Contents

Foreword XIII Preface XXI List of Contributors XXIII

1	A Brief Overview of the Mechanisms Involved in Electrospray
	Mass Spectrometry 1
	Paul Kebarle and Udo H. Verkerk
1.1	Introduction 1
1.1.1	Origins of Electrospray Mass Spectrometry 1
1.1.2	Aims of this Chapter 2
1.2	Production of Gas-Phase Ions by Electrospray and Electrospray
	Ionization Mass Spectrometry 3
1.2.1	Overview 3
1.2.2	Production of Charged Droplets at the Capillary Tip 5
1.2.3	Electrospray as an Electrolytic Cell 7
1.2.4	Required Electrical Potentials for ES. Electrical Gas Discharges 8
1.2.5	Current, Charge and Radius of Droplets Produced at the
	Capillary Tip 10
1.2.6	Solvent Evaporation from Charged Droplets Causes Coulomb
	Fissions of Droplets 10
1.2.7	Evaporation of Droplets Leading to Coulomb Fissions Producing
	Progeny Droplets that Ultimately Lead to Ions in the Gas-Phase;
	Effects of the Concurrent Large Concentration Increase 11
1.2.8	Mechanism for the Formation of Gas-Phase Ions from Very Small
	and Highly Charged Droplets. The Ion Evaporation Model (IEM)
1.2.9	Observed Relative Ion Intensity of Small Analytes. Dependence
	on the Nature of the Analyte, its Concentration and Presence of
	Other Electrolytes in the Solution. High Sensitivities of
	Surface-Active Analytes 17
1.2.10	Large Analyte Ions such as Dendrimers and Proteins are Most

Probably Produced by the Charged Residue Model (CRM) 22

15

VIII Contents

1.2.11	Nanospray and Insights into Fundamentals of Electro and
1 2 1 2	Nanospray 26 Consequences of the Increase in Concentration Caused by
1.2.12	Extensive Evaporation of Solvent in ESI Process. Promotion of
	-
1 1 1 1 1	8 ,
1.2.12.1	Positive-Negative Ion-Pairing Reactions Involving Impurities such as Na ⁺ 28
1 1 1 1 1 1	
1.2.12.2	Determination of Equilibrium Constants in Solution via ESI-MS 29 References 31
2	Historical Perspectives in the Study of Ion Chemistry by Mass
	Spectrometry: From the Gas Phase to Solution 37
	Hao Chen
2.1	A Brief History and Recent Advances in Mass Spectrometry 38
2.1.1	Early Developments 38
2.1.2	Recent Advances 40
2.2	Overview of the Study of Ion/Molecule Reactions in the Gas
	Phase by Mass Spectrometry 41
2.2.1	Brief History 41
2.2.2	Basic Types of Ion/Molecule Reactions 42
2.2.3	Relationship to Reaction Analogies in Solution 43
2.2.3.1	Mechanism Elucidation of Classical Organic Reactions 43
2.2.3.2	Mechanism Elucidation of Organometallic Reactions 44
2.2.3.3	Catalyst Screening 49
2.2.3.4	Synthesis of Elusive Ionic Species 49
2.2.3.5	Probing Reactivity of Microsolvated Cluster Ions 50
2.2.4	Experimental Methods for the Study of Ion/Molecule Reactions 50
2.2.4.1	Low-Pressure Ion/Molecule Reactions 50
2.2.4.2	High-Pressure Ion/Molecule Reactions 51
2.3	Future Perspectives 52
	References 53
3	Organic Reaction Studies by ESI-MS 63
	Fabiane M. Nachtigall and Marcos N. Eberlin
3.1	Introduction 63
3.2	Reaction Mechanisms 65
3.2.1	Morita-Baylis-Hillman Reaction 65
3.2.2	Morita-Baylis-Hillman Reaction Co-catalyzed by Ionic Liquids 67
3.2.3	α-Methylenation of Ketoesters 71
3.2.4	Unexpected Synthesis of Conformationally Restricted Analogs
	of γ -Amino Butyric Acid (GABA) via a Ring Contraction Reaction 73
3.2.5	The Heck Reaction 75
3.2.6	Suzuki Reaction 81
3.2.7	Stille Reaction 81
3.2.8	Three-Component Pd(0)-Catalyzed Tandem Double
	Addition-Cyclization Reaction 83

- 3.2.9 Alkynilation of Tellurides Mediated by Pd(II) 84
- 3.2.10 TeCl₄ Addition to Propargyl Alcohols 88
- 3.2.11 S_N2 Reactions 89
- 3.2.12 Allylic Substitution Reaction 91
- 3.2.13 Heterogeneous Fenton Reaction 93
- 3.2.14 Mimicking the Atmospheric Oxidation of Isoprene 93
- 3.2.15 Advanced Oxidation Processes of Environmental Importance 95
- 3.2.16 Tröger's Bases 96
- 3.2.17 The Three-Component Biginelli Reaction 98
- 3.2.18 Modeling the Ribonuclease Mechanism 103
- 3.2.19 Oxidative Cleavage of Terminal C=C bonds 105
- 3.3 General Remarks 108 References 108
- 4 Studies of Reaction Mechanism Intermediates by ESI-MS 113
 - Rong Qian, Jing Zhou, Shengjun Yao, Haoyang Wang, and Yinlong Guo
- 4.1 Introduction 113
- 4.2 Studies on the Intermediates and Mechanisms of Pd-Catalyzed Reactions *113*
- 4.3 Studies on Some Reactive Intermediates and Mechanisms of Radical Reactions *115*
- 4.4 Studies on the Intermediates and Mechanism of Organocatalysis Reactions 121
- 4.5 Studies on the Intermediates and Mechanism of Transition Metal-Catalyzed Polymerization Reactions 123 References 129
- 5 On-line Monitoring Reactions by Electrospray Ionization Mass Spectrometry 133

Leonardo S. Santos

- 5.1 Introduction 133
- 5.2 Preservation of the Charge in the Transit of Ions from Solution to the Gas Phase Using the ESI Technique 134
- 5.3 Developing Methods to Study Reaction Mechanisms 135
- 5.3.1 Monitoring Methods 135
- 5.3.1.1 Off-Line Monitoring 135
- 5.3.1.2 On-Line Monitoring 136
- 5.3.2 Microreactors 136
- 5.3.2.1 PEEK Mixing Tee as Microreactor 136
- 5.3.2.2 Capillary Mixer Adjustable Reaction Chamber 137
- 5.3.2.3 Photolysis Cell 138
- 5.3.2.4 Photochemical Reactor 139
- 5.3.2.5 Nanospray Photochemical Apparatus 140
- 5.3.2.6 Electrochemical Cell 141
- 5.4 Probing Reactivity of Intermediates 142
- 5.4.1 Reaction Mechanism Studies 143

X Contents

5.4.1.1	Radical Fenton Reaction 143
5.4.1.2	Heterogeneous Fenton System 144
5.4.1.3	Radical Cation Chain Reactions 145
5.4.1.4	[2 + 2]-Cycloaddition of Trans-Anethole 145
5.4.1.5	Electron Transfer Initiated Diels–Alder Reactions 148
5.4.1.6	Radical Chain Reactions 149
5.4.1.7	Photochemical Reactions 151
5.4.1.8	Photochemical Switching Reaction 151
5.4.1.9	Photoinitiated Polymerization Reaction 153
5.4.2	Electrochemical Reactions 154
5.4.3	Heck Reaction 154
5.4.4	Suzuki Reaction 156
5.4.5	Pd-Catalyzed Enantioselective Allylation Reaction 156
5.4.6	Stille Reaction 157
5.4.7	Alkynilation of Tellurides Mediated by Pd(II) 158
5.4.8	Lewis Acid-Catalyzed Additions 162
5.4.9	C–H Activation and Hydrogenations 162
5.4.10	Oxidation Reactions 163
5.4.11	Epoxidation 164
5.4.12	The Baylis-Hillman Reaction 166
5.4.13	The Baylis-Hillman Reaction Co-Catalyzed by Ionic Liquids 167
5.4.14	Ring Contraction Reaction 169
5.4.15	Nucleophilic Substitution Reactions – The Meisenheimer
	Complex 169
5.4.16	Oxidative Degradation of Caffeine 171
5.4.17	Mimicking Atmospheric Oxidation of Isoprene 173
5.4.18	α-Methylenation of Ketoesters 175
5.4.19	Transient Intermediates of Petasis and Tebbe Reagent 176
5.4.20	On-Line Screening of the Ziegler-Natta Polymerization
	Reaction 178
5.4.21	On-Line Screening of the Brookhart Polymerization Reaction 181
5.4.22	TeCl ₄ Addition to Propargyl Alcohols 181
5.4.23	Mechanism of Tröger's Base Formation 186
5.5	Conclusion 187
	References 188
6	Gas Phase Ligand Fragmentation to Unmask Reactive
	Metallic Species 199
	Richard A. J. O'Hair
6.1	Introduction and Scope of the Review 199
6.2	Unmasking Reactive Metallic Intermediates via Collision-Induced
	Dissociation 201
6.2.1	Formation and Reactivity of Organometallics 201
6.2.1.1	Formation and Reactions of Organolithium Ions 202
6.2.1.2	Formation and Reactions of Alkaline Earth Organometalates 203

6.2.1.3	Formation and Reactions of Organocuprates and Organoargentates 205
6.2.1.4	Formation of Metal Carbenes 208
6.2.2	Formation and Reactivity of Metal Hydrides 210
6.2.2.1	Mononuclear Metal Hydrides 210
6.2.2.2	Multinuclear Metal Hydrides 212
6.2.3	Formation and Reactivity of Metal Oxides 215
6.2.3.1	Bond Heterolysis 215
6.2.3.2	Bond Homolysis of Metal Nitrites and Nitrates 216
6.2.4	Formation and Reactivity of Metal Nitrides and Related Species 220
6.3	Conclusions 224
	References 224
7	Palladium Intermediates in Solution 229
	Anna Roglans and Anna Pla-Quintana
7.1	Introduction 229
7.2	ESI-MS Studies in Suzuki-Miyaura Cross-Coupling and
	Related Reactions 231
7.3	ESI-MS Studies in the Identification of Oxidative Addition
	Intermediates 237
7.4	ESI-MS Studies in Mizoroki-Heck and Related Reactions 240
7.5	ESI-MS Studies in Stille Cross-Coupling Reactions 251
7.6	ESI-MS Studies in Palladium-Catalyzed Reactions
	Involving Allenes 254
7.7	ESI-MS Studies in Palladium-Catalyzed Alkynylation Reactions 258
7.8	ESI-MS Studies in Palladium-Catalyzed Allylic Substitution
P 0	Reactions 260
7.9	ESI-MS Studies in Palladium-Catalyzed Oxidation
H 10	of 2-Allylphenols 268
7.10	ESI-MS Studies in Palladium-Catalyzed Polymerization Reactions 269
7.11	Conclusions 272
	References 273
8	Practical Investigation of Molecular and Biomolecular Noncovalent
	Recognition Processes in Solution by ESI-MS 277
0.1	Kevin A. Schug
8.1	Introduction 277
8.2	Methods and Applications 280
8.3	Practical Aspects of Titration Analysis 290
8.4	Summary and Outlook 298
	References 298

Index 307