Contents

Preface XIII

List of Contributors XV

Structure of the Book XVII

Part 1 Evaluation and Estimation of Chromatographic Data 1

1 Evaluating Chromatograms 3
 Hans-Joachim Kuss and Daniel Stauffer
 1.1 Efficiency 4
 1.2 EMG Model 5
 1.3 Chromatogram 7
 1.4 Selectivity 8
 References 8

2 Integration Parameters 9
 Daniel Stauffer and Hans-Joachim Kuss
 2.1 Peak Recognition Methods 9
 2.1.1 The Classical Method 9
 2.1.2 Alternative Method 12
 2.2 Integration and Integration Parameters 12
 2.2.1 Data Acquisition and Integration with Empower 2 12
 2.2.2 Data Acquisition and Integration with Chromeleon 14
 2.2.3 Data Acquisition and Integration with EZChrom Elite 14
 2.2.4 Data Recording and Integration with ChemStation 16

3 Integration Errors 17
 Hans-Joachim Kuss
 3.1 What Does the Literature Say on Integration Errors? 17
 3.2 Integration in Routine Practice 19
3.2.1 Integration, Simple and Automatically Feasible? 20
3.2.2 Comparison of Integration Systems with a Small Number of Tall Peaks 20
3.2.3 Comparison of Integration Systems for Numerous Small Peaks 25
3.3 Chromatogram Simulation 28
3.3.1 Simulation of a Digital Chromatogram 29
3.3.1.1 One Peak 30
3.3.1.2 Several Peaks 32
3.3.1.3 Noise 32
3.3.1.4 Drift 33
3.3.1.5 Peak Area 34
3.3.1.6 Peaks Merged Together 34
3.3.1.7 Unclear Baseline 37
3.3.1.8 Tailing 37
3.3.1.9 Data Point Interval 37
3.3.1.10 Other Characteristic Quantities 43
3.3.1.11 Gas Chromatogram 44
3.3.1.12 Applications of the Simulation 45
3.3.2 Simulation of a Standard Curve 47
3.3.2.1 Tenfold Simulation at the Limit of Quantification 55
3.3.3 Simulation of an Isocratic Chromatogram 55
3.3.4 Simulation of a Gradient Chromatogram 63
3.3.5 By-Product Analysis 68
3.3.6 Post-Simulation of Real Chromatograms 78

References 82

4 Simulation of Chromatograms 83
Uwe D. Neue
4.1 Introduction 83
4.2 Peak Simulation 84
4.2.1 Symmetrical Peaks 84
4.2.2 Peak Tailing 85
4.3 The Baseline 88
4.4 The Chromatogram 89
4.5 Simple Retention Modeling and Real Chromatograms 91
4.5.1 Isocratic Chromatography 91
4.5.2 Gradient Chromatography 95
4.6 Outlook 102

References 103

5 Integration of Asymmetric Peaks 105
Hans-Joachim Kuss
5.1 The Valley Between Merged Peaks 108
5.2 Small Peak Between Larger Ones 110
5.3 Peak Pairs 112

References 103
Contents

8.3.4.2 Analysis of Variances 180
8.3.4.3 Benchmarking for Reproducibility 182
8.3.5 Consequences for the Design of an Analytical Procedure 183
8.3.6 Concentration Dependence of the Precision 185
8.3.7 Conclusions 187
8.4 Key Points 188
References 188

9 Metrological Aspects of Chromatographic Data Evaluation 191
Ulrich Panne
9.1 Introduction 191
9.2 Measurement Uncertainty 193
9.3 Traceability of Analytical Measurements 205
References 208

Part 2 Characterization of the Evaluation of Different Chromatographic Modes 211

10 Evaluation and Estimation of Chromatographic Data in GC 213
Werner Engewald (Translator: Mike Hillebrand)
10.1 Introduction 213
10.2 How Does GC Differ from HPLC? 214
10.2.1 What Consequences Result from These Differences? 215
10.2.1.1 Applicability of GC 215
10.2.1.2 Sample Injection 219
10.2.1.3 Column 219
10.2.1.4 Detector 221
10.2.1.5 Fast Gas Chromatography 222
10.3 Qualitative Analysis 223
10.3.1 Introductory Remarks 223
10.3.1.1 Fingerprint Analysis 223
10.3.1.2 Peak Purity 224
10.3.2 Comparison of Retention Times 225
10.3.3 Relative Retention Times 225
10.3.4 Retention Time Locking (RTL) 226
10.4 GC-MS Coupling 227
10.4.1 MS as an Identifying Detector (Scan Mode) 227
10.4.2 Use of Spectral Libraries 228
10.4.3 Spectrum Deconvolution 231
10.4.4 MS as a Mass-Selective Detector 233
10.4.4.1 Mass Fragmentography (Reconstructed or Extracted Ion Chromatogram) 233
10.4.4.2 SIM (Single Ion Monitoring) or MID (Multiple Ion Recording) 234
10.4.5 Chemical Ionization 235
10.5 Quantitative Analysis 236
10.5.1 Setting up an Analysis Sequence 236
10.6 Isotope Dilution Analysis (IDA) or Stable Isotope Dilution Analysis (SIDA) 237
10.7 Matrix Effects in Trace Analysis 237
10.8 Headspace-GC 238
10.9 Estimation of the Correction Factor with the FID 239

References 241

11 Data Evaluation in LC-MS 243
Hartmut Kirchherr
11.1 Introduction 243
11.2 Influence of the Matrix in Chromatography 244
11.3 Internal Standards 252
11.4 Adjustments to the Mass Spectrometer 255
11.5 Evaluation Software 258

References 259

12 Evaluation of Chromatographic Data in Ion Chromatography 261
Heiko Herrmann and Detlef Jensen
12.1 Introduction 261
12.2 Eluents 262
12.2.1 Purity 262
12.3 The Water Dip – the Solvent Peak in Ion Chromatography 263
12.4 Contaminants 266
12.5 Calibration Functions 268

References 268

13 Qualification of GPC/GFC/SEC Data and Results 271
Daniela Held and Peter Kilz
13.1 Introduction 271
13.2 Principles of GPC/SEC Data Processing 272
13.2.1 Calculation of Molar Mass Averages 274
13.3 Guidelines, Standards and Requirements for GPC/SEC Data Processing 277
13.4 Validation and Tests for GPC/SEC Data Evaluation 279
13.4.1 Description of a General Verification Procedure for GPC/SEC Software 279
13.4.2 Validation of the Molar Mass Distribution Calculation 280
13.5 Influence of Data Processing, Calibration Methods and Signal Quality on Accuracy and Precision of GPC/SEC Results 284
13.5.1 Validation of GPC/SEC Evaluation with External Molar Mass Calibration 284
13.5.2 Validation of GPC/SEC Evaluation with Viscometry Set-ups 285

References 287
X | Contents

13.5.3 Influence of Detector Noise on the Accuracy of GPC/SEC Results 285
13.5.4 Influence of the Detector Drift on the Accuracy of GPC/SEC Results 287
13.5.5 Influence of the Number of Data Points on the Accuracy of GPC/SEC Results 288
13.6 Influence of GPC/SEC Specific Parameters on the Precision and Accuracy of GPC/SEC Results 290
13.6.1 Influence of Parameters for GPC/SEC with External Molar Mass Calibration 290
13.6.1.1 Influence of the Calibration Curve 290
13.6.1.2 Influence of Instrument Parameters (Instrument Performance) 294
13.6.1.3 Influence of Evaluation Parameters 295
13.6.2 Influence of Parameters for GPC/SEC with Light Scattering Detection 297
13.6.2.1 Influence of Instrument Calibration 299
13.6.2.2 Influence of Instrument Performance 299
13.6.2.3 Influence of Evaluation Parameters 299
13.6.3 Repeatability and Reproducibility of GPC/SEC Analyses 299
13.7 Summary 301

References 302

Part 3 Requirements for Chromatographic Data Analysis from the Viewpoint of Organisations and Public Authorities 303

14 The Science Behind the Pharmaceutical Regulatory Chromatographic Procedures 305

Linda Ng

14.1 Introduction 305
14.2 Instrument Qualification 306
14.3 Chromatographic Procedures 307
14.4 Method Design, Development and Validation 309
14.5 Compendial Procedures 311
14.6 Conclusions 311

References 312

15 Interpretation of Chromatographic Data According to the Pharmacopoeias – Control of Impurities 313

Ulrich Rose

15.1 Outline 313
15.2 Interpretation of Qualitative Data 313
15.2.1 System Suitability Test 316
15.3 Interpretation of Quantitative Data 318

References 320
16 Requirements of (Chromatographic) Data in Pharmaceutical Analysis 321
16.1 System Suitability Tests 321
16.1.1 European Pharmacopoeia (EP) 322
16.1.1.1 Chromatographic Parameters 325
16.1.1.2 Signal-to-Noise Ratio 326
16.1.1.3 System Precision 327
16.1.2 US Pharmacopoeia 328
16.1.3 FDA Reviewer Guidance 329
16.2 Acceptance Limits for the Specification and Precision 330
16.2.1 Assay 330
16.2.1.1 Based on the Method Capability Index 330
16.2.1.2 Based on the 95% Prediction Interval (DPhG-Approach) 331
16.2.2 Impurity Determination 332
16.2.2.1 Acceptance Limits of the Specification 332
16.2.2.2 Quantitation Limit and Variability 332
16.2.3 Key Points 332
16.3 Interpretation and Treatment of Analytical Data 333
16.3.1 Prerequisites 333
16.3.2 Measurement Principles and Variation 333
16.3.3 Outlying Results 334
16.3.3.1 Outlier Test According to Hampel 334
16.3.4 Comparison of Analytical Results 335
16.3.4.1 Precision 335
16.3.4.2 Accuracy 337
16.3.5 Key Points 338
References 338

17 Evaluation and Valuation of Chromatographic Data 341
Stavros Kromidas
17.1 Introduction 341
17.2 The Situation – or Why Does so Little Change? 341
17.3 How Can Something Change and When is it Really Necessary? 343
17.4 Who Can Change Something? 345

Index 347

Contents of the CD 357