

Index

a

- acid/base catalysis 154–157
 - bimolecular, acid catalyzed reaction 155
 - bimolecular, base catalyzed reaction 156
 - Brønsted–Lowry theory 155
 - RNA hydrolysis catalyzed by enzyme RNase-A 157
- acids 132–143, *See also* solid acids and bases
- Acinetobacter calcoaceticus* 181
- activated carbon supports 439
- activation, catalyst 58–64
 - induction periods as catalyst activation 59–60
- active sites 269–273
- activity of catalyst, in homogeneous catalysis 54–58
- acylases 185–186, 256
- adaptive chemistry methods 370
- adiabatic reactor 569
- adsorption entropy 27–30
- adsorption methods for porous materials
 - characterization 514–534
 - adsorption isotherms 517–518
 - application of adsorption methods 518–519
 - Barret–Joyner–Halada (BJH) method 529–530
 - classification of porous materials 517
 - mercury porosimetry 533
 - mesoporous materials characterization 527–532
 - capillary condensation 527
 - Kelvin equation 528–529
 - microporous materials characterization 524–526
 - Dubinin–Astakhov methods 524–525
 - Dubinin–Radushkevich (DR) methods 524–525

- Horvath–Kawazoe (HK) method 525–526
- Nonlocal Density Functional Theory (NL–DFT) 530–532
- physical adsorption 514–516
- theoretical description of adsorption 519–523
- BET theory of adsorption 521
- Langmuir isotherm 519–521
- standard isotherms 522–523
- t-method 522–523
- xenon porosimetry 533–534
- Aerosil® process 435
- alcohols
 - carbonylations of 245–247
 - synthesis 176–177
- aldolases 190–193
- alkene metathesis 402–406
- altered surface reactivity 38–39
- alumina (Al_2O_3) and other oxides 436–438
- amidases 185–186
- amidases catalyzed reactions 256
- amino acid dehydrogenases (AADHs) 177, 253
- amino acids synthesis 177–178
- 6-aminopenicillanic acid (6-APA) 256
- 7-aminocephalosporanic acid (7-ACA) 256
- ammonia synthesis 114–119, 289–299
 - activation energies 116
 - based on natural gas 290
 - catalysis 292–295
 - composition dependence 114–119
 - mechanism of reaction 114
 - process optimization 295
 - structure sensitivity 114–119
 - technology development 291–292 emkin kinetic expression 118

- ammonia synthesis (*contd.*)
 - Temkin Pyzhev kinetics 292
 - ultra-high-vacuum techniques 292
- Anderson–Schulz–Flory curve 313
- ansa-zirconocene-based olefin polymerization
 - catalysis 271–272, 275
- anti-lock and key model 28, 167
- apparent activation energy 69
- aqueous ammonium heptamolybdate (AHM) 425
- Arrhenius law 49, 69
- Arrhenius number 85
- Arthrobacter globiformis* 255
- aryl halides, carbonylations of 245–247
- aryl–X derivatives, carbonylation of 246
- asymmetric synthesis 174–175
- atom utilization 17
- atomic force microscopy (AFM) 494
- b**
 - Baeyer–Villiger oxidation 179
 - Baeyer–Villiger Monooxygenases (BVMOs) 180–181
 - enzyme-catalyzed, mechanism 182
 - ‘band gap’ 218
 - Barret–Joyner–Halada (BJH) method 529–530
 - bases 132–143, *See also* solid acids and bases
 - basicity and nucleophilicity, relation between 154
 - batchwise-operated stirred-tank reactors (BSTR) 578–579
 - Bayer process 436
 - bimolecular catalytic reactions 76–77
 - biocatalysis 171–194, 250–259, *See also* hydrolases; lyases; oxidoreductases
 - applications 253–257
 - best route, choosing 250–253
 - enzymatic routes 251–252
 - biocatalysis cycle 173
 - case studies 257–259
 - – lipitor building blocks synthesis 257–259
 - development 172
 - reaction strategy choice 174–175
 - – kinetic resolution or asymmetric synthesis 174–175
 - reaction systems, choice 175–176, 250–259
 - biotransformations 171
 - biphase fluid/fluid systems, homogenous catalysis in 103–108
 - Bodenstein number 596–597, 607
- Boltzmann constant 34
- Braunauer, Emmett, and Teller (BET) theory 6, 521
- Brønsted acid/base catalysis 132–143, 154, *See also* acid/base catalysis
- Brønsted–Evans–Polanyi (BEP) relationship 14, 22
- Brønsted–Lowry theory 155
- Brunauer classification 518
- Brunauer, Deming, Deming, and Teller (BDDT) 517
- Burkholderia plantarii* 254
- Butler–Volmer setting 382
- butylbranching mechanism 329
- c**
 - Candida cylindracea* 254
 - Carberry number 83, 85
 - carbon materials 438–440
 - carbonylation reactions 234–247
 - of alcohols and aryl halides 245–247
 - – aryl–X derivatives 246
 - – Ibuprofen 246
 - – lazabemide 247
 - – Rhodium-catalyzed carbonylation of methanol 245
 - – hydroformylation 235–239
 - – of olefins and alkynes 239–244
 - – 1,3-butadiene 243
 - – palladium-catalyzed carbonylation 242
 - 5-carboxyfluorescein diacetate (C-FDA) 506–507
 - catalytic partial oxidation (CPOX) 357
 - catalytic reactor engineering 563–624, *See also* fluid–solid reactors; ideal reactor modeling/heat management; microreaction engineering; residence time distribution (RTD); single-phase reactors
 - fixed-bed reactors 574
 - fluid–fluid reactors 571–573
 - liquid–liquid–gas system 573
 - principles 67–108
 - – formal kinetics of catalytic reactions 68–77, *See also* individual entry
 - – homogenous catalysis in biphasic fluid/fluid systems 103–108
 - – mass and heat transfer effects 77–103, *See also* individual entry
 - slurry–suspension reactors 574–575
 - structured catalysts for multiphase reactions 575
 - three-phase gas–liquid–solid systems 573–575
 - types 564–575

catalytic selective oxidation 341–363

- complexity/issues of 354, 356–358
- consolidated technologies 341–363
- in continuous development of more-sustainable industrial technologies 355–356
- development of industrial process, challenges 353–355
- directions for innovation 361–363
- dream oxidations 359–361
- fundamentals 341–363
- main features 341–353
- for organic compounds synthesis in petrochemical industry 342–352
- oxidation process PHASE reactor 342–353

C–C bond cleavage 126–132

chain growth 314–315

chain walking 279

chemocatalysis, equivalence of 30–32

Chilton–Colburn analogy 84, 100

clarient process 247

classical chlorohydrin route 18

‘classical’ guidelines for catalyst testing 536–557

- appropriate laboratory reactor, selecting 546–548
- catalyst stability, assessing 554–555
- data collection 543–546
- effective experimental strategies 541–543
- two-variables system 542
- encouraging effectiveness 536–540
- ensuring efficiency 540–555
- ideal flow pattern, establishing 548–549
- isothermal conditions, ensuring 549–551
- quality guidelines 540
- selectivity 544
- space–time yield 545
- transport, diagnosing and minimizing the effects of 552–554
- ‘DrySyn’ Beta vs commercial Beta performance 553
- diagnostic tests for interphase (external) transport 552
- diagnostic tests for intraparticle (internal) transport 553
- yield 545

cobalt 312

- cobalt catalyst formation 321–322
- cobalt promoter 394–395

co-catalysts 59

co-catalyzed carbonylation 241

cofactor regeneration 178

Coherent Anti-Stokes Raman Spectroscopy (CARS) 502

combinatorial approaches in solid catalysts development 453

- for optimal catalytic performance 453–456
- compensation effect 44–46
- exocyclic methylation reaction 45
- pairing reaction 45

complex reaction 73

consecutive first-order reactions 82

consecutive reactions 92

constant selectivity relationship 159

constrained geometry catalysts 279

Continuously Operated Ideal Stirred Tank Reactors (CSTR) 580–581

- space time in 583

continuously stirred tank reactors (CSTRs) 546–547

continuous-phase contacting 616–618

- falling-film contactors 617

Corynebacterium glutamicum 253

coupling of catalytic reaction 42

crystalline catalysts design 222–223

cumylhydroperoxide (CHP) 362

cycle, catalytic 20–27

d

Damköhler number 81–82, 547

de Donder concept 32

deactivation, catalyst 58–64

- due to irreversible reactions 65–64
- due to multinuclear complexes formation 61–62
- due to non-reactive complexes formation 61

dehydrogenases 176–178

- alcohols synthesis 176–177
- amino acids synthesis 177–178
- formate dehydrogenase (FDH) 178
- polyethylene glycol (PEG) 178
- Prelog-rule 177

dehydrogenation 126–132

- cyclohexane dehydrogenation 131
- mechanism of 126
- olefin hydrogenation kinetics 126–127

density functional theory (DFT) 209, 367, 395–397

deposition precipitation 427–428

desulfurization 291

development of catalytic materials 445–459

- catalytic OCM reaction, reaction mechanism and kinetics of 448–449
- combinatorial approaches in 453–459
- fundamental aspects 446–448

- development of catalytic materials (*contd.*)
 - high-throughput technologies in 456–459
 - kinetic analysis 450–451
 - micro-kinetics and solid-state properties as knowledge source 448–453
 - electronic conductivity 452
 - ion conductivity 452
 - redox properties 452
 - structural defects 451–452
 - supported catalysts 453
 - surface acidity and basicity 452
 - surface oxygen species in methane conversion 449–450
- development of catalytic processes 11–13
 - history 11–13
 - future 11–13
- dibenzothiophene 392
- dihydroxyacetone phosphate (DHAP) 191–192
 - DHAP-dependent aldolases 192
- dilution rate 580
- direct alkane activation 139–141
- direct desulfurization (DDS) 392
- dispersed phase contacting 619–622
 - gas–liquid–liquid 622
 - micro packed beds 621
 - segmented flow gas–liquid–solid reactors 620
- dispersion model 595–596
- ‘dormant’ sites 269–273
- dry impregnation 425
- Dubinin–Astakhov methods 524–525
- Dubinin–Radushkevich (DR) methods 524–525
- Dusty Gas Model 382
- dynamic kinetic resolution (DKR) 175
- e**
 - efficiency factor 105
 - electric double layer 204–207
 - diffuse double-layer 206
 - inner layer 206
 - electrocatalysis 201–213
 - electric double layer 204–207
 - diffuse double-layer 206
 - inner layer 206
 - electrochemical potentials 203–204
 - equivalence of 30–32
 - theory 203–207
- electrochemical potentials 203–204
- electrolyte-reservoir 205
- electron backscatter diffraction (EBSD) measurements 502
- electrophilic catalysis 154–157
- enantioselective ring-closing metathesis 405
- enzyme catalysis 8–9, 155
- ethane hydrogenolysis mechanism 127–132
- ethylene/propylene rubber (EPR) 264
- Evonik-Uhde process 361–362
- exocyclic methylation reaction 45
- extended X-ray absorption fine spectroscopy (EXAFS) 400, 499
- external and internal transfer resistances, combination 96–101
 - external and internal temperature gradient 100–101
 - in isothermal pellets 96–98
 - mass transfer implication on temperature dependence 98–99
- external mass and heat transfer 78–85
- f**
 - falling-film contactors 617
 - ‘fingerprinting’ 267
 - Fischer–Tropsch (FT) synthesis 40, 301–323, 569
 - catalysts, general 311–313
 - cobalt 312
 - iron 312–313
 - nickel catalysts 312
 - Ruthenium 312
 - gas chromatogram of 303
 - operation ranges 306–308
 - processes and product composition 308–311
 - commercial FT-synthesis 308–311
 - high-temperature Fischer–Tropsch synthesis 310–311
 - hydrocracking 309
 - hydroisomerization 309
 - isomerization 309
 - low-temperature synthesis 309–310
 - multi-tubular fixed-bed reactors 309
 - slurry-phase bubble column reactors 309
 - slurry reactors 310
 - synthesis gas 311
 - rate equations 306
 - reaction fundamentals 313–322
 - ideal polymerization model 313–322
 - stoichiometry 304–305
 - thermodynamic aspects 305–306
 - Fischer–Tropsch Synthesis (FTS) catalyst 509
 - fixed-bed reactors 568–569, 574
 - adiabatic reactor 569
 - multitubular reactor 569
 - staged fixed-bed 569
 - fluid catalytic cracking (FCC) process 391

fluid–fluid MSR 610–612
 – falling film microchannel 610
 – microchannel 610
 – micromixer 610
 fluid–fluid reactors 571–573
 fluidized-bed reactors 569–571
 fluid–solid MSR 607–610
 fluid–solid reactors 568–571
 – fixed-bed reactors 568–569
 – fluidized-bed reactors 569–571
 – minimum fluidization velocity and pressure drop 570–571
 fluorescence microscopy (focused ion beam (FIB)) 502
 formal kinetics of catalytic reactions 68–77
 – general definitions 69–70
 – heterogeneous catalytic reactions 70–71
 – Langmuir adsorption isotherms 72–73
 – reaction mechanisms 73–77
 formate dehydrogenase (FDH) 178, 254
 fractional surface coverage 71
 framework-substituted redox ions 335–339
 – Ti-catalyzed epoxidation 335–338
 fumed silica 433–436
 fundamental catalysis in practice 13

g

gas–liquid–liquid reactors 622
 gas–liquid–solid reactors 616
 gas–liquid systems 611–613
 glycerolphosphate oxidase (GPO) 192
 Gouy–Chapman diffuse double layer 206
 Gouy–Chapman model 205
 Gouy–Chapman–Stern model 205
 ‘growing chain orientation’ mechanism 268

h

Haber–Bosch process 3, 291
 Hagen–Poiseuille law 593, 605
 half-titanocene precatalyst structures 281
 Hammett acidity function 154
 Hatta number (Ha) 103, 572
 heat balance 583
 heat management in microstructured reactors 622–624
 heat transfer 85–96, *See also* mass and heat transfer effects
 Helmholtz model 205
 heterogeneous catalysis 4–7, 113–150,
 273–278, *See also* kinetics of heterogeneous catalytic reactions; reducible oxides; solid acids and bases; transition metal catalysis
 – catalyst preparation methods 7

– catalyst’s performance and its composition and structure 4–7
 – Brunauer–Emmett–Teller (BET) technique 6
 – characterization tools 6
 – dynamic Monte Carlo methods 7
 – Langmuir–Hinshelwood–Watson–Hougsen (LHW) expressions 6
 – Michaelis–Menten expression 6
in situ spectroscopic measurements 5
 – T-plot techniques 6
 – X-ray scattering techniques 6
 – formal kinetics 70–71
 – molecularly defined systems in 399–413,
See also individual entry
 – monomer insertion 274
 – ‘replication’ phenomenon 274, 277
 – steps involved in 68
 – Ziegler–Natta catalysts 274
 heterogeneous catalysts 493–510, *See also* *in-situ* characterization of heterogeneous catalysts
 – design of, requirements 447
 heterogeneous chemistry, of high-temperature catalysis 365–385
 – heterogeneous reaction mechanisms 367–368
 heterogeneous photocatalysis 216–228
 – case studies 220–228
 – crystalline catalysts design 222–223
 – energy conversion 222–225
 – microreactors 227–228
 – supported chromophores 223–225
 – visible light-sensitive systems 223
 – water purification 220–222
 – Z-scheme process 224
 – photocatalysis 216–217
 – from surface chemistry to reactor design 216–228
Hevea brasiliensis (HbHNL) 189, 257
 High Density PolyEthylene (HDPE) 262
 high-energy resolution fluorescence detected (HERFD) X-ray Absorption Spectroscopy (XAS) 497
 High Throughput Experimentation (HTE) 280
 Highest Occupied Molecular Orbital (HOMO) 217
 high-temperature catalysis 365–385
 – applications 372–378
 – formulation of an optimal control problem 375–378

- high-temperature catalysis (*contd.*)
 - olefin production by high-temperature oxidative dehydrogenation of alkanes 373–378
 - synthesis gas from natural gas by high-temperature catalysis 373
 - turbulent flow through channels with radical interactions 372–373
 - fundamentals 366–372
 - coupling of chemistry with mass and heat transport 369–370
 - heterogeneous chemistry role 365–385
 - homogeneous chemistry role 365–385
 - hydrogen production from logistic fuels by 378–380
 - mathematical optimization of reactor conditions and catalyst loading 372
 - radical chemistry role 365–385
 - in solid oxide fuel cells 380–385
- high-temperature Fischer–Tropsch synthesis 310–311
- high-temperature fuel cells 381
- high-throughput technologies in solid catalysts development 456–459
 - catalytic materials preparation 457
 - data analysis 458–459
 - screening of catalytic materials 457
 - testing of catalytic materials 457
- historic review 3–19
 - development of catalytic processes 11–13
 - history and future 11–13
 - fundamental catalysis in practice 13
 - history of catalysis science 3–12
 - chemical engineering 3
 - organic chemistry 3
 - nineteenth century 3
 - synthetic organic chemistry 4
 - physical chemistry 4
 - inorganic chemistry 3–4
 - important scientific discoveries 9–11
 - new industries/new catalytic processes 10
 - process choice 17–19
 - reactor choice 16–17
- Hofmann-type β -hydrogen elimination 391
- Hombikat UV 100, 220
- homogeneous catalysis 8–9, 152–169, 278–280, 465–490. *See also* acid/base catalysis; *in-situ* techniques for homogeneous catalysis; kinetics in homogeneous catalysis
 - in biphasic fluid/fluid systems 103–108
 - characteristics 152
 - isolation of products and recovery and recycle of catalyst 153
 - ligands for 153–154
 - metal-catalyzed reactions 153
 - nature of compounds 152
 - reaction conditions 152
 - reactions mediated by transition metal complexes 153
 - reactions phase 153
 - enzyme catalysis 155
 - nucleophilic and electrophilic catalysis 154, 157–159
 - acid/base catalyzed RNA hydrolysis 155
 - organometallic complex catalysis 157–160
 - transition metal-centered homogeneous catalysis 155, 159–169, *See also individual entry*
- homogeneous chemistry, of high-temperature catalysis 369
- Horvath–Kawazoe (HK) method 525–526
- hydantoinases 187–188
- hydride transfer 141
- hydroaminomethylation reaction 238
- hydrocarbon/oxygen (C/O) ratio 377
- hydrocarboxylation 240
- hydrocracking reaction, acid catalysis 309, 325–332
 - cracking selectivity dependence 326–328
 - hydrocarbon chain length, activity on 326–328
 - symmetric versus asymmetric cracking patterns 328–332
 - butylbranching mechanism 329
 - pore size 328–332
 - side-chain elongation mechanism 329
 - stereo-selective behavior 330
 - stereoselectivity 328–332
 - topology dependence 328–332
- hydrodenitrogenation 397
- hydrodesulfurization 390–398
 - C–X bond-breaking mechanism 393
 - sulfidic catalyst, structure 393–397
 - DFT calculations 395–397
 - Mo structure 393–394
 - promoter structure 394–395
 - surface sites determination 398
 - hydroesterification 240
 - hydroformylation 235–239
 - co-catalyzed carbonylation 241
 - rhodium-catalyzed hydroformylation 236
 - hydrogen cyanide (HCN) 171
 - hydrogen evolution reaction (HER) 202

hydrogenation 126–132
 – hydrogenolysis of isopentane, single-center route for 130
 – mechanism of 126
 – route 392
 hydrogenolysis of grafted hydrocarbyl-containing systems 409
 hydroisomerization 309, 327–328
 hydrolases 182–188
 – acylases 185–186
 – amidases 185–186
 – hydantoinases 187–188
 – lipases 182
 – nitrilases 186–187
 – nitrile hydratases 186–187
 – peptidases 185–186
 hydroxynitrile lyases (HNLs) 171, 188–190, 257

i

ibuprofen 246
 ideal continuously-operated stirred tank reactor 591–592
 ideal plug flow reactor 591
 ideal polymerization model of FT synthesis 313–322
 – alcohols in 316
 – alternative reactions on growth site 315
 – Anderson–Schulz–Flory curve 313
 – branching 315–316
 – chain growth 314–315
 – desorption (olefins/paraffins) 316–319
 – – primary reactions 317
 – – secondary reactions 317
 – *in situ* catalyst formation 319–322
 – – cobalt catalyst formation 321–322
 – – iron catalyst formation 319–321
 – – self-organization of FT regime 319
 ideal reactor modeling/heat management 575–586
 – batchwise-operated stirred-tank reactors 578–579
 – continuously operated ideal stirred tank reactors (CSTR) 580–581
 – ideal plug flow reactor 581–586
 – – heat balance 583
 – – highly exothermic reactions 586
 – – mass balance in 582
 – – parametric sensitivity 584
 – – stability diagram 586
 – mass and energy balances 576–577
in situ catalyst formation in FT synthesis 319–322

in situ characterization at a single catalyst particle level 501–510
 – single-molecule *in-situ* spectroscopy of a catalytic solid 504–508
in situ generation of organo-catalyst 42–44
in situ hydroformylation 238
in situ micro-spectroscopy of catalytic solid 501–504
in situ techniques 59, *See also individual entries*
 induction periods as catalyst activation 59–60
 inhomogeneous site distribution 40–42
 inorganic chemistry 4
 – inorganic solid chemistry 42
in-situ characterization of heterogeneous catalysts 493–510
 – applications 495–497
 – dynamic conditions 494
 – gas chromatography (GC) 495
 – history 495–497
 – mass spectrometer (MS) 495
 – reactor loaded with catalytic solid 497–501
 – – Extended X-ray Absorption Fine Structure (EXAFS) 499
 – – *in-situ* HERFD-XAS approach 497
 – – probed by multiple characterization methods 499–501
 – – probed by one characterization method 497–499
 – – XANES 497
 – recent developments 495–497
 – static conditions 494
 – ultra-high vacuum (UHV) conditions 494
in-situ high-resolution transmission electron microscopy (HRTEM) 296
in-situ nano-spectroscopy of a catalytic solid 509–510
in-situ techniques for homogeneous catalysis 465–490, *See also* IR-spectroscopy; NMR spectroscopy; UV/Vis spectroscopy
 – gas consumption and gas formation 467–470
 instantaneous or point selectivity 92
 interfacial activation 183
 internal mass and heat transfer 85–96
 – isothermal pellet 87–94
 – non-isothermal pellet 94–96
 Internally Illuminated Monolith Reactor (IIMR) 227
 ion adsorption 423–424
 iron 312–313
 iron middle pressure synthesis 309

irreversible reactions, catalyst deactivation due to 65–64

IR-spectroscopy 481–485

- hydroformylation 484–485
- *in-situ* FTIR spectroscopic study 483

isomerization catalysis 141–143

isothermal pellet 78–84, 87–94

- consecutive reactions 92
- external concentration profile 80
- instantaneous or point selectivity 92
- isothermal yield and selectivity 82–84, 91
- parallel reactions 91
- porous catalysts, concentration profiles in 79
- isothermal yield and selectivity 82–84, 91
- consecutive first-order reactions 82
- parallel reactions 84

isotherms 71

k

Kelvin equation 528–529

kinetic resolution 174–175

- dynamic kinetic resolution (DKR) 175

kinetics 4–7, 68

- microkinetics 7
- rate-limiting step 6

kinetics in homogeneous catalysis 48–64

- activation and deactivation, catalyst 58–64
- co-catalysts 59
- *in situ* techniques 59
- induction periods as catalyst activation 59–60
- spectator ligands 59
- catalyst activity 54–58
- kinetic description 48–54
- principles of catalyst 48–54

kinetics of heterogeneous catalytic reactions 20–46

- altered surface reactivity 38–39
- equivalence of electrocatalysis and chemocatalysis 30–32
- materials gap 39–42
- microkinetics, rate-determining step 32–34
- physical chemical principles 20–27
- activation energy 26
- catalytic cycle 20–27
- rate-limiting step 21
- pressure gap 36–39
- surface reconstruction 37–38

l

lactate dehydrogenase (LDH) 194

laminar flow reactor 593–595

Langmuir adsorption isotherms 72–73

Langmuir–Hinshelwood kinetics 74–75, 327

Langmuir–Hinshelwood–Watson–Hougen (LWHW) equation 6, 21, 25

Langmuir isotherm 519–521

Laser Doppler Anemometry/Laser Doppler velocimetry (LDA/LDV) 371

laser-induced fluorescence (LIF) 371

lazabemide 247

Lennard–Jones potential (L–J potential) 515–516

leucine dehydrogenase (Leu-DH) 178, 253

Lewis acid–lewis base catalysis 132–143, 332–333

- hydrocarbon activation 332–333

ligand-accelerated catalysis (LAC) 167

Linum usitatissimum 189

lipases 182, 253–255

lipitor building blocks synthesis 257–259

liquid–liquid systems 613–616

liquid–liquid–gas system 573

liquid loading (α) 107

lock and key model 27–30, 168

- anti-lock and key model 28

Low Density PolyEthylene (LDPE) 262–263

Low-Energy Electron Diffraction (LEED) 493

Lowest Unoccupied Molecular Orbital (LUMO) 217

low-pressure oxo processes (LPO) 236

lyases 188–193

- aldolases 190–193
- hydroxynitrile lyases 188–190
- pyruvate/phosphoenolpyruvate-dependent aldolases 192–193

m

major/minor concept 168, 479

Manihot esculenta 190

mass and heat transfer effects 77–103

- external and internal transfer resistances, combination 96–101
- external mass and heat transfer 78–85, *See also* internal mass and heat transfer
- isothermal pellet 78–84, *See also individual entry*
- non-isothermal pellet 84–85
- transport effects, estimation criteria for 101–103

mass Biot number 97

mass transfer implication on temperature dependence 98–99

- materials gap 39–42
 - catalyst activation or deactivation 40
 - inhomogeneous site distribution 40–42
 - structure sensitivity 39
- maximum rate (r_{\max}) 53
- mercury porosimetry 533
- mesh microcontactor 619
- mesoporous materials characterization 527–532
- metal-organic frameworks (MOFs) 442–443
- methane reforming 120–125
 - activation energies and reaction energies 123
 - composition dependence 120–125
 - mechanism of reaction 120
 - structure sensitivity 120–125
- methyl methacrylate (MMA) 240
- Michaelis–Menten equation 6, 27, 50–55, 166
- micro packed beds 621
- microkinetics 7
 - in catalysts development 448–453
 - rate-determining step 32–34
- microporous materials characterization 524–526
- microreaction engineering 602–624, *See also* three-phase reactors
 - criteria for reactor selection 602–604
 - fluid–fluid MSR 610–612
 - fluid–solid MSR 607–610
 - gas–liquid systems 611–613
 - heat management in microstructured reactors 622–624
 - liquid–liquid systems 613–616
 - micro-structured catalytic wall reactor 608
 - residence time distribution 606–607
 - single-phase MSR 604–607
 - types of 604–610
- microreactors 227–228
- micro-spectroscopic techniques 502
- micro-structured reactors (MSRs) 564
- minimum fluidizing velocity (u_{mf}) 571
- modern pertochemical route 18
- molecular basis of catalysis 5
- molecular vs surface chemistry 401
 - characterization tools 401
- molecularly defined systems in heterogeneous catalysis 399–413
 - bridging the gap with classical heterogeneous systems 406–408
 - molecular vs surface chemistry, characterization tools 401
 - chemical characterization (reactivity) 401
- elemental analysis 401
- ESR spectroscopy 401
- IR (Raman) spectroscopy 401
- mass spectrometry 401
- NMR spectroscopy 401
- UV spectroscopy 401
- X-ray crystallography 401
- single sites
 - on border between homogeneous and heterogeneous catalysis 400–412
- taking homogeneous catalysis to heterogeneous phase 402–406, *See also* single-site alkene metathesis catalysts
- toward new reactivity 408–411
- alkane metathesis 409
- cross-metathesis of methane and higher alkanes 409–410
- H/D reaction of D2/H2 or D2/RH mixtures 409
- hydrogenolysis of alkanes 409
- methanol-to-olefin (MTO) process 413
- non-oxidative coupling of methane 410
- titanium-substituted silicate-1 (TS-1) 413
- monolithic catalysts 370–371
 - DETCHEM^{MONOLITH} 370–371
 - shapes
 - corrugated plate packing 570
 - square-channel monolith 570
 - monomer insertion 274
- Monte Carlo methods 7
- Montsanto process 245
- mordenite (MOR) 441
- most abundant surface intermediate (masi) approximation 75–76
- multinuclear complexes formation, catalyst deactivation due to 61–62
- multinuclear NMR spectroscopy 470
- multitubular reactors 309, 569

n

- N-acetylneuraminate (NeuAc) 192
- natural gas-based ammonia plant 290–291
 - desulfurization 291
 - secondary reforming 291
 - steam reforming 291, 295–299
- nicotinamide adenine dinucleotide (phosphate)(NAD(P)H) 251
- nitrilases 186–187
- nitrile hydratases 186–187
- NMR spectroscopy 470–480
 - carbon monoxide ethylene copolymer formation 477
 - hydridoalkyl intermediate formation 478
 - hydroformylation catalyst formation 474

NMR spectroscopy (*contd.*)

- Iridium catalyst 478
- major/minor principle 479
- multinuclear NMR spectroscopy 470
- palladium-catalyzed
 - hydroalkoxycarbonylation 476
- non-isothermal pellet 84–85, 94–96
- internal and external mass transport in 96–98

nonlocal Density Functional Theory (NL-DFT) 530–532

non-oxidative coupling of methane 410

non-reactive complexes formation, catalyst deactivation due to 61

non-specific adsorption 204

nucleophilic/electrophilic catalysis 154, 157–159

- bimolecular reaction 158

o

olefin hydrogenation kinetics 126–127

olefin polymerization process technology 264–280, *See also* heterogeneous catalysis; homogeneous catalysis

- ‘growing chain orientation’ mechanism 268
- propene polymerization catalysts 266
- reactivity 264–269
- structure 264–269

Operando spectroscopy 465

ordered mesoporous materials 442

organo-catalyst, *in situ* generation of 42–44

organometallic complex catalysis 152, 157–160

- major/minor concept 159
- ‘Reppe chemistry’ 157

Ortho-F effect 282

overall effectiveness factor 97

oxidation reactions 148–150

- propane ammoxidation mechanism 149
- propane oxidation 150
- selective oxidation of propylene 148–150

oxidative addition 162–163

- in transition metal-centered homogeneous catalysis 159–169
- of non-polar addenda in apolar solvents 171
 - via radical chain mechanism 163–164

oxidative coupling of methane (OCM) 448

- catalytic solid materials for OCM reaction
- physico-chemical properties of 451
- kinetics of 448–449
- reaction mechanism 448–449

oxidoreductases 176–182, *See also* oxygenases

- dehydrogenases 176–178
- – alcohols synthesis 176–177
- oxo synthesis (hydroformylation) 103
- oxygen reduction reaction (ORR) on Pt(111), application 202, 207–212
- electrochemical ORR mechanisms 210
- HOOH pathway 209
- O₂ pathway 208
- OOH pathway 209
- oxygenases 178–182
- Baeyer–Villiger Monooxygenases (BVMOs) 180–181
- P450 mono-oxygenases 179–180
- P450 superfamily 180

p

P450 mono-oxygenases 179–180

pairing reaction 45

palladium-catalyzed carbonylation 242

parallel reactions 84, 91

parametric sensitivity 584

Pareto plot 15–16

Pauling valency concept 133

Pausen–Khand reaction 244

Péclet number 597

Penicillin G amidase (PGA) 256

peptidases 185–186

phenyl alanine dehydrogenase (Phe-DH) 178, 254

photocatalysis 216–217, *See also* heterogeneous photocatalysis

- applications of 219
- in practice, reactor considerations 225–228
- principle of 217–219

physical adsorption 514–516

physical chemistry 4

pig liver esterase (PLE) 171

planar laser-induced fluorescence (PLIF) 371

plug flow reactors (PFRs) 546

Point of Zero Charge (PZC) 422–423, 436

polyethylene glycol (PEG) 178

polymerase chain reaction (PCR) 253

polymer-electrolyte (or proton-exchange) membrane fuel cell (PEMFC) 207

polymerization 261–285

- kinetics
 - active sites 269–273
 - – ‘dormant’ sites 269–273
 - – ‘triggered’ sites 269–273
 - latest breakthroughs 280–285
 - half-titanocene precatalyst structures 281

- olefin polymerization process technology 264–273, *See also individual entry*
- polyolefins 262–264
- Ziegler–Natta-type olefin polymerizations 261
- polyolefins 262–264
- porcine pancreatic lipase (PPL) 184
- pore size distribution (PSD) 518
- pore volume impregnation (PVI) 425
- porous catalysts, concentration profiles in porous materials as catalysts and catalyst supports 431–444, *See also adsorption methods for porous materials characterization*
- activated carbon supports 439
- alumina (Al_2O_3) and other oxides 436–438
- carbon materials 438–440
- fumed silica 433–436
- general characteristics 431–433
- ordered mesoporous materials 442
- shaping 443–444
- sol-gel method of preparation of 433–436
- – Aerosil[®] process 435
- zeolites 440–441
- Prelog-rule 177
- pressure gap 36–39
- primary proton attachment 137
- Proactinomyces erythropolis* 181
- process choice 17–19
- classical chlorohydrin route 18
- modern pertochemical route 18
- propane oxidation 150
- propene polymerization catalysts 266
- proton activation by zeolites 135–139
- Pseudomonas chlororaphis* B23 256
- Pseudomonas putida* 181
- pyruvate decarboxylase (PDC) 194
- pyruvate/phosphoenolpyruvate-dependent aldolases 192–193
- q**
- α -quartz 433
- quasi-surface equilibrium approximation 75
- r**
- radical chemistry, of high-temperature catalysis 365–385
- experimental evaluation of models 371
- rate-controlling step or slow step 33
- rate-determining step 34
- rate-limiting step 6, 21
- reaction engineering principles, *See catalytic reactor engineering*
- reaction mechanisms 70, 73–77
- bimolecular catalytic reactions 76–77
- complex reaction 73
- Langmuir–Hinshelwood model 74–75
- ‘masi’ approximation 75–76
- quasi-surface equilibrium approximation 75
- reaction order 69
- reaction rate 69
- reactor choice 16–17
- reactor engineering, *See catalytic reactor engineering*
- reactor performance (L_p) 578
- redox catalysis 333–335
- reducible oxides 143–150
 - heats of formation 145
 - oxidation reactions, mechanism 148–150
 - – propane ammoxidation mechanism 149
 - – propane oxidation 150
 - – selective oxidation of propylene 148–150
 - relative stabilities, comparison 143–145
 - structure sensitivity 145–148
- residence time distribution (RTD) 587–602, 606–607
 - experimental determination of 589–591
 - – pulse function 590–591
 - – step function 589–590
 - residence time distribution in tubular reactors, estimation 597–599
 - RTD for ideal reactors 591–595
 - – cascade of ideally stirred tanks 592–593
 - ideal continuously-operated stirred tank reactor 591–592
 - – ideal plug flow reactor 591
 - – laminar flow reactor 593–595
 - RTD influence on performance of real reactors 599–602
 - RTD models for real reactors 595–597
 - – cell model 596–597
 - – dispersion model 595–596
- reversible reaction 69
- rhodium-catalyzed carbonylation of methanol 245
- rhodium-catalyzed hydroformylation 236
- Rhodococcus rhodochrous* 256
- Ruhrchemie/Rhône-Poulenc process 237
- ruthenium 312
- s**
- Sabatier Principle 21–23
- Sabatier’s catalytic reactivity principle 14
- Scanning Electron Microscopy (SEM) 494
- Scanning Transmission X-ray Microscopy (STXM) 509
- Schmidt number 85

second Damköhler number (DaII)
81–82, 98

Second Harmonic Generation (SHG) 502

secondary proton attachment 137

segmented flow gas–liquid–solid reactors 620

selection, catalyst 13–16

- Brønsted–Evans–Polanyi (BEP) relationship 14
- computational approach 13
- Sabatier’s catalytic reactivity principle 14

selective oxidation 333–335

selectivity 544

shaping, porous material catalysts 443–444

Shell Higher Olefin Process (SHOP) 103

Sherwood number (NSh) 547

side-chain elongation mechanism 329

silica (SiO_2) 433

single-molecule *in-situ* spectroscopy of catalytic solid 504–508

single-phase MSR 604–607

- mixing 604

single-phase reactors 564–568, *See also* stirred-tank reactor

- tubular reactors 567–568

single-site alkene metathesis catalysts 402–406

- enantioselective ring-closing metathesis 405

slurry-phase bubble column reactors 309

slurry reactors 310

slurry–suspension reactors 574–575

sol–gel method 433–436

solid acids and bases 132–143, 440

- Brønsted acid or base 132
- Lewis acid or base 132
- mechanistic considerations 139–143
- direct alkane activation 139–141
- hydride transfer 141
- isomerization catalysis 141–143
- primary proton attachment 137
- proton activation by zeolites 135–139
- secondary proton attachment 137
- stereochemical effects 139
- van der Waals interactions 139

solid oxide fuel cells (SOFC)

- high-temperature catalysis in 380–385

solid-state properties, in catalysts

- development 448–453

solvent complexes 487

Sorghum bicolor 189–190

space time 580, 583

space–time yield 545

space velocity 580

specific adsorption 204

specific surface area (A) 518

spectator ligands 59

staged fixed-bed 569

standard isotherms 522–523

steam reforming, in ammonia synthesis 291, 295–299

- catalysis 296–297
- secondary phenomena 297–299
- technology 295–296
- tubular reformer 296

stirred-tank reactor 564–567

- heat transfer 567
- mixing 565

structural defects 451–452

structured catalysts for multiphase reactions 575

sulfidic catalyst 393–397, *See also under* hydrodesulfurization

supported catalysts 453

- preparation 420–429
- deposition precipitation 427–428
- drying 425–427
- impregnation 425–427
- ion adsorption 423–424
- outer-sphere complex formation 423
- selected catalysts, applications 421
- selective removal 420
- support surface chemistry 422–423
- thermal treatment 428–429

Supported Liquid-Phase Catalyst (SLPC) 106

supported transition-metal hydrides 408–411

surface oxygen species in methane conversion 449–450

surface reactions 34–36

- elementary rate constant expressions for 34–36

surface reconstruction 37–38

suspension reactors 572

symmetric versus asymmetric cracking patterns 328–332

synthesis gas 311

synthetic organic chemistry 4

t

Temkin kinetic expression 118

Temkin Pyzhev kinetics 291–292

temperature-programmed reduction (TPR) method 509

Temporal Analysis of Products reactor (TAP) 451

Terrylene diimide (TDI) dye molecule 506

Tetrahydrofuran (THF) 57, 176

thermal reaction 216
 thermal treatment 428–429
 Thiele modulus 88, 95, 98, 547
 Thomas chemistry 339
 three-center (M-C-H) transition states 128
 three-phase gas–liquid–solid systems 573–575
 three-phase reactors 616–622
 – continuous-phase contacting 616–618
 – dispersed phase contacting 619–622
 – gas–liquid–solid 616
 – mesh microcontactor 619
 – trickle-bed reactors 555, *See also individual entry*
 Ti-catalyzed epoxidation 335–338
 Time-Resolved Microwave Conductivity (TRMC) 220
t-method 522–523
 Topsøe radial flow converter 292
 T-plot techniques 6
 TPPTS (tris sodium salt of meta-trisulfonated triphenylphosphine) 237
 transaminases (TAs) 193–194
 transition metal catalysis 114–132
 – ammonia synthesis 114–119, *See also individual entry*
 – C–C bond cleavage 126–132
 – dehydrogenation 126–132
 – ethane hydrogenolysis mechanism 127–132
 – hydrogenation 126–132
 – methane reforming 120–125, *See also individual entry*
 transition metal-centered homogeneous catalysis 155, 159–169
 – hydrometalation of alkenes 165
 – kinetic activity 167
 – ligand substitution
 – – associative pathway 160
 – – dissociative pathway 160
 – – limiting mechanisms 160
 – migratory insertion 164–165
 – oxidative addition 162–163
 – reductive elimination 164
 – substrates and reagents, activation of 159
 – Ziegler–Natta polymerization 164
 Transmission Electron Microscopy (TEM) 494
 transport effects, estimation criteria for 101–103
 trickle-bed reactors 552
 – advantages 553

– application of 556
 – criteria for 554
 – – axial mixing 554
 – – channeling 554
 – – isothermality 554
 – – mass transfer 554
 – disadvantages 553
 – input data 555
 – laboratory scale versus industrial trickle-bed reactors 557
 tubular reactors 567–565
 tubular reformer 296
 turnover frequency (TOF) 55
 turnover number (TON) 54–55

u

UV Photoelectron Spectroscopy (UPS) 493
 UV/Vis spectroscopy 486–490
 – principal component analysis 489

v

van der Waals interactions 139
 visible light-sensitive systems, quest for 223

w

Washburn equation 533
 weight hourly space velocity (WHSV) 544
 Weisz module 90, 102
 Weisz' window 545
 wet impregnation 425
 white biotechnology 171
 Wilkinson's catalyst 166

x

xenon porosimetry 533–534
 X-ray Absorption Near Edge Spectroscopy (XANES) 497
 x-ray absorption spectroscopy (XAS) 466
 x-ray fluorescence spectroscopy (XAFS) 466
 X-ray Photoelectron Spectroscopy (XPS) 493
 x-ray scattering techniques 6

y

yield 545

z

zeolite catalysis 325–339
 – framework-substituted redox ions 335–339
 – hydrocracking reaction, acid catalysis 325–332, *See also individual entry*
 – Lewis acid–lewis base catalysis 332–333

zeolite catalysis (*contd.*)
– redox catalysis 333–335
– selective oxidation 333–335
– single-site versus two-center Fe
 oxycation reactivity 334–335
– Thomas chemistry 339

zeolites 7, 28–30, 440–441
– proton activation by 135–139
Ziegler–Natta-type olefin polymerizations
 164, 261–262, 266–267, 274–283
Z-scheme process 224