
Analysis of Complex Networks: From Biology to Linguistics. Edited by Matthias Dehmer and Frank Emmert-Streib
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32345-6

1

1
Entropy, Orbits, and Spectra of Graphs
Abbe Mowshowitz and Valia Mitsou

1.1
Introduction

This chapter is concerned with the notion of entropy as applied to graphs for
the purpose of measuring complexity.

Most studies of complexity focus on the execution time or space utiliza-
tion of algorithms. The execution time of an algorithm is proportional to the
number of operations required to produce the output as a function of the in-
put size. Space utilization measures the amount of storage required for com-
putation. Both time and space complexity measure the resources required to
perform a computation for a specified input. Measuring the complexity of
a mathematical object such as a graph is an exercise in structural complexity.
This type of complexity does not deal directly with the costs of computa-
tion; rather, it offers insight into the internal organization of an object. The
structural complexity of a computer program, for example, may indicate the
difficulty of modifying or maintaining the program.

One approach to structural complexity involves the length of a code needed
to specify an object uniquely (Kolmogorov complexity). The complexity of
a string, for example, is the length of the string’s shortest description in
a given description language [27]. The approach taken in this chapter cen-
ters on finding indices of structure, based on Shannon’s entropy measure.
Unlike Kolmogorov complexity, such an index captures a particular feature
of the structure of an object. The symmetry structure of a graph provides the
basis for the index explored here.

The choice of symmetry is dictated by its utility in many scientific disci-
plines. D’Arcy Thompson’s classic work [25] showed the relevance of sym-
metry in the natural world. Structure-preserving transformations based on
symmetry play a role in physics, chemistry, and sociology as well as in biol-
ogy. A symmetry transformation of a graph is typically an edge-preserving
bijection of the vertices, i.e., an isomorphism of the graph onto itself. Such
a transformation is called an automorphism. If the vertices of the graph are
labeled, an automorphism can be viewed as a permutation of the vertices
that preserves adjacencies. The set of all automorphisms forms a group

2 1 Entropy, Orbits, and Spectra of Graphs

whose orbits provide the foundation for applying Shannon’s entropy mea-
sure.

The collection of orbits of the automorphism group constitutes a parti-
tion and thus defines an equivalence relation on the vertices of a graph. Two
vertices in the same orbit are similar in some sense. In a social network, col-
lections of similar vertices can be used to define communities with shared
attributes. The identification of such communities is of interest in applica-
tions such as advertising, intelligence, and sensor networks.

Measures of structural complexity are useful for classifying graphs and
networks represented by graphs. One is led to conjecture, for example, that
the more symmetric a network is (or the lower its automorphism-based com-
plexity is), the more vulnerable to attack it will be. These related issues are ex-
plored in [19] in relation to sensor networks modeled as dynamic distributed
federated databases [2].

In what follows we define the measure of graph complexity, discuss al-
gorithms and heuristics for computing it, and examine its relationship to
another prominent entropy measure [11] defined on graphs.

1.2
Entropy or the Information Content of Graphs

Given a decomposition of the vertices or edges of a graph, one can construct
a finite probability scheme [10] and compute its entropy. A finite probability
scheme assigns a probability to each subset in the decomposition. Such a nu-
merical measure can be seen to capture the information contained in some
particular aspect of the graph structure.

The orbits of the automorphism group of a graph constitute a decomposi-
tion of the vertices of the graph. As noted above, this decomposition captures
the symmetry structure of the graph, and the entropy of the finite probabil-
ity scheme obtained from the automorphism group provides an index of the
complexity of the graph relative to the symmetry structure.

Let G = (V, E) be a graph with vertex set V (with |V| = n) and edge set E.
The automorphism group of G, denoted by Aut(G), is the set of all adjacency-
preserving bijections of V. Let {Vi|1 u i u k} be the collection of orbits of
Aut(G), and suppose |Vi| = ni for 1 u i u k. The entropy or information content
of G is given by the following formula ([13]):

Ia(G) = –
k∑

i = 1

ni

n
log

ni

n
.

For example, the orbits of the graph of Figure 1.1 are {1}, {2,5}, and {3,4},
so the information content of the graph is Ia(G) = – 1

5 log 1
5 – 2(2

5 log 2
5) =

log 5 – 4
5 log 2.

1.2 Entropy or the Information Content of Graphs 3

1

52

3 4 Figure 1.1 Information content of a graph.

Clearly, Ia(G) satisfies 0 u Ia(G) u log n, where the minimum value occurs
for graphs with the transitive automorphism group, such as the cycle Cn and
the complete graph Kn on n vertices; the maximum is achieved for graphs
with the identity group. The smallest nontrivial, undirected graph with an
identity group is shown in Figure 1.2.

1

5

2 3

46 Figure 1.2 Smallest nontrivial graph with identity group.

The idea of measuring the information content of a graph was first pre-
sented in [21]; it was formalized in [26] and further developed in [13–16].
Ia(G) is a function of the partition of the vertices of G determined by the
orbits of Aut(G). As such the measure captures the structure of vertex sim-
ilarity. In the case of organic molecules, the lower the information content
(or the greater the symmetry), the fewer the possibilities for different inter-
actions with other molecules. If all the atoms are in the same equivalence
class, then it makes no difference which one interacts with an atom of an-
other molecule. The same can be said for social networks. Any member of
an equivalence class of similar individuals can serve as a representative of
the class.

The utility of the measure Ia(G) can be seen from the following special
case. The cartesian product G ~ H of graphs G and H is defined by V(G ~
H) = V(G) ~ V(H) and for (a, b), (c, d) ∈ V(G ~ H), [(a, b), (c, d)] ∈ E(G ~ H) if
a = c and [b, d] ∈ E(H) or if b = d and [a, c] ∈ E(G).

The hypercube Q n with 2n vertices is defined recursively by Q1 = K2 and
for n v 2, Q n = K2 ~ Qn–1. Since Q n has a transitive automorphism group,
I(Q n) = 0. The hypercube Q n offers a desirable configuration for parallel
computation because processors must exchange messages in executing an
algorithm, and the distance between any two vertices (representing proces-
sors) in the hypercube is at most n.

4 1 Entropy, Orbits, and Spectra of Graphs

By contrast, an m ~ m mesh configuration (formed by taking the cartesian
product of two isomorphic line graphs, each with m vertices) consists of m2

vertices and has a maximum distance of 2m. A 2
n
2 ~ 2

n
2 mesh for even n

having the same number of vertices as Q n has a maximum distance between
vertices of 2(2

n
2 –1). At the same time the information content of such a mesh

is n
2 – 1 [13].
This example suggests that good graph configurations for parallel compu-

tation score low on information complexity or, alternatively, are highly sym-
metric. Information complexity is a coarse filter, but it is useful nonetheless.

Computing the group-based entropy or information content of a graph
requires knowledge of the orbits of the automorphism group. An obvious
approach to computing the orbits is to determine the automorphism group
and then to observe the action of automorphisms on the vertices of the
graph. This is not an efficient method in general, but the algebraic structure
of a graph can be exploited to find the automorphism group efficiently in
some cases. The general question of determining the automorphism group
is taken up in Section 1.3; heuristics for finding the orbits of Aut(G) are sur-
veyed in Section 1.4.

1.3
Groups and Graph Spectra

Let G = (V, E) be a graph with vertex set V of size n, edge set E of size m,
and automorphism group Aut(G). (See [3] for general coverage of algebraic
aspects of graph theory and [12] for specific treatment of the automorphism
group of a graph.) Since automorphisms are in effect relabelings of the ver-
tices, they can be represented as permutation matrices. Let A = A(G) be the
adjacency matrix of G. Then a permutation matrix P is an automorphism
of G if and only if PTAP = A or PA = AP.

Thus, one way to construct the automorphism group of a graph G is to
solve the matrix equation AX = XA for permutation matrices X. The Jordan
canonical form of A as a matrix over the reals can be used to obtain the
general solution X. Taking G to be undirected and thus A symmetric and
letting Ã = UTAU be the Jordan form of A, we have (UÃUT)X = X(UÃUT) or
ÃX̃ = X̃Ã, where X̃ = UTXU.

Thus the construction of Aut(G) requires computing the orthogonal ma-
trix U and finding all X̃ that commute with Ã. The matrix X̃ depends on the
elementary divisors of A. With no additional information, this method of
constructing the group is not too promising since it is necessary to find all
those solutions that are permutation matrices.

In the special case where A has all distinct eigenvalues, X̃ has the form
of a diagonal matrix with arbitrary parameters on the main diagonal. In this

1.3 Groups and Graph Spectra 5

case, X = UX̃UT. Clearly UX̃UT is symmetric, so if it is a permutation matrix,
it must correspond to a product of disjoint transpositions. This means that
every element of Aut(G) has order 2 and the group is therefore abelian [12,
17]. The converse is not true since, for example, the graph G of Figure 1.3
has the characteristic polynomial (x + 1)2(x3 – 2x2 – 5x + 2).

1

52

3 4
Figure 1.3 Aut(G) is abelian, every element is of order 2, but the
characteristic polynomial has repeated roots.

An analogous result holds for digraphs. Using the same analysis, Chao [5]
showed that if the adjacency matrix of a digraph has all distinct eigenvalues,
then its automorphism group is abelian. However, the automorphisms need
not be of order 2. For example, the adjacency matrix of digraph D in Fig-
ure 1.4 has the characteristic polynomial (x3 – 1) = (x – 1)(x2 + x + 1) but the
permutation (123) is an automorphism of D.

1

2

3

Figure 1.4 Aut(D) = 〈(123)〉, abelian but not every element has
order 2.

Both of these results are special cases of the following:

Theorem 1.1 Suppose the adjacency matrix A = A(D) of a digraph D is non-
derogatory with respect to a field F, i.e., its characteristic polynomial coincides
with its minimal polynomial over F. Then Aut(D) is abelian.

Proof. The result is an immediate consequence of the fact that under the
hypothesis of the theorem, every matrix over F commuting with A can be
expressed as a polynomial in A.

In particular, if A has all distinct eigenvalues, it is non-derogatory over the
complex number field. To see that every automorphism of an (undirected)
graph has order 2 under this condition, it suffices to observe that any poly-
nomial in a symmetric matrix is again symmetric.

If the adjacency matrix fails to be nonderogatory, then some leverage in
constructing the automorphism group can be obtained by taking advantage
of the fact that the matrix consists of zeroes and ones. In particular, the ad-
jacency matrix can be interpreted as a matrix over GF(2), thus reducing the

6 1 Entropy, Orbits, and Spectra of Graphs

solution space of the matrix equation AX = XA to zero-one matrices at the
outset.

Thus suppose A = A(G) (for a graph G) is a matrix over GF(2). To demon-
strate a method for constructing automorphisms, we revisit the special case
of A being nonderogatory over GF(2).

In this case we know that:

1. M ∈ Aut(G) implies M2 = I (the identity matrix) and

2. M ∈ Aut(G) implies M =
n – 1∑
i = 0

aiAi.

So if M ∈ Aut(G), then we can write

M =
n – 1∑

i = 0

aiAi

and

I = M2 =

(
n – 1∑

i = 0

aiAi

)2

=
n – 1∑

i = 0

ai(Ai)2.

Thus {M|M =
n – 1∑
i = 0

aiAi and M2 = I} ⊇ Aut(G).

Constructing the group in this case reduces to finding all polynomials in
A2 that are equal to the identity matrix. These have the form

p(A)μA2 (A2) + I,

where μA2 (x) is the minimal polynomial of A2.
Thus, if M2 = I, then M = p(A)μA2 (A) + I for some polynomial p(x), since

(p(A)μA2 (A) + I)2 = (p(A2)μA2 (A2) + I) = 0 + I = I.
The characteristic and minimal polynomials of graph G in Figure 1.5 co-

incide over the real numbers, i.e., φ(x) = μ(x) = (x3 – x2 – 6x + 2)x(x + 1)
and over GF(2) with φ(x) = μ(x) = x3(x + 1)2. Hence, the adjacency matrix
of G is nonderogatory over both fields. The minimal polynomial of A2 is
μA2 (x) = x2(x + 1), which is of degree 3.

Therefore, M ∈ Aut(G) implies M = μA2 (A)(b0I + b1A) + I. There are four
possible solutions for M corresponding to the four possible values for b0

and b1. All of these solutions, namely,

I, A3 + A2 + I, A4 + A3 + I, A4 + A2 + I,

turn out to be permutation matrices so that the automorphism group of G
contains precisely these four elements.

1.3 Groups and Graph Spectra 7

1

5

2

4

3

Figure 1.5 Computation of automorphisms
over GF(2).

Note that μ2
A2 (x) = xφA(x) if n is odd, or μ2

A2 (x) = φA(x) if n is even.
Hence, if m = deg μA2 (x) and M satisfies AM = MA and M2 = I, then

M = μA2 (x)
n – m – 1∑

i = 0
biAi + I, where bi ∈ GF(2).

To determine Aut(G), it suffices to examine 2n – m – 1 W 2n/2 values of the
parameters bi, to pick out the permutation matrices (i.e., elements of Aut(G)).

However, some further simplification is possible. Let Q = μA2 (A) and

Z(b) =
n – m – 1∑

i = 0
biAi. Then M = QZ(b) + I. Multiplying by M on the right gives

MQ = Q2Z(b) + Q = Q. Thus, if M is an automorphism of G, then MQ = Q ,
which means that similar vertices of G correspond to identical rows of Q. In
addition, the identical rows must occur in minimal pairs, which gives a suffi-
cient condition for Aut(G) to be trivial.

If μA2 (A) has all distinct rows or no minimal pairs of identical rows, then
Aut(G) is trivial. The converse is not true. Both graphs in Figure 1.6 have
trivial groups, but μA2 (A(G1)) has all distinct rows while μA2 (A(G2)) has three
pairs of identical rows.

Theorem 1.2 [18]; see also [6]. Let D be a digraph and A = A(D) be its adjacency
matrix. If φA(x) is irreducible over the integers, then Aut(D) is trivial.

Figure 1.6 Identity graphs.

8 1 Entropy, Orbits, and Spectra of Graphs

Proof. Suppose there is an M(=/ I) ∈ Aut(D), and that the permutation cor-
responding to M consists of r disjoint cycles of lengths k1, . . . , kr. Let z be
a nonzero vector consisting of k1 components equal to c1, followed by k2

components equal to c2, followed by . . . kr components equal to cr. Consider
Az = xz. This gives a system of r equations in the r unknowns c1, c2, . . . , cr.
Thus Az = xz reduces to Bc = xc, where c = (c1, c2, . . . , cr)T. Now z and c
are eigenvectors of A and B, respectively, and det(B – xc)| det(A – xz), where
deg(det(B – xc)) < deg(det(A – xz)). Hence, φA(x) has a nontrivial factoriza-
tion, which completes the proof.

Figure 1.7 shows a digraph (D) and graph (G) (with the smallest number
of vertices) satisfying the condition of the theorem. φA(D)(x) = x3 – x – 1 and
φA(G)(x) = x6 – 6x4 – 2x3 + 7x2 + 2x – 1.

Figure 1.7 Smallest graph and digraph whose characteristic
polynomials are irreducible over the integers.

Note that the theorem also holds if φA(x) is taken as a polynomial over
a finite field. For example, over GF(2), x3 – x – 1 is irreducible, but x6 – 6x4 –
2x3 + 7x2 + 2x – 1 = x6 + x2 + 1 = (x3 + x + 1)2.

For graphs this criterion is not very useful since the characteristic polyno-
mial of any graph is reducible over GF(2). There are regular graphs and trees
that have the trivial group, but the characteristic polynomial of any regular
graph has a linear factor, as does the characteristic polynomial of a tree with
an odd number of vertices.

The foregoing discussion suggests the utility of trying to relate the factor-
ization of the characteristic polynomial to the structure of the automorphism
group. For example, if G is a graph with an even number n of vertices and
adjacency matrix A = A(G), and if φA(x) = α(x)�(x) with deg α = deg � and
both α and � are irreducible, then either Aut(G) is trivial or it is of order 2
and consists of the identity and (with a suitable labeling) the permutation
(1, 2)(3, 4) · · · (n/2, n/2).

1.3 Groups and Graph Spectra 9

Table 1.1 contains a list of all 156 graphs on six vertices, showing factored
characteristic polynomials and the sizes of their respective automorphism
group orbits. Each graph is defined by its list of edges, shown as a sequence
of pairs of numbers referring to a standard template with the vertices num-
bered from 1 to 6 in clockwise order. The last column shows the sizes of the
orbits. Complements are not given explicitly, but their polynomials are listed.
The orbits of G and Ḡ are the same.

Table 1.1 Characteristic polynomials and orbit sizes of all graphs on six vertices.

G: Polynomial Polynomial Orbit
edges: list of G of Ḡ sizes

0: x6 (x + 1)5(x – 5) 6

3: 16 23 45 (x + 1)3(x – 1)3 x3(x + 2)2(x – 4) 6

6: 12 16 23 34
45 56

(x – 1)2(x + 1)2(x + 2)(x – 2) x2(x – 1)(x + 2)2(x – 3) 6

6: 15 16 23 24
34 56

(x – 2)2(x + 1)4 x4(x – 3)(x + 3) 6

3: 15 16 56 x3(x + 1)2(x – 2) x2(x + 1)2(x2 – 2x – 9) 33

1: 12 x4(x – 1)(x + 1) x(x + 1)3(x2 – 3x – 8) 24

4: 12 15 24 45 x4(x – 2)(x + 2) (x – 1)(x + 1)3(x2 – 2x – 7) 24

4: 12 16 34 45 x2(x2 – 2)2 (x + 1)2(x4 – 2x3 – 8x2 + 6x – 1) 24

5: 12 15 16 23
24

x2(x – 1)(x + 1)(x – 2)(x + 2) (x – 1)(x + 2)(x + 1)2(x2 – 3x – 2) 24

5: 14 16 23 45
56

x2(x – 1)(x + 1)(x – 2)(x + 2) x(x – 1)(x + 1)2(x2 – x – 8) 24

6: 12 14 15 24
25 45

x2(x – 3)(x + 1)3 x3(x + 1)(x2 – x – 8) 24

7: 12 16 23 25
34 45 56

(x + 1)(x – 1)(x2 – 2x – 1)(x2 + 2x – 1) x(x + 2)(x2 – 2)(x2 – 2x – 2) 24

7: 14 15 16 23
45 46 56

(x + 1)4(x – 3)(x – 1) x4(x2 – 8) 24

7: 15 16 23 24
34 45 56

(x + 1)2(x2 – 3)(x2 – 2x – 1) x2(x2 – 2x – 2)(x2 + 2x – 2) 24

2: 12 56 x2(x – 1)2(x + 1)2 x2(x + 1)(x + 2)(x2 – 3x – 6) 222

3: 12 16 23 x2(x2 – x – 1)(x2 + x – 1) (x + 1)(x2 + x – 1)(x3 – 2x2 – 8x – 3) 222

6: 14 15 16 23
45 56

x(x – 1)(x + 1)2(x2 – x – 4) x2(x + 1)(x3 – x2 – 8x + 4) 222

7: 13 16 23 26
34 45 56

x(x2 + x – 1)(x3 – x2 – 5x + 4) (x – 1)(x + 1)(x2 + x – 1)(x2 – x – 5) 222

7: 12 15 23 24
25 45 56

x2(x2 + x – 1)(x2 – x – 5) (x + 1)(x2 + x – 1)(x3 – 2x2 – 4x + 1) 222

5: 12 16 24 45
56

x(x – 2)(x2 + x – 1)2 (x2 + x – 1)2(x2 – 2x – 5) 15

5: 12 23 24 25
26

x4(x2 – 5) x(x – 4)(x + 1)4 15

2: 12 16 x4(x2 – 1) (x + 1)3(x3 – 3x2 – 7x + 3) 123

3: 12 15 16 x4(x2 – 3) (x + 1)3(x3 – 3x2 – 6x + 4) 123

4: 15 16 23 56 x(x + 1)(x – 2)(x + 1)3 x3(x3 – 11x – 12) 123

4: 12 15 16 34 x2(x + 1)(x – 1)(x2 – 3) x(x + 1)2(x3 – 2x2 – 8x + 4) 123

10 1 Entropy, Orbits, and Spectra of Graphs

Table 1.1 (continued).

G: Polynomial Polynomial Orbit
edges: list of G of Ḡ sizes

5: 15 16 23 34
56

x(x – 2)(x + 1)2(x2 – 2) x2(x + 1)(x3 – x2 – 9x + 3) 123

6: 12 15 23 24
35 45

x4(x2 – 6) (x + 1)3(x3 – 3x2 – 3x + 7) 123

6: 12 13 14 15
16 56

x2(x + 1)(x3 – x2 – 5x + 3) x2(x + 1)2(x2 – 2x – 6) 123

7: 12 14 15 16
25 45 56

x3(x – 3)(x + 1)(x + 2) x(x – 1)2(x3 – 2x2 – 5x + 4) 123

4: 12 14 15 16 x4(x – 2)(x + 2) (x + 1)3(x3 – 3x2 – 5x + 3) 114

7: 15 16 26 34
35 45 56

(x – 1)(x + 1)2(x3 – x2 – 5x + 1) x3(x + 2)(x2 – 2x – 4) 114

3: 16 23 56 x2(x + 1)(x – 1)(x2 – 2) x(x + 1)(x4 – x3 – 11x2 – 7x + 4) 1122

4: 12 15 16 56 x2(x + 1)(x3 – x2 – 3x + 1) x(x + 1)(x + 2)(x3 – 3x2 – 4x + 2) 1122

4: 12 16 23 56 x2(x – 1)(x + 1)(x2 – 3) x(x + 1)(x + 2)(x3 – 3x2 – 4x + 4) 1122

5: 12 15 16 45
56

x2(x2 – x – 3)(x2 + x – 1) (x + 1)(x2 + x – 1)(x3 – 2x2 – 6x + 1) 1122

5: 12 14 15 16
56

x2(x + 1)(x3 – x2 – 4x + 2) x(x + 1)(x4 – x3 – 9x2 – 5x + 4) 1122

5: 12 15 16 23
45

(x – 1)(x + 1)(x4 – 4x2 + 1) x(x + 2)(x4 – 2x3 – 6x2 + 2x + 4) 1122

5: 15 16 23 45
56

(x – 1)(x + 1)2(x3 – x2 – 3x + 1) x2(x4 – 1x2 – 8x + 4) 1122

6: 12 15 16 24
45 56

x2(x + 2)(x3 – 2x2 – 2x + 2) (x – 1)(x + 1)(x4 – 8x2 – 8x + 1) 1122

6: 13 16 23 34
45 56

(x – 1)(x2 + x – 1)(x3 – 4x – 1) (x + 2)(x2 + x – 1)(x3 – 3x2 – x + 2) 1122

6: 12 13 14 16
45 56

x2(x4 – 6x2 + 4) (x – 1)(x + 1)2(x3 – x2 – 7x – 3) 1122

4: 12 16 23 45 (x – 1)(x + 1)(x2 – x – 1)(x2 + x – 1) x(x2 + x – 1)(x3 – x2 – 9x – 4) 222

5: 12 14 15 24
45

x3(x + 1)(x2 – x – 4) x(x + 1)2(x3 – 2x2 – 7x + 4) 222

5: 12 16 34 45
56

(x3 – x2 – 2x + 1)(x3 + x2 – 2x – 1) (x3 – 2x2 – 5x + 1)(x3 + 2x2 – x – 1) 222

6: 12 14 16 34
45 56

(x3 – 2x2 – x + 1)(x3 + 2x2 – x – 1) (x3 – x2 – 6x – 3)(x3 + x2 – 2x – 1) 222

6: 12 15 16 23
25 45

(x2 – 2x – 1)(x2 + x – 1)2 (x2 – 2x – 4)(x2 + x – 1)2 1122

6: 12 15 16 23
24 56

x(x + 1)(x4 – x3 – 5x2 + 3x + 4) x(x + 1)(x4 – x3 – 8x2 – 2x + 6) 1122

7: 12 15 16 24
26 45 56

x2(x + 1)(x3 – x2 – 6x + 2) x(x + 1)(x4 – x3 – 7x2 + x + 8) 1122

7: 12 14 15 16
24 45 56

x(x2 + x – 1)(x3 – x2 – 5x – 2) (x2 + x – 1)(x4 – x3 – 6x2 – x + 1) 1122

7: 12 16 23 24
34 45 56

(x2 + x – 1)(x4 – x3 – 5x2 + 2x + 4) (x2 + x – 1)(x4 – x3 – 6x2 + 3x + 1) 1122

7: 14 16 23 24
34 45 56

x(x + 1)(x4 – x3 – 6x2 + 4x + 4) x(x – 1)(x + 1)(x3 – 7x – 4) 1122

7: 12 13 15 24
34 45 56

x2(x4 – 7x2 + 4) (x + 1)2(x4 – 2x3 – 5x2 + 6x + 4) 1122

7: 12 14 16 23
24 45 56

x2(x – 1)(x + 2)(x2 – x – 4) (x + 1)(x – 1)(x + 2)(x3 – 2x2 – 3x + 2) 1122

1.4 Approximating Orbits 11

Table 1.1 (continued).

G: Polynomial Polynomial Orbit
edges: list of G of Ḡ sizes

7: 14 16 24 34
45 46 56

x2(x + 2)(x3 – 2x2 – 3x + 2) x(x + 1)2(x3 – 2x2 – 5x + 2) 1122

7: 12 15 16 24
25 34 45

(x – 1)(x + 1)2(x3 – x2 – 5x + 1) x2(x + 2)(x3 – 2x2 – 4x + 4) 1122

7: 12 15 16 23
24 25 56

x(x – 1)(x + 1)(x + 2)(x2 – 2x – 2) x(x + 1)(x4 – x3 – 7x2 + x + 4) 1122

5: 16 25 35 45
56

x2(x4 – 5x2 + 3) (x + 1)2(x4 – 2x3 – 7x2 + 2x + 3) 1113

7: 12 14 15 24
25 34 45

x(x + 1)2(x3 – 2x2 – 4x + 2) x2(x4 – 8x2 – 6x + 3) 1113

7: 12 13 15 16
24 34 45

x2(x4 – 7x2 + 3) (x + 1)2(x4 – 2x3 – 5x2 + 4x + 3) 1113

4: 12 15 16 23 x2(x4 – 4x2 + 2) (x + 1)(x5 – x4 – 1x3 – 6x2 + 7x + 3) 11112

5: 12 15 16 23
56

x(x – 1)(x + 1)(x3 – 4x – 2) x(x5 – 1x3 – 1x2 + 5x + 4) 11112

5: 12 15 16 34
45

x2(x4 – 5x2 + 2) (x + 1)(x5 – x4 – 9x3 – 3x2 + 1x + 4) 11112

5: 16 24 34 45
56

x2(x4 – 5x2 + 5) (x + 1)(x5 – x4 – 9x3 – x2 + 7x – 1) 11112

6: 12 15 23 24
25 45

x2(x4 – 6x2 – 4x + 2) (x + 1)(x5 – x4 – 8x3 – 2x2 + 5x – 1) 11112

6: 12 15 24 25
34 45

x(x + 1)(x4 – x3 – 5x2 + x + 2) x(x + 2)(x4 – 2x3 – 5x2 + 2x + 2) 11112

6: 14 16 23 34
45 56

x2(x4 – 6x2 + 6) (x + 1)(x5 – x4 – 8x3 + 2x2 + 9x – 1) 11112

6: 12 13 15 16
45 56

x2(x4 – 6x2 – 2x + 5) x(x + 1)(x4 – x3 – 8x2 – 2x + 6) 11112

7: 12 14 15 16
23 45 56

x(x – 1)(x + 1)(x + 2)(x2 – 2x – 2) (x + 1)(x5 – x4 – 7x3 + 3x2 + 3x – 1) 11112

7: 14 15 16 23
24 45 56

x(x + 1)2(x3 – 2x2 – 4x + 6) x2(x4 – 8x2 – 2x + 7) 11112

7: 15 16 24 25
34 45 56

(x + 1)(x5 – x4 – 6x3 + 2x2 + 7x – 1) x2(x4 – 8x2 – 4x + 6) 11112

7: 12 15 16 23
24 25 45

x6 – 7x4 – 4x3 + 6x2 + 2x – 1 x6 – 8x4 – 6x3 + 7x2 + 4x – 1 111111

7: 12 15 16 24
34 45 56

x6 – 7x4 – 2x3 + 8x2 + 2x – 1 x6 – 8x4 – 4x3 + 9x2 + 4x – 1 111111

7: 12 14 16 24
34 45 56

x6 – 7x4 – 2x3 + 7x2 – 1 x(x5 – 8x3 – 6x2 + 8x + 6) 111111

1.4
Approximating Orbits

The automorphism group Aut(G) of a graph G is a subgroup of Sn, the sym-
metric group on n objects, so |Aut(G)| u n!. Constructing all the elements of
the automorphism group could take exponential time, e.g., Kn has Sn as its
automorphism group. However, it may be sufficient to find a relatively small

12 1 Entropy, Orbits, and Spectra of Graphs

generating set that represents Aut(G). Indeed, it is always possible to find
a generating set of size log n for a group H of size n [1].

Unfortunately it is not known whether or not such a small set representing
Aut(G) can be computed in polynomial time, because the problem of deter-
mining the automorphism group can be shown to be equivalent to graph
isomorphism (i.e., determining whether two graphs are isomorphic). The
relationship between the two problems is shown more explicitly in [1].

Since the problem of determining when two graphs are isomorphic has
been studied extensively and is not known to be solvable by a polynomial
bounded algorithm, heuristics are needed to find the orbits of the automor-
phism group. If such heuristics are easy to compute and provide a high de-
gree of accuracy, the complexity of a graph can be computed efficiently with
a high degree of confidence.

The orbits of a graph consist of vertices with similar properties such as
having the same degree. So if it were possible to create a small list of all
these properties and if, in addition, there were polynomial time tests for
each one, then there would be a polynomial time algorithm for the graph
automorphism problem. Of course such a complete list of properties is not
known. However, if there exists one such property that does not hold for two
vertices, then these vertices are not in the same orbit. So, creating a partial
list of polynomial time tests would help to distinguish vertices having differ-
ent properties and thus to separate them into different orbits. In surveying
the literature on heuristic approaches to computing the orbits of the auto-
morphism group of a graph we have made use of [20], which in turn draws
on [7].

The procedure adopted here for finding the orbits of a graph is as follows:

1. Identify several polynomially checkable properties designed to distinguish
between vertices. At the start of the procedure all the vertices are taken to
be in the same orbit.

2. For each property and each pair of vertices u, v in an orbit thus far deter-
mined, find whether or not u and v can be distinguished by the property.
If yes, then draw the inference “u, v are in different orbits”; otherwise,
apply the next test.

If two vertices pass all the tests, then they will be considered to be in the
same orbit. This procedure gives rise to a deterministic process with one-
sided error, i.e., two vertices in the same putative orbit may in fact be distin-
guishable.

Critical to developing an efficient procedure is making judicious choices
of vertex properties that can serve as tests. The selection of properties used
in our procedure has been guided by results in the theory of networks and in
sociological theory.

1.4 Approximating Orbits 13

1.4.1
The Degree of the Vertices

The first test is quite simple: If two vertices have different degrees, then
they cannot be in the same orbit. The degree of a vertex can be computed
in time n, with n being the size of the graph. So this test will take time O(n).
The degree of a vertex is an important property in the theory of networks
since finding the high-degree vertices in an underlying graph is considered
equivalent to determining the so-called “authorities” of the network.

1.4.2
The Point-Deleted Neighborhood Degree Vector

Examining only the degree of the vertices is insufficient. Consider, for exam-
ple, the path of five vertices, labeled 1, 2, 3, 4, 5. The degree test does not
distinguish 2 and 4 from 3, but 3 is in not in the same orbit as 2 and 4; this
is obvious since both 2 and 4 have one neighbor (1 and 5, respectively) with
degree 1, while 3 does not have such a neighbor. This observation leads nat-
urally to the idea of the second test, namely, to examine the neighborhood of
the vertices.

Definition 1.1 The neighborhood of a subset S ⊆ V denoted by N(S) is the
set of all the neighbors of S, i.e., N(S) = S

⋃
{v ∈ V \ S|(v, s) ∈ E and s ∈

S}. The {i + 1}th degree neighborhood of S is defined inductively, N i+1(S) =
N(Ni(S)). The point-deleted neighborhood of v, with v being a vertex of V, is
Ñi(x) = Ni({x}) \ {x}.

Thus, for the path mentioned above we have that

• N({3}) = {2, 3, 4},
• N2({3}) = {1, 2, 3, 4, 5},
• Ñ(3) = {2, 4}.

The notion of the degree vector is also needed.

Definition 1.2 The degree vector d(S) of a subset S of the vertices of a graph
can be defined as the ordered sequence of the degrees of these vertices in the
induced subgraph.

Again for the above example of the path of five vertices, the degree vector
of the whole path is (1,1,2,2,2). The degree vector of {2,3} is (1,1).

The test to be considered is comparing the point-deleted neighborhood
degree vectors of the vertices to be examined. This technique is presented
in [7]. The degree test yields several groups of vertices of equal degree. To

14 1 Entropy, Orbits, and Spectra of Graphs

apply this test we first compute the point-deleted neighborhood of each of
the vertices to be compared and then determine the degree vector. If the de-
gree vector is different, draw the inference “not in the same orbit.” The test
can be made more subtle if higher-order neighborhoods are taken into ac-
count.

The execution time required for this test can be computed as follows. If
v and u are the vertices to be compared and k is their degree, we can com-
pute the degree vectors of the point-deleted neighborhoods of u and v in
time k2. Sorting the two vectors, each of size k, and comparing them is at
most of this order of complexity. Thus the total execution time required
is Θ(k2). Since k is bounded by n, the worst-case complexity of the test is
O(n2).

As an example, consider the graph of Figure 1.8. Table 1.2 shows the point-
deleted neighborhood of the vertices.

The test defines two groups of vertices that for this example coincide with
the two orbits. The sets are {1,3,5,7} and {2,4,6,8}.

Examining the point-deleted neighborhood degree vector has several ad-
vantages and disadvantages over the degree sequence of the neighbors of
a vertex. The latter would probably give faster negative results when test-
ing whether two vertices belong in the same orbit, since it takes account of
the whole graph and not simply the induced subgraph of the neighbors; on
the other hand, the former also works in regular graphs. However, the main
reason for using the latter test is that it is associated with the concept of
clustering coefficients that are widely used in networking theory. Informally

1

4 62

3

8

5

7

Figure 1.8 Example: graph for point-
deleted neighborhood degree vectors
test.

Table 1.2 Information about the point-deleted neighbor-
hood of every vertex and its degree vector.

v Ñ(v) d(Ñ(v))
1 {2,4,5} (0,1,1)
2 {1,3,4} (1,1,2)
3 {2,4,7} (0,1,1)
4 {1,2,3} (1,1,2)
5 {1,6,8} (0,1,1)
6 {5,7,8} (1,1,2)
7 {3,6,8} (0,1,1)
8 {5,6,7} (1,1,2)

1.4 Approximating Orbits 15

speaking, the clustering coefficient indicates the degree to which the induced
subgraph of the neighbors of a vertex resembles a clique. Determining the
point-deleted neighborhood degree vector of a vertex would help in comput-
ing the clustering coefficient. So vertices that pass this test will also have the
same clustering coefficient.

1.4.3
Betweenness Centrality

The above techniques correctly determine the orbits of a large variety of
graphs. However, there are cases where they fail. Consider, for example, the
graph in Figure 1.9. The point-deleted neighborhood degree vector would
place vertices 13 and 14 in the same orbit since d(Ñ(13)) = d(Ñ(14)) =
(2, 2, 2, 2, 3, 3). However, it is obvious from the figure that vertices 13 and 14
do not belong in the same orbit.

In this section we will describe one more method of estimating the orbits
of a graph. This method is based on the concept of betweenness centrality,
which was first introduced in [8] and can be described as follows.

Definition 1.3 The betweenness centrality of a vertex x of a graph G(V, E) is
the sum over all pairs of vertices y, z in the graph of the number of shortest
paths (px

y,z) from y to z that pass through x divided by the number of all

1

46

2 3

8

5

7 9

101112

13

14

1

46

3

5

2

87 9

101112

G

N(13)
~

N(14)
~

Figure 1.9 Graph where the technique of the point-deleted
neighborhood degree vector fails.

16 1 Entropy, Orbits, and Spectra of Graphs

the shortest paths from y to z. More precisely, the betweenness centrality of
a vertex x is:

CB(x) =
1
2

∑

y∈V

dy,x ,

where

dy,x =
∑

z∈V

by,z

and

by,z(x) =
px

y,z

py,z
.

This measure is suggested by the sociology of networks of individuals, so-
called “social networks.” In addition, it captures important structural fea-
tures of a graph, making it quite useful in approximating orbits.

The method considered in [7] is an extension of the point-deleted neigh-
borhood degree vector. Once the induced subgraph on Ñ(x) is computed
for every vertex x, we compute the betweenness vector CB(Ñ(x)) = CB(v1),
CB(v2), . . . , CB(vd(x)), where CB(vi) u CB(vi+1), with vi ∈ Ñ(x) and d(x) being
the degree of vertex x. If the vectors CB(Ñ(x)) and CB(Ñ(y)) are not identical,
then x and y belong to different orbits.

Consider again the graph of Figure 1.9. We want to compute the between-
ness centrality vectors of vertices 13 and 14, which will help in deciding
whether they belong in the same orbit or not. We first find the induced sub-
graphs on Ñ(x) for every vertex x (also shown in Figure 1.9). Then, for each
subgraph, we first compute a table that contains all the intermediate vertices
in every shortest path between each pair of vertices. We assume that paths
of length 1 have no intermediate vertices and we omit paths that start and
end on the same vertex. The tables are shown below (Table 1.3). Then we
compute the dependency matrix, the matrix D = dy,z for every y, z. Finally
we sum and then halve every column of D to compute the betweenness cen-
trality of every vertex of the induced subgraph. The dependency matrices for
both vertices 13 and 14 are computed below (Table 1.4). The computed vec-
tor will be the betweenness centrality vector of vertex x. Finally, when all the
computations are done, we compute the vectors of each pair of vertices. If
they are different, then the vertices belong in different orbits; otherwise the
algorithm concludes that the vertices belong to the same orbit.

It is clear that

CB(Ñ(13)) =
(

5
6

,
5
6

,
5
6

,
5
6

, 3, 3
)

=/ CB(Ñ(14)) =
(

0, 1, 1
1
2

, 1
1
2

, 2
1
2

, 2
1
2

)
.

Thus vertices 13 and 14 belong to different orbits.

1.4 Approximating Orbits 17

Table 1.3 Tables containing the intermediate vertices of the
shortest paths between each pair of vertices.

1 2 3 4 5 6

1 – – 2
2 3

2
–2 5

6
6 5

2 – – –
3

–
1

5 5

3 2 – – –
2

2 1

4
2 5
4 5

4
3 2

3
– – – 55 2

5
5 6

5
2

–
2

– – –
6 4

6 –
1

1 2
5 – –

5
5 2
5 4

7 8 9 10 11 12

7 – – 8 11
–

–

8 – – – 9 7 7

9 8 – – – 10
8 7

10 11

10 11 9 – – – 11

11 – 7 10 – – –

12 – 7
8 7

11 – –
10 11

Table 1.4 Dependency matrices for vertices 13 and 14 and
the betweenness centrality vectors.

1 2 3 4 5 6

1 0 1 5
6

1
3 0 2

3
5
6

2 1
2 0 1

2 0 1 0
3 1

3 1 5
6 0 5

6
2
3 0

4 0 2
3

5
6 0 1 5

6
1
3

5 0 1 0 1
2 0 1

2

6 5
6

2
3 0 1

3 1 5
6 0

CB
5
6 3 5

6
5
6 3 5

6

7 8 9 10 11 12

7 0 1 0 0 1 0
8 2 0 1 0 0 0
9 1

2 1 1
2 0 1 1

2
1
2 0

10 0 0 1 0 2 0
11 1 0 0 1 0 0
12 1 1

2
1
2 0 1

2
1
2 0

CB 2 1
2 1 1

2 1 1 1
2 2 1

2 0

The betweenness centrality of all the vertices of a graph can be computed
in O(n3) time (where n is the number of vertices in the graph) by a modi-
fied version of Floyd’s algorithm for determining all shortest paths between
pairs of vertices. The fastest known exact algorithm for determining the be-
tweenness centrality of all the vertices of a graph is due to Brandes [4], and its
complexity is Θ(n ·m), where m is the number of edges of the graph. Thus, if
u and v are vertices to be compared and k is their degree, then determining
the betweenness centrality vectors of u and v requires O(k3) time. Thus the
worst-case complexity of the test is O(n3).

It is still possible to compute the orbits of the previous example exactly by
examining the degree vector of higher-order point-deleted neighborhoods.

18 1 Entropy, Orbits, and Spectra of Graphs

However, there are (rare) cases where the idea of the degree vector does not
work at all. The graph (whose adjacency matrix is presented below) is such
an example.

0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1
1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0
0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 1
1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0
1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0
0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0
0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0
0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0
0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1
1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0
1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0
0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 0
1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1
1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0
0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1
0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 0
0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0
1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1
0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 1
0 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1
0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1
0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0

This graph is 10-regular, so that for every vertex x, Ñ(x) contains ten ver-
tices. Furthermore, its diameter is two, so Ñ2 contains every vertex of the
graph except for x. It follows that d(Ñ(x)) = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3) for ev-
ery vertex x. Thus the above tests will yield one orbit {1, . . . , 26}. However,
it can be proven that the graph has two orbits, {1, . . . , 13} and {14, . . . , 26}
(this example is taken from [7]). The problem is solved by examining the
point-deleted neighborhood betweenness centrality vector. We can show that
CB(Ñ(1)) = . . . = CB(Ñ(13)) = (3, 3, 3, 3, 4, 4, 4, 5, 5, 5), whereas CB(Ñ(14)) =
. . . = CB(Ñ(26)) = (3, 3, 3, 4, 4, 4, 4, 4, 4, 6).

In this section we have only examined the betweenness centrality measure
in approximating the orbits of a graph. However, there are several variants of
centrality measures that could be taken into account. These variants include

1.5 Alternative Bases for Structural Complexity 19

1

5

2

3 4

6

Chromatic decompositions:
{1,3} {2,5} {4,6}
{2} {1,3} {4,5,6}

{2} {3} {1,4,5,6}

Figure 1.10 Graph with multiple chromatic decompositions.

closeness centrality [22], graph centrality [9], and stress centrality [23]. All
these concepts are attempts to capture the notion of the relative importance
of a vertex in the overall structure of a graph, and thus each of them could
play an important role in estimating the orbits of a graph.

1.5
Alternative Bases for Structural Complexity

Colorings of a graph can be used to obtain a decomposition of the vertices.
Sets of vertices of the same color (or independent sets) constitute equiva-
lence classes. Unlike the orbits of the automorphism group, a partition of
the vertices obtained in this way is not unique. However, an information
measure may be defined by taking the minimum value over some set of de-
compositions linked to colorings [16]. This section explores such a measure,
compares it with the symmetry-based measure, and shows its relationship to
the graph entropy as defined in [11].

A coloring of a graph is an assignment of colors to the vertices so that no
two adjacent vertices have the same color.

An n-coloring of a graph G = (V, E) is a coloring with n colors or, more
precisely, a mapping f of V onto the set {1, 2, . . . , n} such that whenever
[u, v] ∈ E, f(u) =/ f(v).

The chromatic number κ(G) of a graph G is the smallest value of n for which
there is an n-coloring. A graph may have more than one n-coloring.

An n-coloring is complete if, for every i, j with i =/ j, there exist adjacent
vertices u and v such that f(u) = i and f(v) = j.

A decomposition {Vi}n
i = 1 of the set of vertices V is called a chromatic de-

composition of G if u, v ∈ Vi imply that [u, v] /∈ E. Note that Vi in a chromatic
decomposition is a set of independent vertices. If f is an n-coloring, the collec-
tion of sets {v ∈ V| f(v) = i}n

i = 1 forms a chromatic decomposition; conversely,
a chromatic decomposition {Vi}n

i = 1 determines an n-coloring f. The sets Vi

are thus called color classes.

20 1 Entropy, Orbits, and Spectra of Graphs

Given a graph G = (V, E) with |V| = n and h = κ(G), let V̂ = {Vi}h
i = 1 be

an arbitrary chromatic decomposition of G with ni(V̂) = |Vi| for 1 u i u h.
The chromatic information content Ic(G) of G is defined by the following for-
mula [16]:

Ic(G) = min
V̂

{
–

h∑

i = 1

ni(V̂)
n

log
ni(V̂)

n

}
.

Figure 1.10 shows a graph with three different chromatic decomposi-
tions whose finite probability schemes are (1/3, 1/3, 1/3), (1/2, 1/3, 1/6), and
(2/3, 1/6, 1/6). The minimum entropy is given by (2/3, 1/6, 1/6), so that
Ic(G) = 2/3 log 3/2 + 1/3 log 6.

Ic(G) is defined as the minimum value over chromatic decompositions
with κ(G) color classes and thus does not necessarily give the minimum over
all chromatic decompositions. When the graph does not have a complete
k-coloring for k > κ(G), Ic(G) does give the minimum over all chromatic
decompositions [16]. The restricted minimization in the definition allows for
interpreting Ic(G) as the amount of information needed to construct a κ(G)-
coloring.

A related measure called graph entropy was introduced in [11] and sub-
sequently applied to a variety of problems in graph theory and combina-
torics [24]. This measure is a generalization of Ic(G) formulated as aver-
age mutual information between two random variables representing the
vertices and independent sets of G, respectively. Let S be the collection of
independent sets of G = (V, E) with |V| = n, and let P be a probability dis-
tribution on V. The graph entropy H(G, P) is given by I(V; S), the average
mutual information between V and S (treated as random variables). Now,
I(V; S) = H(V) – H(V|S), so if P is a uniform probability distribution over V,
then H(G, P) = I(V; S) = log n – H(S). So, Ic(G) = log n – H(G, P). In sum-
mary, the essential difference between the two measures is that Ic(G) as-

S = {{2, 4}, {1}, {3}}

V = {1, 2, 3, 4}

Pr[{2, 4}] =
1
2

Pr[{1}] = Pr[{3}] =
1
4

Pr[v|sk] =

(
0, if v is not in sk;

1
|sk|

, if v is in sk.

H(G, P) = log 4 –
„

1
2

log 2 +
1
2

log 4
«

=
1
2

Ic(G) = log 4 – H(G, P) =
3
2

Figure 1.11 Chromatic information and graph entropy.

References 21

sumes a fixed (uniform) probability distribution over V, whereas H(G, P)
allows the probability distribution over V to vary. Figure 1.11 illustrates the
relationship between Ic(G) and H(G, P).

The two entropy-based measures of graph complexity, Ia(G) and Ic(G), dis-
cussed in this chapter capture different aspects of graph structure. Colorings
and symmetries of a graph do not necessarily say much about each other. The
difference can be seen from examples such as the cycle Cn on n vertices. This
graph has a transitive automorphism group so Ia(Cn) = 0 for all n, whereas
the cycle has chromatic number two or three, depending on whether n is
even or odd, and Ic(Cn) W log 2. The divergence between the two measures
is unbounded in the case of trees that have chromatic number two but (for
n v 7) can have a trivial automorphism group. In these cases, Ic(Cn) u 1 but
Ia(Cn) = log n.

The foregoing observations support the view that structural complexity
is in the eye of the beholder. No single measure can capture all aspects of
a graph.

Acknowledgment

Research was sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence and was accomplished under Agreement No. W911NF-
06-3-0001. The views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing the official
policies, either express or implied, of the U.S. Army Research Laboratory,
the U.S. government, the U.K. Ministry of Defence or the U.K. government.
The U.S. and U.K. governments are authorized to reproduce and distribute
reprints for government purposes notwithstanding any copyright notation
hereon.

References

1 Arvind, V. Algebra and Compu-
tation. Lecture notes (transcribed
by Ramprasad Saptharishi), 2007.
http://www.cmi.ac.in/~ramprasad/
lecturenotes/algcomp/tillnow.pdf, last
viewed 5-30-2008.

2 Bent, G., Dantressangle, P., Vyvyan, D.,
Mowshowitz, A., and Mitsou, V. A dy-
namic distributed federated database.
Proceedings of the Second Annual Con-
ference of the International Technol-
ogy Alliance, Imperial College, London,
September 2008.

3 Biggs, N.L. Algebraic Graph Theory. Cam-
bridge University Press, Cambridge, 1993.

4 Brandes, U. A faster algorithm for be-
tweenness centrality. J. Math. Sociol. 25
(2001), pp. 163–177.

5 Chao, C.C. A note on the eigenvalues of
a graph. J. Combinator. Theory (Series B)
10 (1971), pp. 301–302.

6 Collatz, L., and Sinogowitz, U. Spektrum
endlicher Graphen. Abh. Math. Sem. Univ.
Hamburg 21 (1957), pp. 63–77.

7 Everett, M. G., and Borgatti, S. Calculating
Role Similarities: An Algorithm that helps

22 1 Entropy, Orbits, and Spectra of Graphs

determine the Orbits of Graph. Social
Networks 10 (1988), pp. 77–91.

8 Freeman, L. C. A set of measures of cen-
trality based on betweenness. Sociometry
40 (1977), pp. 35–41.

9 Hage, P. and Harary, F. Eccentricity and
centrality in networks. Social Networks 17
(1995), pp. 57–63.

10 Khinchin, A.I. Mathematical Foundations
of Information Theory. Dover Publications,
New York, 1957.

11 Korner, J. Coding of an information
source having ambiguous alphabet and
the entropy of graphs. Transactions of
Prague Conference on Information Theory,
Statistical Decision Functions, Random
Processes. (1971), pp. 411–425.

12 Lauri, J. and Scapellato, R. Topics in Graph
Automorphisms and Reconstruction. Cam-
bridge University Press, Cambridge, 2003.

13 Mowshowitz, A. Entropy and the complex-
ity of graphs: I. An index of the relative
complexity of a graph. Bull. Math. Biophys.
30 (1968), pp. 175–204.

14 Mowshowitz, A. Entropy and the complex-
ity of graphs: II. The information content
of digraphs and infinite graphs. Bul-
letin of Mathematical Biophysics 30 (1968),
pp. 225–240.

15 Mowshowitz, A. Entropy and the complex-
ity of graphs: III. Graphs with prescribed
information content. Bull. Math. Biophys.
30 (1968), pp. 387–414.

16 Mowshowitz, A. Entropy and the complex-
ity of graphs: IV. Entropy measures and
graphical structure. Bull. Math. Biophys.
30 (1968), pp. 533–546.

17 Mowshowitz, A. The group of a graph
whose adjacency matrix has all distinct
eigenvalues. In F. Harary, editor, Proof
Techniques in Graph Theory, pp. 109–110.
Academic Press, New York, 1969.

18 Mowshowitz, A. Graphs, groups and
matrices. In Proceedings of the Canadian
Mathematical Congress (1971), pp. 509–
522.

19 Mowshowitz, A., Mitsou, V., and Bent, G.
Models of network growth by combina-
tion. Proceedings of the Second Annual
Conference of the International Technol-
ogy Alliance, Imperial College, London,
September 2008.

20 Papireddy, Y.S. A cost efficient approach
for finding the orbits to calculate the En-
tropy of a graph. Project Presentation,
Department of Computer Science, The
City College of New York, Spring 2007.

21 Rashevsky, N. Life, information theory,
and topology. Bull. Math. Biophys. 17
(1955), pp. 229–235.

22 Sabidussi, G. The centrality index
of a graph. Psychometrika 31 (1966),
pp. 581–603.

23 Shimbel, A. Structural parameters of
communication networks. Bull. Math.
Biophys. 15 (1953), pp. 501–507.

24 Simonyi, G. Graph entropy: a survey. In
W. Cook and L. Lovasz, editors, Combi-
natorial Optimization. DIMACS: Series
in Discrete Mathematics and Theoretical
Computer Science, 1995.

25 Thompson, D.W. On Growth and Form
(abridged version edited by J.T. Bonner).
Cambridge University Press, Cambridge,
1961.

26 Trucco, E. A note on the information con-
tent of graphs. Bull. Math. Biophys. 18
(1956), pp. 129–135.

27 Wikepedia. Kolmogorov complex-
ity. http://en.wikipedia.org/wiki/
Kolmogorov_complexity, last viewed
5-28-08.

