen (Orientierungsbeziehungen, Strukturähnlichkeiten) wie bei den Korngrenzen eingeschränkt "Koinzidenzen" finden. Je nach Koinzidenzgrad spricht man dann von kohärenten (Koinzidenz aller Atompositionen in der Phasengrenze) und teilkohärenten Phasengrenzen (beschränkte Koinzidenz). Man vergleiche dazu auch die Ausführungen in Abschnitt 1.7.5.1 zu den kohärenten und teilkohärenten Ausscheidungen.

Wegen der gewöhnlich reduzierten Koordinationszahl im Bereich von Korn-bzw. Phasengrenzen, die sich in einer verringerten Packungsdichte bzw. in vergrößerten Lücken zwischen den Atomen äußert, können sich in ihnen bevorzugt Legierungsele-

mente bzw. Fremdatome oder Verunreinigungen anreichern (Segregationen), die nicht selten Anlass zu Korngrenzenausscheidungen geben. Dabei gilt, dass in einem Metall Korngrenzen mit kleinem $\gamma_{\rm KG}$ ("dichte" Korngrenzen) weniger Fremdatome aufnehmen können als solche mit großem $\gamma_{\rm KG}$ ("offene" Korngrenzen). Die Fremdatomanreicherung ist also von der Desorientierung zwischen den benachbarten Körnern abhängig. Das macht sich z. B. durch eine sehr unterschiedliche Anätzbarkeit von Korngrenzen bemerkbar (s. Abschnitt 2.3.4.1).

1.9.2 **Gefügebildende Prozesse**

Kristalline Körper (z. B. metallische Körper) entstehen in der Mehrzahl der Fälle durch Erstarren einer Schmelze (s. auch Abschnitt 4.1). Wird die Schmelztemperatur um einen geringen Betrag unterschritten (Unterkühlung), können aus nah geordneten Bereichen in der Schmelze sehr kleine

stabile Kristallindividuen. sogenannte Keime entstehen, die sich durch Ankristallisation der umgebenden Schmelze rasch vergrößern. Die Erstarrung verläuft damit in zwei Teilschritten ab, einem Keimbildungs- und einem Keimwachstumsprozess. In aller Regel verlaufen sie zeitlich nebeneinander her. Falls dafür Sorge getragen wird, dass nur ein Keim in der Schmelze gebildet wird oder in Gestalt eines in die Schmelze hineinragenden Keimkristalls existiert, entsteht ein Einkristall, dessen Gestalt z. B. durch die Form des Schmelztiegels vorgegeben wird.

Diese Form der Gefügebildung beobachtet man bei den meisten metallischen Werkstoffen, bei denen die Urformgebung durch eine Erstarrung metallischer Schmelzen in vorgegebenen Formen erfolgt (Gießen). Üblicherweise bilden sich

zahlreiche Keime sowohl innerhalb der Schmelze (homogene Keimbildung) als auch an Grenzflächen wie Tiegelwandung oder Phasengrenzen von bereits in der Schmelze existierenden festen Teilchen (heterogene Keimbildung). Meist wird die heterogene Keimbildung aus energetischen Gründen bevorzugt sein. Die an den verschiedenen Orten gebildeten Keime haben eine unterschiedliche Orientierung, sodass am Ende des Kristallisationsvorgangs die Kristallite mit großen Orientierungsunterschieden aufeinandertreffen und Kornbzw. Phasengrenzen bilden (Abb. 1.40). Es ist ein Vielkristall entstanden, dessen Gefüge durch die orts- und zeitabhängigen Keimbildungs- und -wachstumsvorgänge bestimmt wird. Das nach der Erstarrung vorliegende Gefüge wird als Primärgefüge bezeichnet.

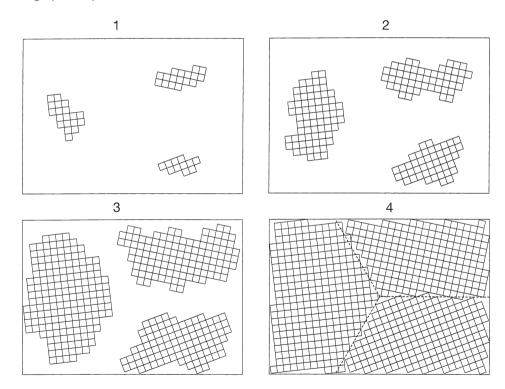


Abb. 1.40 Schematische Darstellung der Stadien der Gefügebildung bei der Erstarrung einer Schmelze

Gefügebildende und gefügeverändernde Prozesse

mit Änderung des Aggregatzustands

gasförmig - fest

flüssig - fest

Gasphasenabscheidungen von Schichten usw.

Erstarrung von Schmelzen

chemische und galvanische Abscheidungen aus Lösungen ohne Änderung des Aggregatzustands

fest - fest

diffusionskontrollierte und

athermische Phasenumwandlungen

diffusionsinduzierte Gefügebildung (Diffusionslegieren,

chemisch-thermische Behandlungen)

Rekristallisation verformter

Zustände

Kristallisation amorpher Zustände

Sintern

Schema 1.2

Die Erstarrung als ein Phasenübergang flüssig-fest stellt jedoch nicht die einzige Möglichkeit für die Bildung eines vielkristallinen Körpers dar. Auch die Abscheidung aus der Gasphase (Sublimation), wie sie technisch bei vielen chemischen oder physikalischen Beschichtungsverfahren genutzt wird, führt vornehmlich zu Vielkristallen (s. Abschnitt 4.3.2.1). Vielfach angewendet wird auch die Kristallisation aus Lösungen (z. B. galvanische oder chemische Abscheidungen) oder aus Schmelzen auf geeigneten festen Unterlagen (Substraten). Nicht unerwähnt bleiben soll die Kristallisation amorpher Metalle (Festkörper). In all diesen Fällen wird das entstehende Primärgefüge ebenfalls durch orts- und zeitabhängige Keimbildungs- und -wachstumsprozesse bestimmt.

Das primäre Gefüge eines Vielkristalls kann durch eine Reihe sekundärer Prozesse/Reaktionen, die im festen Zustand ablaufen, gewandelt oder verändert werden (Bildung eines Sekundärgefüges). Es handelt sich dabei um Phasenumwandlungen im festen Zustand mit und ohne Konzentrationsänderungen der beteiligten Phasen, das Diffusionslegieren (z. B. beim Aufkohlen oder Nitrieren), die Rekristallisation nach plastischer Deformation und Korn-

wachstumsprozesse. Mit Ausnahme des normalen Kornwachstums vollziehen sich diese Vorgänge wiederum über thermisch aktivierte Keimbildungs- und -wachstumsprozesse. Alle diese Prozesse sind die Basis für vielfältige Wärmebehandlungsverfahren, mit denen die Eigenschaften metallischer Werkstoffe in weiten Grenzen verändert werden können.

Schema 1.2 gibt eine Übersicht über die gefügebildenden bzw. -verändernden Prozesse.

Gefügeelemente, Gefügebestandteile und Gefügetypen

Wie bereits ausgeführt, verstehen wir unter einem Gefüge das lückenlose Aneinanderfügen von festen Ordnungsbereichen, die meist aus einzelnen Kristalliten/Körnern, aber auch aus amorphen Bereichen bestehen und durch Grenzflächenbereiche voneinander getrennt sind. Diese Ordnungsbereiche und die Grenzflächenbereiche zwischen ihnen (Korn- und Phasengrenzen sind endlich dick!) bezeichnet man als die Gefügeelemente, aus denen sich das stoffliche System (z. B. der Vielkristall) aufbaut.

Die im Gefüge auftretenden Phasen bezeichnet man als Gefügebestandteile, wobei man häufig deren Entstehungsart noch als Unterscheidungsmerkmal heranzieht (z. B. Primär-, Sekundär- und Tertiärzementit bei Fe-C-Legierungen, s. Abschnitt 5.2.2). Unter Gefügebestandteilen versteht man aber auch mehrphasige Bereiche, wenn die in ihnen enthaltenen Phasen unter gleichen Bedingungen (z. B. bei gleicher Temperatur) entstanden sind, feste Volumenanteile und charakteristische Morphologien aufweisen. Das trifft auf eutektisch bzw. eutektoid gebildete Gefügebestandteile zu (z. B. Ledeburit oder Perlit im Fe-C-System), in denen die Phasen meist sehr regelmäßige Anordnungen aufweisen (unter anderem periodische Anordnung von Lamellen oder prismatischen Körnern). Diesbezüglich sei auf die Abschnitte 3.4.2.2. 3.4.2.4 und 5.2.2 verwie-

Es ist zweckmäßig, die Charakterisierung der Gefüge von (zweiphasigen) Vielkristallen anhand der folgenden sieben Gefügetypen vorzunehmen (Abb. 1.41):

Duplexgefüge: Die Volumenanteile der beiden Phasen sind vergleichbar, ihre Kornformen polyedrisch, es treten $\alpha\alpha$ -, $\beta\beta$ - und $\alpha\beta$ -Grenzen auf.

Dispersionsgefüge: Der Volumenanteil der dispergierten Phase α ist deutlich geringer als der der Matrixphase β ; als Grenzflächen dominieren β - und $\alpha\beta$ -Grenzen, $\alpha\alpha$ -Grenzen fehlen praktisch. Die Kornformen der α -Phase können polyedrisch, plattenförmig oder stäbchenförmig sein.

Zellengefüge: Die β -Phase umschließt die Körner der α -Phase vollständig, nimmt aber nur einen kleinen Volumenanteil ein. Es treten praktisch nur $\alpha\beta$ -Grenzen auf.

Dualgefüge: Die polyedrische β-Phase wird in die Zwickel der α -Polyeder eingefügt, der Volumenanteil der β-Phase ist geringer als der der α -Phase; es dominieren die $\alpha\alpha$ - und die $\alpha\beta$ -Grenzen.

Lamellengefüge: Bei vergleichbaren Volumenanteilen bilden beide Phasen Pakete (Kolonien) von plattenförmigen Kristalliten (Lamellen) aus. Deshalb treten die αβ-Grenzen vorherrschend auf.

Durchdringungsgefüge: Beim Durchdringungsgefüge stehen sowohl die α-Körner als auch die β-Körner jeweils untereinander in Kontakt. Die Phasen durchdringen sich so, dass sie jeweils durchgängige zusammenhängende Strukturen ausbilden. Die Volumenanteile der beiden Phasen sind vergleichbar; es treten αα-, ββ- und αβ-Grenzen auf.

Eine Variante des Durchdringungsgefüges ergibt sich, wenn der Volumenanteil der β-Phase gering wird: Sie tritt dann nur noch entlang den Polyederkanten der α-Phase auf und bildet so ein räumliches Netz (Netzgefüge).

In der Praxis wird man recht häufig auch Kombinationen dieser Grundtypen beobachten.

Die Beschreibung von Gefügen und Gefügeveränderungen als Folge von gefügebildenden und -verändernden Prozessen als Grundlage für das Verständnis der sich ergebenden Eigenschaften der Metalle und Legierungen ist der hauptsächliche Gegenstand der Metallografie bzw. Keramografie. Sie bedienen sich dabei in besonderem Maß der Lichtmikroskopie, beziehen aber in starkem Maß weitere mikroskopische und strukturanalytische Verfahren ein (z. B. Rasterelektronenmikroskopie, Transmissionselektronenmikroskopie, Rasterkraftmikroskopie, Röntgendiffraktometrie).

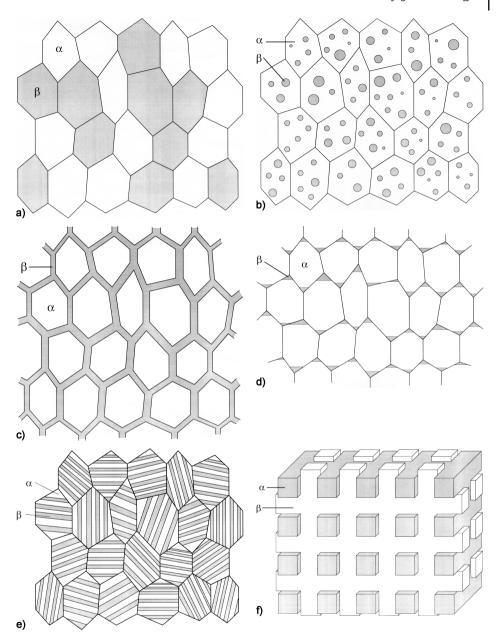


Abb. 1.41 Gefügetypen zweiphasiger Vielkristalle: a) Duplexgefüge, b) Dispersionsgefüge, c) Zellengefüge, d) Dualgefüge, e) Lamellengefüge, f) Durchdringungsgefüge

1.10

Kristallografische Beziehungen

Berechnung von Translationsperioden

kubisches System:

$$T_{uvw} = \mathbf{a} \{ u^2 + v^2 + w^2 \}^{1/2}$$

tetragonales System:

$$T_{uvw} = \mathbf{a_1} \left\{ u^2 + v^2 + (\mathbf{a_3/a_1})^2 \ w^2 \right\}^{1/2}$$

hexagonales System:

$$T_{uvw} = \mathbf{a_1} \left\{ u^2 + v^2 - uv + (\mathbf{a_3/a_1})^2 w^2 \right\}^{1/2}$$

orthorhombisches System:

$$T_{uvw} = \{(a_1 \ u)^2 + (a_2 \ v)^2 + (a_3 \ w)^2\}^{1/2}$$

Netzebenenabstände

kubisches System:

$$d_{hkl} = \mathbf{a} \{h^2 + k^2 + l^2\}^{-1/2}$$

tetragonales System:

$$d_{hkl} = \mathbf{a_1} \{ h^2 + k^2 + O l^2 \}^{-1/2}$$

$$Q = (a_1/a_3)^2$$

hexagonales System:

$$d_{hkl} = \mathbf{a_1} \left\{ 4/3(h^2 + k^2 + h \ k) + Q \ l^2 \right\}^{-1/2}$$

$$Q=(a_1/a_3)^2$$

orthorhombisches System:

$$d_{hkl} = \{h^2/\mathbf{a_1}^2 + k^2/\mathbf{a_2}^2 + l^2/\mathbf{a_3}^2\}^{-1/2}$$

Berechnung von Winkeln ρ zwischen zwei Gittergeraden

kubisches System:

$$\cos \rho = (u_1u_2 + v_1v_2 + w_1w_2)/\{(u_1^2 + v_1^2 + w_1^2) (u_2^2 + v_2^2 + w_2^2)\}^{1/2}$$

tetragonales System:

$$\cos \rho = \{u_1u_2 + v_1v_2 + Qw_1w_2\}/\{(u_1^2 + v_1^2 + Qw_1^2)(u_2^2 + v_2^2 + Qw_2^2)\}^{1/2}$$

$$Q=\left(a_1/a_3\right)^2$$

hexagonales System:

$$\cos \rho = \{u_1u_2 + v_1v_2 + Qw_1w_2 - \frac{1}{2}(u_1v_2 + v_1u_2)\} \cdot \{(u_1^2 + v_1^2 - u_1v_1 + Qw_1^2) (u_2^2 + v_2^2 - u_2v_2 + Qw_2^2)\}^{-1/2}$$

$$Q = (a_1/a_3)^2$$

orthorhombisches System:

$$\cos \rho = \{u_1 u_2 a_1^2 + v_1 v_2 a_2^2 + w_1 w_2 a_3^2\} \cdot \{(u_1^2 a_1^2 + v_1^2 a_2^2 + w_1^2 a_3^2) (u_2^2 a_1^2 + v_2^2 a_2^2 + w_2^2 a_3^2)\}^{-1/2}$$