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1.1
Introduction and Historical Perspective

According to the late A.B. Metzner [1], the phenomenon of polymer-induced drag
reduction was independently discovered by two researchers, K.J. Mysels in May 1945,
as reported by the discoverer at an AIChE symposium on drag reduction in 1970, and
B.A. Toms in the summer of 1945, as reported by the discoverer at the IUTAM
symposium on the structure of turbulence and drag reduction held in Washington,
DCin 1976. The original fluids studied in these two first experimental investigations
were micellar aluminum disoaps or rubber in gasoline (K.J. Mysels) and polymethyl
methacrylate in monochlorobenzene (B.A. Toms). However, due to the war, the first
records in an accessible publication were found later [2, 3] with journal contributions
even much later [4, 5]. Since that time, the field has literally exploded with 500 papers
until the seminal review by Virk [6] and 4900 papers by 1995 [1].

The first attribution of drag reduction to fluid viscoelasticity was by Dodge and
Metzner [7], whereas the first description of drag reduction as “Toms effect” was by
Fabula at the Fourth International Congress on Rheology, held in 1996 [8]. The first
measurements of viscoelasticity of drag-reducing fluids were performed by Metzner
and Park [9] and Hershey and Zakin [10]. The first articulations of a “maximum drag
reduction asymptote” for dilute polymer solutions were reported by Castro and
Squire [11], Giles and Pettit [12], and Virk et al. [13]. As far as the first proposed
mechanisms of drag reduction due to fluid mechanical effects are concerned, Lumley
attributed drag reduction to molecular stretching in the radial flow patterns in
turbulent flows [14]. Simultaneously, Seyer and Metzner [15] clarified it even further,
as due to high extensional deformation rates in radial flow patterns in turbulent
flows and high resistance to stretching of viscoelastic fluids. More recently, Lumley
and Blossey [16] elaborated further by arguing that polymer additives, by boosting the
extensional viscosity of the fluid, affect especially the structure of the turbulent
bursts; see also Ref. [17]. This same mechanism is also suspected to be operative
when other additives are employed, such as micellar surfactant solutions [2, 4, 18-20]
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and fiber suspensions [21]. Ever since Virk [6] made the first thorough review of drag
reduction, the interest in the phenomenon continues uninterrupted — see, for
example, the experimental works [22-26], the more recent reviews by Sellin and
Moses [27, 28] and Bushnell and Hefner [29], the book by Gyr and Bewersdorff [30],
and the latest reviews by Nieuwstadt and Den Toonder [31], Graham [32], and White
and Mungal [33].

The phenomenon of polymer-induced drag reduction [5, 6, 34, 35] describes the
effect of relatively small quantities, as small as on the order of ppm by weight, of a
high molecular weight polymer, which when added to alow molecular weight solvent,
such as water or crude oil, reduce the turbulent drag; see Figure 1.1 for a represen-
tation of some early but standard experimental results as adapted from Virk [6].
According to Metzner [1], Lummus et al. [36] recorded what appears to be the first
commercial exploitation of turbulent drag reduction, using polymeric additives to
increase oil well drilling rates in 50 wells in the United States and Canada. Increases
in drilling rate were tabulated. The first publicly recorded usage of drag reduction in
pipelines appears to be that of Burger et al. [37], who reported results for 1 and 2 in.
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Figure 1.1 Velocity profiles in flows with drag

reduction. The different symbols represent
different polymer solutions; the open circles
provide the pure solvent (water) base data.
As polymer additives are introduced, and for
the same pressure drop (equivalently, the

same wall stress, i.e., the same velocity slope
at the wall), the flow rate increases, from the
base line to the maximum (Virk) asymptote,
called “Ultimate Profile” in the figure [6].
(Reprinted with permission from John Wiley &
Sons)
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tubes as well as 14 and 48 in. pipelines. The best available estimates of usage in
petroleum transportation in 2004, obtained from industry sources, state that drag
reducers are employed to treat approximately 20 million barrels of hydrocarbons per
day, which may be compared with a worldwide crude oil production rate of about
80 million bpd. A major application is in facilitating the oil transfer through the
Alaskan pipeline [38]. Commercial-scale tests of drag-reducing additives in munic-
ipal heating and cooling systems are described by Zakin et al. [18], with emphasis on
surfactant additives — there is also a reference to an application to the heating system
of pipelines in offshore drilling [20]. It is interesting to note that the drag reductions
achieved by using surfactant (colloidal) additives are very large and may exceed those
of the “maximum drag-reducing asymptote” for dilute polymer solutions, as is also
the case when fiber—polymer mixtures are employed [39]. We are unaware of any
regular commercial use of these materials. Incidentally, marine applications of
turbulent drag reduction have been studied for many decades and measurements
performed of dilute solutions of fish mucus that is polymeric in nature in turbulent
pipe flow exhibited as much as 66% reduction in friction drag [40]. Even snails were
found to produce a mucus that reduces drag [40].

During the past 15 years, the most significant progress undoubtedly came in the
theoretical front from the development of direct numerical simulations (DNS) due to
advances in computational viscoelastic fluid mechanics, models, methods, and
computer hardware (parallel computing). The goal was to theoretically understand
in more depth the nature and the underlying mechanisms of polymer-induced drag
reduction. The simulations, with the exception of some limited work on homoge-
neous viscoelastic turbulence [41], have primarily focused on the analysis of inho-
mogeneous turbulent viscoelastic flows. Even there, with the exception of some
limited work on boundary layer flows [42, 43] — see also the very recent review by
White and Mungal [33] — and pipe flow [44], the bulk of the work has focused on
simulations of channel flow. The very first simulations (those reported by Orlandi [45]
and Den Toonder et al. [44]) used ad hoc constitutive relationships for the stress
that attempted to empirically capture the increase in the resistance to extensional
deformation so characteristic to polymeric systems. As a result, they did get some
encouraging results, exhibiting the right trends with increasing viscoelasticity in the
flow, in agreement with experimental observations [23, 30, 44]. For example, they
noticed a decrease in the strength of longitudinal structures accompanied by an
increase in their spacing with increasing polymer concentration [45] and drag
reduction with the right changes in the root mean square (rms) values of the velocity
fluctuations and velocity probability distribution functions (pdf), exhibiting increas-
ing intermittency [44].

However, the first DN'S based on a microscopically originated constitutive equation
for the polymer dynamics (the finite extensibility nonlinear elastic with the Peterlin
approximation (FENE-P) model [46]) was conducted by Sureshkumar et al. [47]. In
this work, for a fixed friction Reynolds number and other rheological parameters,
drag reduction was observed as the Weissenberg number increased beyond a critical
onset value. Moreover, accompanying drag reduction, characteristic changes were
observed in the velocity and vorticity mean and rms values, the Reynolds stress, and
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the energy spectra all in qualitative agreement with experimental observations
obtained with drag-reducing dilute polymer solutions [22, 23, 48]. Shortly afterward,
DNS based on a network-based constitutive model, the Giesekus model [49], also
produced similar results [50]. These large-scale (three-dimensional and time-depen-
dent) simulations under turbulent conditions are similar to the ones carried out for
Newtonian fluids [51, 52] and also account for the presence of the polymer additives
through a full modeling of the coupled effect of additives on the flow.

Since these initial works, we have seen a flourishing of DNS works by our own
[53-58] and many other [59-66] research groups. We include in the discussion here
only those works that involve the fully coupled flow and polymer concentration
problem; there are many more works that monitored the polymer molecular
extension against a fixed flow field obtained from Newtonian DNS (see, for example,
Ref. [67]) — this is a much simpler computational problem, many of the numerical
stability problems emerge only when the fully coupled problem is considered. Of
interest is the spectral DNS work by De Angelis et al. [59] showing as main effect of
viscoelasticity a quite concentrated action on bursting phenomena and a stabilization
of the streaks resulting in fewer, bigger, coherent structures, reinforcing previous
results [47]. Later work [60] involving the application of a Karhunen-Loéve (K-L)
decomposition for the extraction of information on larger coherent structures in the
flow (following Refs [68-70] and others) has reported that the main change in
viscoelasticity is primarily an energy redistribution among the K-L modes, while the
spatial profile of the most energetic modes stays the same. This is in contrast to the
findings in Ref. [58] where a similar K-L decomposition has also revealed substantial
changes in the spatial structure of the most energetic modes and an overall enhance-
ment of the energy content of the first few modes of the decomposition upon addition
of viscoelasticity. However, this may be just due to the higher elasticity of flows in direct
numerical simulations in Ref. [58] allowing to more clearly see these effects.

Another work worth mentioning as a measure of the activity in the field is that of
Ptasinski et al. [62]. The authors in this work asserted that they have simulated cases
close to maximum drag reduction by using model parameters (such as a high
Weissenberg number, 50, a high extensibility parameter value, 33, and, primarily, a
small solvent to total viscosity ratio, of order 0.5) implying a high polymer contri-
bution. The results indeed seem to be in agreement with expectations (such as a law-
of-the-wall with a significantly high slope) with drag reductions on the order of
60-65% for the higher elasticity cases. However, there still remain questions
primarily due to the small computational domain size used (minimal channel of
(3 X 2 x 2) made dimensionless by the half channel-height and small mesh resolu-
tion of (48 x 32 x 100) in the x, y, and z directions, respectively, along with mixed
spectral (along the period directions, x and y) and finite difference (along the wall-
normal direction, z) approximations). Given the fact that, as mentioned above, one
dominant effect of viscoelasticity is to lead to substantially larger organized coherent
structures than those seen in Newtonian flows, the use of this minimal computa-
tional domain size places questions on the validity of the final results. Even more
questions are placed based on the small mesh resolution used, especially along the
shear direction. For the Reynolds number used (friction Reynolds number of 180), a
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mesh size of at least 96 ought to have been used. Moreover, the technique used was
not immune to flow instabilities (as also the standard spectral method), and an extra
conformation diffusion was also needed to be used (let alone the diffusion introduced
by the use of the finite difference approximation along the sheatwise (z) direction).
So, although progress is definitely made, still there are questions regarding the
validity of this and other maximum drag reduction results that make that state still, in
our opinion, unsolved. To achieve a solution in this regime is a very demanding task
both from a computational perspective and from a polymer modeling perspective.

Other works used, instead of spectral, lower order accuracy finite difference
approximations, but they have to be noted here since they employed more suita-
ble numerical formulations for the constitutive equations that explicitly avoided the
introduction of artificial diffusivity in the numerical solution [61, 63—66]. Those
works also employed the FENE-P model to simulate dilute polymer solutions
[61, 63, 64] or the Giesekus model for surfactant turbulent flow [19, 65, 66].

Moreover, we have recently seen, in addition to straight DN'S computations, some
very substantial theoretical analyses, as very elegant analyses based on the exami-
nation of exact coherent states in plane shear flow, by Stone et al. [71]. These represent
unstable solutions of the laminar flow problem in terms of traveling waves — see also
the excellent review by Graham [32]. The analysis of the effects of viscoelasticity on
these states has shown [72] that they mirrored the changes observed in experiments
and simulations of fully turbulent flows of polymer solutions: this similarity estab-
lishes again the importance of large-scale structures in turbulent flow. Their
modification by viscoelasticity elegantly reveals most of the drag-reducing effects.
This work followed a similar analysis performed only relatively recently for Newto-
nian turbulent flows [73]. An exciting development was also the recent experimental
discovery of the dominant traveling wave mode in a Newtonian turbulent pipe flow
field [74] indicating the physical significance in further theoretical investigations of
large coherent motion structures in turbulent flows. These results are also consistent
with other methods of analysis of large-scale coherent motion such as the K-L
decomposition ([68-70] and references therein). As already mentioned, K-L analysis
of viscoelastic turbulent channel flow has also been conducted by de Angelis et al. [60],
Housiadas et al. [58], and, more recently, by Handler et al. [75] and Samanta et al. [76],
indicating a significant enhancement of the energy contained in the large scales as
viscoelasticity sets in. The relevance of these results in improving our understanding
makes these types of analyses highly desirable in future work, along with more
traditional analysis of the turbulence statistics. In parallel, there is considerable recent
work, taking sometimes advantage of the insight developed thanks to DNS results,
aimed at developing x—e-type turbulent models applicable for drag-reducing polymer
flows — see, for example, Refs [17, 77] and references therein. However, due to space
limitations, we will not discuss any further these and related investigations.

This chapter aims to present, in a concise way, the major elements and results from
applications of computational viscoelastic fluid mechanics in numerical studies
(DNS) of turbulent channel flows of homogeneous, dilute, polymer solutions under
drag-reducing conditions. In the next section, we present a summary and outline of
governing equations with emphasis on polymer modeling. In Section 1.3, we
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describe key elements of the spectral method algorithm as the principal numerical
method used in DNS investigations. Section 1.4 overviews the main results of the
DNS with an emphasis on the principal effects of the variation of key dimensionless
numbers and rheological characteristics on the most important turbulent statistics.
A discussion on the influence of numerical parameters is also included. Finally,
Section 1.5 contains the conclusions and some thoughts for future work.

1.2

Governing Equations and Polymer Modeling

The first among the governing equations used in DNS are the mass and momentum
balances, which for an incompressible, isothermal, and constant polymer concen-

tration flow in a channel are given in dimensionless form as

Du Bo 2 1B,
L Uyt O
Dt~ P Re LUt R

Y'E"'Qm (12)

where D/Dt= (0/0t)+u-V denotes the material derivative, B, = (ni/n;) =
(n; /(M5 + M) is the ratio of the solvent viscosity 1] to the total zero shear rate
viscosity of the solution 1, and Rey is the zero shear rate friction Reynolds number,
Reyp = (uth*/v(), where u} is the friction velocity defined as u} = /T, /0*, where
T, is the total wall shear stress and o* is the constant density of the solution, h* is the
half channel width, and v§ = (n;/0*) is the zero shear rate kinematic viscosity
of the solution. In Eqs. (1.1) and (1.2), u = u,e. + uye, + u.e. is the (dimensionless)
velocity vector, where e, ¢, e, are the unit vectors along the axes, p is the (dimen-
sionless) periodic part of the pressure, and t is the (dimensionless) extra
stress tensor, introduced due to the presence of polymer in the flow. The momentum
balance, Eq. (1.2), has been formulated for pressure-driven flow along the streamwise
direction x, and this is how the constant term ¢, arises. Equations (1.1) and (1.2) have
been nondimensionalized by using the characteristic scales reported in the first
column in Table 1.1, usually referred to as “computational scales,” as opposed to the
“zero shear rate wall scales” and the “actual wall scales” reported in columns 2 and 3,
respectively. In Table 1.1, uj is the average (bulk) velocity, 1, is the zero shear rate
polymer viscosity, kj is the Boltzmann constant, T* is the absolute temperature, and
K* is the characteristic elastic spring strength of the nonlinear elastic dumbbell. Note
that the superscript asterisk denotes a dimensional quantity. More details can be
found in Ref. [78].

Note that in viscoelastic turbulent flows, because of the shear thinning effect
[35, 79], we have to distinguish between two different types of wall units. One is based
on the zero shear properties and the other, applicable for channel and boundary layer
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Table 1.1  Characteristic computational and wall scales for fixed wall stress except for the last
column that is for fixed flux conditions.

Quantity Computational Reference Actual Computational
scale wall scale wall scale scale (fixed flux)

Length h* v/l v ul h*

Velocity us us u )

Time W Ju; vy /ui? v Jut? W fu;

Pressure T, T, T, o u

Polymer stress Myt /H* Moti? /g Mous? /v Wy /H*

Conformation kyT*/K* kyT*/K* kyT* /K* kyT*/K*

flows, on the stationary wall conditions [78]. The advantage of the first is that it gives
rise to quantities that are a priori known so that it makes easier the setting up of
numerical computations. In fact, in practice, the numerical simulations are set only
in terms of such nondimensionalization. However, because of shear thinning, the
actual viscous shear viscosity next to the wall is different from its zero shear rate value.
As a result, the proportionality of the velocity and the distance that it is expected to
hold in the viscous sublayer next to the wall, when both are expressed in terms of wall
units, ut =yT [34], no longer holds when the zero shear rate viscosity is used
to scale the length distance. Therefore, to allow a physical interpretation of the
results, it is necessary to use the actual wall viscosity value in order to construct
the dimensionless wall length and time units. However, a disadvantage of this
approach is that since with viscoelastic systems the total shear viscosity is not a
material property but essentially an “effective” quantity that can be determined only a
posteriori after the full solution is known, such nondimensionalization can also be
performed only a posteriori. For dilute solutions, since the bulk of the solution shear
viscosity is due to the solvent and stays constant, we only have small changes due to
this rescaling from zero shear rate (nominal) to the actual wall values. Moreover, as
DNS information indicates [78], the correction can be approximated on the basis of
the laminar steady shear flow model predictions, albeit the shear flow that is
established in the shear sublayer next to the wall is neither laminar nor steady in
time. For brevity, we leave such a correction out of the reported calculations here, all
of which are therefore reported in terms of zero shear rate quantities except for the
drag reduction where those corrections can be both important and essential for an
accurate estimation (see Section 1.4.1).

Equations (1.1) and (1.2) are not closed because of the presence of the extra stress
tensor t. Therefore, one more equation is required, which is provided by a
viscoelastic constitutive model [35, 49, 79]. According to nonequilibrium thermo-
dynamics, the most thermodynamically consistent way to describe the constitutive
model is in terms of internal (structural) variables for which separate evolution
equations are to be described [49]. The simplest case is when a single, second-order
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and positive definite, tensor, the conformation tensor, ¢, is used. In that case, the most
general constitutive equation is given, in dimensionless form, as [80]

c Dy
o, = ¢ Vu+ uT~g+g+—Re‘)Ozzg7 (1.3)
< ETET Reg Y &

where the superscript T denotes the transpose and g = g(c) is a second-order tensor
that models the relaxation effects and can be interpreted as a restoring force to
equilibrium.

On the right-hand side of the constitutive equation, Eq. (1.3), a diffusion term has
been added, as proposed by Sureshkumar and Beris [81], so that in turbulent
simulations the high wavenumber contributions of the conformation tensor do not
diverge during the numerical integration of this equation in time. This parallels the
introduction of a numerical diffusion term in any scalar advection equation (e.g.,
a concentration equation with negligible molecular diffusion) that is solved along
with the flow equations under turbulent conditions [82]. In Eq. (1.3), D, is the
dimensionless numerical diffusivity [54-56]. The issue of the numerical diffusivity is
further discussed in Sections 1.3.2 and 1.4.3.

For the cases considered here, the relaxation term g simplifies into the following
expression: -

g =-1—aWer -1, (1.4)

where the Weissenberg number We is defined as

We = Nuk _ X*(uﬁ)z v§ _ Weqo
h v h*u;) " Rew’

in terms of the zero shear rate friction Weissenberg number, Weyo = A" ()% /v3),
and the zero shear rate friction Reynolds number, Reo, where A" is the relaxation time
of the polymer chains. The polymer extra stress tensor is directly connected to c,
through -

(1.5)

I
e

OH
dc,

where H is the Hamiltonian (total energy of the system) [49, 80, 83]. For the cases
considered here, Eq. (1.5) simplifies in the following dimensionless expression:

:f%ii_; (1.6)

I

The conformation tensor has a definite physical origin and interpretation, typically
associated with the second moment of a suitably defined chain end-to-end distri-
bution function [84]

¢ = (RR), (17)
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where R is the chain end-to-end distance vector. It is important to note here that it is
exactly this association that also induces a very special property in the conformation
tensor, its positive definiteness. In fact, this property is absolutely essential for its
proper interpretation and the thermodynamic consistency (i.e., the requirement
of a nonnegative entropy production) of the accompanying evolution equations
[49, 83, 85]. Indeed, the eigenvalues of ¢ and their corresponding eigenvectors have
the physical meaning of the square of the average macromolecular size along the
primary three directions and the orientation of these directions in space, respectively.
More discussion on the implication of the positive definiteness requirements on the
numerical methods follows in Section 1.3.2.

When We— 0, then f —1 and ¢ — I, which give that T = Vv + (Vv)', and
Egs. (1.1) and (1.2) are reduced to the Navier-Stokes equations. Neglecting the
numerical diffusion term and depending on the rheological parameters, a, 3,, and
the specific form for function f = f(c), entering Egs. (1.5), (1.2) and (1.6), respec-

tively, the following well-known constitutive models are recovered:

f=1, a=0, By=0: Maxwell, (1.8a)

f=1, a=0, 0<f,<1: Oldroyd-B, (1.8b)

f=1 a>0, 0<f,<1: Giesekus, (1.8c)
12-3

fzip_tr@, a=0, 0<B,<1: FENE-P, (1.8d)

where L is the maximum polymer chain extensibility parameter. Note that f — 1 as
L — o0; thus, in this case the FENE-P reduces to the Oldroyd-B model. So far, in DNS
of viscoelastic turbulent flows, basically two constitutive models were employed.
First, to describe the finite chain length effects in dilute solutions of long flexible
macromolecules, the FENE-P model [35, 49, 84] was used. This model arises as
an averaging approximation of a microscopic kinetic theory description of the end-
to-end distribution of the macromolecular chain deformation with the conformation
tensor representing the second moment of that distribution [84]; see Eq. (1.1). Notice
that for this model, due to the inherent finite chain extensibility, there is an upper
bound for the conformation tensor in addition to its positive definiteness con-
straint [35]. Second, the network-based Giesekus model [35, 49, 84] has also been
used to describe drag-reducing turbulent channel flows of surfactant solutions [19,
65, 66] and viscoelastic effects in concentrated polymer solutions.

Finally, the appropriate boundary conditions are the standard nonslip conditions at
the channel walls and periodicity conditions along the homogeneous directions:

u(x,y=+1,2) =0, (1.92)

u, p, ¢ periodic in x, z directions. (1.9b)
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No boundary conditions are applied at the walls for the conformation (or the stress)
tensor since even in the presence of numerical diffusion, the numerical diffusivity
D," is nonzero only in the bulk; for more details, see Refs [50, 54, 78].

13
Numerical Methods for DNS

Outside the spectral method-based DNS work, special mention needs to be made for
two finite difference works. First, Min et al. [64] used a special upwind finite
difference formulation through which they managed to simulate without additional
diffusivity for the stress a highly elastic turbulent viscoelastic case (corresponding to
Oldroyd-B model) for which maximum drag reduction is obtained. Although the
method used has admittedly some distinct advantages over the spectral approach in
terms of enhanced stability, one should still be cautious of the fact that the lower order
finite difference approximations used in Min’s work (as well as in above-mentioned
other finite difference works, to a greater extent) also introduce diffusion in the
results based on the diffusive character of the finite difference approximations (in
Min’s work, all approximations are second-order finite differences except for a fourth-
order scheme used to approximate the stress divergence term in the momentum
equation). Thus, the results of the maximum drag reduction need further indepen-
dent corroboration.

Second, we need to mention the work by Yu and Kawaguchi [65] that, within a finite
difference approximation, employed a special MINMOD finite difference formula-
tion that they demonstrated to be more accurate and more stable than the corre-
sponding formulation that employs an artificial diffusion term. However, it should be
noted that since they patterned the value of the numerical diffusivity after the work
of Dimitropoulos et al. [50], they used significant larger values for it than the ones
used in subsequent spectral works [54], also reported here. Yu and Kawaguchi used
the Giesekus constitutive model for various flow and rheological parameter values.
Whenever those values happen to be close to the ones used in spectral simula-
tions [55], the results are similar. Yu and Kawaguchi [65] also ran simulations at
much lower viscosity ratios, corresponding to much higher maximum extensional
viscosities, and under these conditions they reported very high drag reductions (more
than 70%).

We Dbelieve that as far as investigating the large-scale features of turbulence is
concerned, lower order approximations are powerful enough, if formulated suitably,
to give valuable results. However, we also believe that if one wants to investigate in
detail turbulence in many scales of length and time, it is hard to beat the accuracy and
efficiency of spectral methods, albeit one has to abide by their limitations in simple
geometry applications. Since most of our emphasis is on developing a better
understanding of the mechanisms of drag reduction through a detailed investigation
of interactions between viscoelasticity and turbulence at multiple scales of length
and time, we believe that our primary emphasis on the spectral methods is fully
justified.



1.3 Numerical Methods for DNS

1.3.1
Spectral Methods: Influence Matrix Formulation

In a fully spectral representation, each primary dependent variable, S = S(x,y, z,t),
is approximated through a triple series expansion in terms of its spectral coefficient,
S = Su(t). This involves a double Fourier series along the two periodic directions
(streamwise and spanwise, using N, and N, Fourier modes, respectively) and N, + 1
Chebyshev orthogonal polynomial series along the nonperiodic (shear) direction:

(Nx/2)—1 (Nz/2)—-1 Ny x >
S(x,y,2,t) = Z Z Z&kl(t)]}(y)exp{Zni(L—xr—i— L—k)}7 (1.10)

r=—(Nx/2) k=—(Nz/2) 1=0 z

where the three subscripts “r”, “k”, and “I” of the generic spectral coefficient §,y; are
used to denote the corresponding mode in the streamwise, spanwise, and shearwise
directions, respectively. The Chebyshev orthogonal polynomials are defined in
Refs [86, 87).

The time integration of Egs. (1.1)—(1.3), where the g tensor is given by Eq. (1.4) and

the stress tensor T by Eq. (1.6), is performed by first formally integrating these
equations with respectto time fromt = t, tot = t, 1. Then, the following discretized
equations are derived:

Yo, , =0, (1.11)

i1 tui1 thi1

byt t [ w0 Tudie—Tpt 15 [ uars TP [ v di e,

ty By tn

(1.12)

thi1 thg1

D+

T Jgdt+ﬁ°oyz J cdr, (1.13)

¢ i . ¢
t, by

o

where At=t,,1—t,, and, for clarity, we have defined the effective pressure,

DPeff = J;

aWet -t. Note that neither any boundary condition is 1mposed for the pressure

n+1

pdt, and a second-order tensor: F = —u- Ve+e- Yu+Vul T

nor any / additional approximation is used as in the fractional step method [87, 88].
Instead, to solve for the pressure variable, an iterative approach, the influence matrix
or Green’s function method, described in Refs [87, 89], is followed.

We describe next two slightly different solution procedures used to find the
solution at the time step “n + 1”.

1.3.1.1 The Semi-Implicit/Explicit Scheme
The first scheme is a classical mixed semi-implicit/explicit scheme [51, 52]. Accord-
ing to this scheme, all linear terms in Eqs. (1.11)—(1.13) are treated implicitly and
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nonlinear terms explicitly based on the second-order Adams-Basforth formula:

Uy1—U,+—= 0By, - Vu,—u

vpeff |30 Vz( n+1+ﬂn)

UG )
Tm()y'(ln+l+ln)+At€x7 (1.14)
At At Dy
- 3F,—Foq)+ 55 V2 . 1.15
Cni17Cn =5 BE,~Eu 1)+ ZReTOZ(gnHJrgn) (1.15)

Equation (1.11) remains unchanged. Then, the following steps are used to calculate
the required solution at the new time step.

At
Step 1: The quantity ¢, 1, =¢,+ = (3F -F, _1) is calculated first, and
Eq. (1.15) is rearranged as follows.

2 RE-;()
At Dy

2Reqy

yz(gn+l+gn)_ AtD+

(gn+1+gn) = ( n+1/2_‘_C ) (116)

Equation (1.16) is a Helmholtz equation with the unknown sum ¢, ; +c¢,. This

is first transformed in the spectral domain where, due to the separability of the
Helmholtz equation, the equations for each pair of Fourier modes (r, k) are fully
decoupled with the only coupling appearing among the Chebyshev modes. Thus,
by solving the Helmholtz equation with a fast solver [86], the updated solution for
the conformation tensor ¢, , ; is obtained, from which, with the aid of Eq. (1.6),
the extra stress tensor t,,_ ; is calculated.

Step 2: By taking the divergence of Eq. (1.13) and demanding the continuity
equation, Eq. (1.11), to be satisfied, a Poisson equation for peg is obtained:

At 1 Bo

u,-V . Rew

V ( n+1+1: ))
(1.17)

Equation (1.17) is solved with the same solver as the Helmholtz equation for the
conformation tensor by using the influence matrix method [87, 89].
Step 3: The quantity

At
M’n+1/2 = Hn_?(?)ﬂn'—ﬁn_,infl 'Zﬂnfl)
-V 1- ﬁov At
V per + Rew (Top1T1,) +Ale,

is evaluated first. Then, Eq. (1.14) is rearranged to give another Helmholtz
equation for the sum u,, , ; +u,:

ZRBO ZRBTO
zz(ﬂn+l+ﬂn) At[; ( n+1+u ): Atﬁ ( n+1/2+u) (118)
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which is solved by using the fast solver and by applying no-slip and no-penetration
conditions at the walls. These wall divergence values are all that is needed in order
to obtain the correct boundary conditions for the effective pressure by enforcing
the requirement that the actual velocity field is divergent free on the boundaries,
y = £1 (influence matrix technique [47, 89]). This is achieved by considering the
final pressure and velocity as the linear superposition of the homogeneous
solution and a weighted sum over appropriate Green’s functions [47, 89]. The
solution of Eq. (1.17) completes the update of all the dependent variables. Then,
the same procedure is applied in order to further advance in the next time step.

1.3.1.2 The Fully Implicit Scheme

The fully implicit scheme is based on the second-order accurate Adams—Moulton
formulae, that is, at each time step, n + 1, all terms (both linear and nonlinear) in
Egs. (1.11)—(1.13) are integrated implicitly as follows:

=ty 41

At
g(t) dt%T(gn—l—gnH), n>0. (1.19)

t=t,

In this case, Egs. (1.12) and (1.13) are given as

At
Hﬂ+l_ﬂn+ T(Hn'wn+lin+1 ‘ﬂyprl) = _ypeff

Aty At(1-Py)
ZRCT V ( n+1+ ) Teﬂ)z ( n+1+‘c )+At—ex7
(1.20)
At At D,
gn+l_gn:7(£n+£n+l)+ ZRCTO YZ( n+1+c ) (121)

Since the governing equations are nonlinear, the implementation of the implicit
algorithm requires an iterative method. A direct iterative scheme based on Newton’s
method is computationally too demanding. Instead, as an alternative, a predictor-
corrector scheme can be used with the corrector to be iteratively applied until a
convergence criterion is met. To this end, in Egs. (1 19) and (1.20) u,_ 4, T Tyt 1 Peffs
and ¢, , , are replaced by "', ‘cjntll, plat and 1Y, respectlvely, whenever they
appear in a linear way in Eqs. (1.19) and (1.20) and by i/, , |, v/ LIS Pl and anH,
respectively, whenever they appear in a nonlinear way, where j = 0,1, 2,. ... There-
fore, Egs. (1.19) and (1.20) become

At

Lr]nill —u, +7(En.zﬂn+ﬂjn+l.zﬁjn+l)
AtBy a1
VPEff+ ZRCIOZ (H]n+1+ﬂn)
At(1—
LAAB) G it )y are, (1.22)

2Req X ln+1
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' At ; At Dy i
1 1
gﬁilign:7(£n+£jn+l)+ ZRB-E(:) yz(gj}'t-*;rl‘i»gn) (123)

The initial guess for the solution that is required to start the iterative procedure at
each time step is obtained either by using a second-order extrapolation scheme, that
is, X?, ; &~ 2X,—X,_1 where X = u,T,c¢, or by simply applying the semi-implicit/
explicit scheme described in Section 1.3.1.1. Note that at each step of the iterative
procedure, all nonlinear terms are known. Therefore, a procedure similar to the one
described for the semi-implicit/explicit scheme can be applied. It is also worth noting
that the last step in the full implicit scheme is the satisfaction of the divergence-free
condition, which in spectral space can be enforced to machine accuracy. The implicit
use of the continuity in the development of the Poisson equation for the pressure is
not enough to guarantee with machine accuracy the satisfaction of the divergence-
free condition due to approximation error involved in the solution of the Poisson
equation caused by the coupling of the Chebyshev modes. However, the structure and
linearity of the continuity equation is such to allow a posteriori correction of the
velocity field (in spectral space) so that it is identically satisfied.

The advantage of the full implicit scheme and the direct enforcement of the
continuity equation can be more clearly seen when we formulate a suitable Poisson
equation for the pressure by taking the divergence of the momentum equation,
Eq. (1.2):

v = (-S54 o)+ (-vwvw+ v ).

With the semi-implicit/explicit scheme, the terms in the first parentheses of the
right-hand side of Eq. (1.18) are not identically zero. However, with the full implicit
scheme in which the continuity equation is satisfied with machine accuracy, these
terms are zero and therefore the periodic part of the pressure is more accurately
evaluated.

Finally, it should be noted that the spectral coefficient for nonlinear terms can be
optionally evaluated using the three half rule for dealiasing along all directions [86].
According to this procedure, and starting from the original (N,) x (N, + 1) x N,
spectral coefficients, all nonlinear terms are evaluated in an extended physical space
with (3N,/2) x (3N,/2 + 1) x (3N/2) points. This is efficiently accomplished by first
extending the spectral coefficients, for all dependent variables, by a half in each
direction. The additional spectral coefficients are set equal to zero and the extended
spectral information is transformed into the extended physical space and all
nonlinear terms are evaluated. Then, the results are transformed back into the
extended spectral space and are truncated to the original spectral space. The three half
rule employed here makes the dealiasing complete (i.e., all the aliasing error is
removed) for all quadratic terms and partial for higher order nonlinear terms. In fact,
the only partial dealiasing occurs in the calculation of the Peterlin function when the
FENE-P model is used (see Eq. (1.6)) since all other nonlinearities are quadratic.
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1.3.1.3 Typical Simulation Conditions

Most of the simulation results that are reported in the literature and all those
considered here are for zero shear rate friction Reynolds numbers, Rey, 125, 180,
395, and 590. For viscoelastic simulations, the zero shear rate friction Weissenberg
number Wey varies from 6 to 125, the viscosity ratio 3, varies from 0.6 to 0.99, and
the Giesekus molecular extensibility parameter o is 1/900. A typical viscoelastic case,
for which many reliable results are available, is Re;op = 180, Wey = 50, 3, = 0.9, and
L = 30 (when the FENE-P model is used) or a = 1/900 (when the Giesekus model is
used). In this case, an adequate computational domain to capture all the main
turbulent events is L, x L, x L, = 9 x 2 x 4.5, which means that in wall units is
0 <x*" < LiRey, —Reryg <yt < Reyg, and 0 < zT < I, Reyo. Each dependent var-
iable is approximated by N, and N, Fourier modes along the streamwise and
spanwise directions, respectively, and N, + 1 Chebyshev polynomials along the shear
direction, and for this particular friction Reynolds number and computational
domain size, are N, x Ny x N; = 96 x 96 x 96. The time step of numerical inte-
gration At in computational units is 5 x 10™* for viscoelastic case and 10~ for
Newtonian case in the fully implicit method; the semi-implicit and explicit schemes
require much smaller At, that is, At = 2 x 107* and 5 x 107*, respectively.

1.3.2
The Positive Definiteness of the Conformation Tensor

As mentioned above, the conformation tensor ¢ is a second-order internal structural
parameter that has a definite physical origin and interpretation, typically associated
with the second moment of a suitably defined chain end-to-end distribution func-
tion [84]. It is exactly this association that also induces a very special property in the
conformation tensor, its positive definiteness. In fact, this property is absolutely
essential for its proper interpretation. The eigenvalues of ¢ and their corresponding
eigenvectors have the physical meaning of the square of the average macromolecular
size along the primary three directions and the orientation of those directions in
space, respectively. For this physical interpretation to be possible, it is clear that all
those eigenvalues need to be positive, that is, that ¢ is positive definite. This is
therefore a property that all models need to preserve and indeed most of them do,
provided their corresponding governing equations are exactly solved [49, 90].
However, in numerical simulations of viscoelastic flows the positive definiteness
of the conformation tensor can be occasionally lost due to the accumulation of
numerical error [54, 55]. Moreover, under these conditions the evolutionarity of the
models is not guaranteed [90, 91]. As a consequence, under certain circumstances
this can lead to catastrophic Hadamard instabilities [90]. It is therefore advantageous
if a general way existed to guarantee the preservation of the positive definiteness in
numerical simulations. This is not dissimilar to concentration profile calculations
where the nonnegative character of various concentration variables is an essential
feature to allow a physical interpretation of the results. Indeed, various techniques
have been proposed to circumvent the numerical loss of nonnegativeness, most often
through the use of an exponential mapping [92]. However, the development of the
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exponential mapping here is a more delicate situation due to the tensorial character
of the conformation tensor.

Upwind techniques can and have been developed that preserve the positive
definiteness and simultaneously do the smoothing of high frequencies [64, 65].
However, their application is restricted to low-order finite difference schemes. For
higher order schemes, such as spectral methods, the only alternative to achieve the
necessary smoothing is the explicit addition of artificial numerical diffusion. This
idea was first developed by Crochet and coworkers [93, 94] with regard to laminar
viscoelastic flows where the equivalence of artificial diffusion to upwind approxima-
tions was demonstrated. It was further utilized in a spectral method developed
by Sureshkumar and Beris [95] for viscoelastic turbulent simulations. A drawback of
the latter method is that its application may destroy the positive definiteness of the
conformation tensor. In addition, the conformation tensor can grow beyond its
physical bounds. Although these aphysical results appear typically in a small fraction
of the computational domain, they still hinder the physical interpretation and cast
doubt on the accuracy of the results. However, other alternatives exist, as discussed
in the following.

Indeed, new variable representations have recently been developed [41, 96-98] that
explicitly avoid the loss of positive definiteness of the conformation tensor. Vaithia-
nathan and Collins [41] use either a continuous eigen decomposition of the
conformation tensor (which, when used to numerically solve for eigenvalues, may
require an occasional corrective action so that all eigenvalues of C are nonnegative) or
a Cholesky decomposition ¢ = L - LT that automatically guarantees by construction
that when one numerically follows L, and for any value of L, ¢ will retain its positive
definiteness. Explicit ways of constructing equations for new variables and imple-
menting their numerical solution were also given. This scheme allowed the solution
to be obtained in homogeneous viscoelastic turbulence up to high We numbers, the
spectra though showed a sharp increase in the magnitude of the high-frequency
modes. On the other hand, Fattal and Kupferman [96] proposed an exponential
decomposition, ¢ = exp(A), so that, again, when one numerically follows the
evolution of A (which is the logarithm of ¢ ) and for any value of A, the corresponding
¢ remains positive definite. Also, here explicit directions were offered as to how to
construct the evolution equation for A.

So far, this approach has been followed in several works. We here note only the first
two. The first is a finite difference simulation of the lid-driven flow of an Oldroyd-B
fluid for which the results appeared convergent up to We =2 with the appearance of
oscillations at higher We values [97]. The second work concerns the finite element
simulation of the flow of a viscoelastic fluid past a cylinder using either an Oldroyd-B
or a Giesekus model [49]; convergence results were obtained up to a higher We
number than before. The convergence is ultimately limited only because of artifacts
of the model (in the case of Oldroyd-B) or lack of sufficient resolution to resolve the
small scales of the Giesekus model. Either one of these techniques is promising in
making spectral (and other macroscopic) simulations equally compatible with hybrid
micro—macro simulations as far as the capability of either method to produce physical
results is concerned. In addition, adopting the simpler exponential representation
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for the conformation tensor of Fattal and Kupferman [96], Housiadas et al. [99] have
developed a simpler mapping that offers numerical advantages. This most recent
idea is based on the Cayley—-Hamilton theorem that is used to analytically relate the
conformation tensor ¢ to its logarithm tensor A. In fact, the process of updating ¢
employs three simple successive mappings, each one of which is introduced to
preserve a specific property of c: its boundness, its positive definiteness, and (for
computational convenience) the avoidance of underflow or overflow error in calcula-
tions. Although the method has already produced promising full DNS results [99],
more work is required to improve its computational efficiency before it can see more
widespread utilization. The most important outcome so far is the verification of
previous DNS spectral results without the drawback of any physical violations on the
conformation tensor.

1.4
Effects of Flow, Rheological, and Numerical Parameters on DNS of Turbulent
Channel Flow of Dilute Polymer Solutions

1.4.1
Drag Reduction Evaluation

One of the most significant quantities to be evaluated in viscoelastic turbulent flow
simulations is undoubtedly the achieved drag reduction [47, 54, 78]. The drag
reduction is properly defined on the basis of the ratio of the drag observed after the
introduction of the polymer additives versus the drag obtained with pure solvent,
while keeping the same bulk Reynolds number [34], taking into account that all
transitional effects are eliminated so that to avoid miscounting for drag reduction
changes, if any, occurring related to the onset of turbulence [14] are determined
as [78]

(visc) 2

R

DR=1- (%) , (1.25)
ReT Rey

where the bulk Reynolds number Re, is defined in terms of the average
streamwise velocities U}, and the wall shear rate (effective) kinematic viscosity
v* as Rep, = (2h*v},/v*). Now, when the viscoelastic system resulting from the
addition of polymers to the Newtonian solvent is really very dilute, the bulk shear
viscosity hardly changes, and the bulk Reynolds numbers in both cases (the
viscoelastic and the Newtonian one) are simply proportional to the bulk (average)
flow velocity, keeping that constant while one measures the pressure drop is
therefore sufficient for a drag reduction measurement. In reality though, we do
have changes in the effective solution viscosity, and these changes need to be
taken into account when calculating the bulk Reynolds number. However, still
this effect is typically low.
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Most importantly for computational viscoelastic fluid mechanics, most of the
channel DNS calculations are not performed for a constant flux (which would have
naturally resulted in a constant bulk Reynolds number) but for a constant pressure
drop per unit length that results in a constant zero shear rate friction Reynolds
number. These runs lead to substantial variations in the (instantaneous and average)
bulk Reynolds number from which the drag reduction needs to be estimated.
Knowing roughly the relationship between the friction and the average bulk Reynolds
number for a Newtonian fluid (from the experimentally determined and DNS
confirmed empirical relationships for the skin friction factor — see, for example,
Ref. [34]), one can extract such a relationship that also takes into account the already
mentioned (in Section 1.2) shear thinning effect in association with viscoelastic
results [78].

The final expression, relying on the average streamwise velocities U gli“) and v ‘gem)
evaluated from the viscoelastic and the Newtonian simulations, respectively, at the
same Req, is given [78] as

— (visc) —2/n (visc) —2/n

v R

DR = 1—p2(1=/» <(‘;Vem)> =1y (i‘w) . na 114775,
v Rey

av Rero Rero
(1.26)
where
B
W, = # (1.27)
1 AT
+ IRew (Txy)

and A(T,,) is the average wall shear stress at the two walls. Note that for the Oldroyd-B
constitutive model that does not show shear thinning behavior, the mean viscosity
ratio at the wall p, is 1. By an overbar, we denote x, z, and time-averaged quantities:

x=Ly z=L, t=to + T¢

J g(x,y,2,t) dx dzdt, (1.28)
=t

x=0 z=0 ¢

where t, is the required integration time to reach stationary state (beyond which the
statistics are taken), T is the integration time in stationary state, and A denotes the
difference of the measured values at the two walls, A(®) = (*) 5 wai = (*)bottom wall’
used in order to average the wall results for antisymmetric quantities such as t.,. For
dilute systems, W, can be very well approximated by considering the steady-state
simple shear flow model predictions corresponding to the average wall shear rate
[55, 56, 78]. Equation (1.26) describes the drag reduction for runs performed at
constant zero shear rate friction Reynolds number, while Eq. (1.25) describes the drag
reduction when the bulk Reynolds number is kept constant. Note that this means that
if the flux is the quantity that is instead maintained constant between runs, there is
a corresponding correction that also needs to be implemented to accommodate
potential viscosity changes.
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Figure 1.2 DNS results for the mean velocity profiles, obtained for various parameter values of the
FENE-P constitutive model, the Newtonian representing the pure viscous solvent base case.
(Adapted from Ref. [56].)

1.4.2
Effects of Flow and Rheological Parameters

From our computational viscoelastic DNS work and others (see, for example,
Ref. [66]), a rich information has been accumulated concerning the effects that
various rheological and flow parameters have on key turbulence statistics and the
drag reduction. We will like to present here, drawing from our own work for
convenience, some indicative results that we believe have especially led us to improve
our understanding of the polymer-induced drag reduction. First, in Figure 1.2, we
have collected some representative data on the mean streamline velocity profiles

corresponding to a variety of models and model parameter values. It is reassuring to
see there that the numerical results look very similar to the experimental data sample
presented in Figure 1.1. More specifically, we see in Figure 1.2 that under conditions
little departing from the Newtonian reference case (i.e., corresponding to either
small Weissenberg number or small extensional parameter L, and/or small polymer
concentration that is proportional to 1—f3,), we have a small departure from the
Newtonian turbulent results, consisting of a simple parallel translation to higher
values of the log linear law segment, in agreement with experimental results [23].
In contrast, under conditions corresponding to higher viscoelasticity, we see that the
velocity log-law profile moves further away, and eventually even its slope increases,
almost reaching the level of Virk’s maximum drag reduction asymptote, exactly in
parallel to the trends exhibited by the most drag reduction experimental data shown
in Figure 1.1. Therefore, we have confirmed here the main experimental finding that
with viscoelasticity the shape of the viscous sublayer remains practically unchanged;
however, the buffer layer widens and the log-law layer is pushed higher.
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Figure1.3 Effect of the friction Reynolds number on the mean velocity profile. (Adapted from [54].)

Already in Figure 1.2, by comparing results collected at various Reynolds numbers,
we can see that the effect of the Reynolds number, as far as the mean velocity profile
(and therefore the drag reduction) is concerned, is minimal. We can also see that even
more clearly in Figure 1.3, where results have been collected for fixed rheological
parameters (corresponding to a moderate drag reduction case, calculated with the
FENE-P model) and at different friction Reynolds numbers. We see that the primary
effect of increasing the friction Reynolds number is to be able to allow the log-linear
layer to develop more, as well as to push further from the wall as small downturn on
the profile that can be attributed to a centerline effect. Note that exactly similar
behavior is obtained with Newtonian DNS, also reported in the same figure for
comparison purposes. Needless to say those Newtonian DNS results, collected with
the same code as in the viscoelastic case, are in perfect agreement with the
literature [100].

The effect of the Reynolds and Weissenberg numbers on drag reduction can be
most clearly seen in Figure 1.4, where we present the Weissenberg number
dependence of the drag reduction, calculated according to the expressions provided
in Section 1.4.1. The various curves in Figure 1.4 correspond to different combina-
tions of other rheological parameters and the friction Reynolds number, as indicated
in that figure. First, it is important to note that for the range of Reynolds numbers
considered, there is minimal, if any, effect that they have on drag reduction. In fact,
this parallels what we saw in Figures 1.2 and 1.3 before. As it turns out, one will have
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Figure 1.4 Drag reduction predictions as a function of We for various values of model parameters.
(Adapted from [56] and unpublished data.)

to go to higher order turbulent statistics to see a clear Reynolds number effect — see
below for an example and Ref. [58] for more details — on the exception, possibly of
results obtained at the smallest Reynolds number, Reyg = 125, which being very close
to the turbulent transition regime (that can change, depending on viscoelasticity)
can introduce some bias in calculations. Similar Reynolds effects are also observed
with Newtonian fluids based on experimental [101] and DNS [100] data. Thus, we
focus here on discussing results obtained at higher Re;o, 180 and more.

Second, note that the various curves shown in Figure 1.4, each one corresponding
to a different model with all rheological parameters other than the Wey, number
fixed, are sigmoidal in shape, with all curves exhibiting a clear onset, around
We.o = 6—8 and saturation for Weyo > 100. The main difference between the various
curves is then just a question of scale, with the scale determined by the maximum
drag reduction obtained at saturation in the limit of very high We.o. This saturation
value appears to be predominantly dictated by the maximum extensional viscosity
that is predicted for a steady extensional flow by the corresponding model and model
parameter values: the higher the maximum extensional viscosity, the higher the
saturation value for DR. Therefore, an extensional viscosity that significantly in-
creases above the Newtonian limit is identified as the most significant prerequisite
for additive-induced drag reduction to take place; the higher the extensional viscosity,
the higher the effect. This is most appropriately measured by the Trouton ratio,
defined as the ratio of the extensional to shear viscosity [79]. This is consistent with
the very high values attributed for the Trouton ratio of even dilute drag-reducing
polymer solutions [102] also mirrored, although not to the same high levels, by the
Trouton ratio of drag-reducing surfactant solution [103]. For the FENE-P, the
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maximum extensional viscosity ratio to the shear viscosity is proportional to
(1—B,) L2, where B, is the ratio of the solvent viscosity to the total solution viscosity
and Lis the maximum extensibility parameter. Then, the monotonic increase in DR is
indeed observed as we change accordingly the relevant parameter values — compare
the FENE-P curves in Figure 1.4 corresponding to L= 30, 3o =0.9 (low extensional
viscosity) and L= 60 and 3 =0.8 (high extensional viscosity). However, when the
models vary, there are further secondary effects that enter the picture — one of the
main results from DNS is the relatively high sensitivity of the results to details of
the rheology and the rheological modeling.

A secondary dependency of DR, beyond that on the extensional viscosity and the
Trouton ratio, on the particular constitutive model used is to be expected. This is
because various other rheological characteristics (e.g., the second normal stress
difference in simple shear flow) that may also be important in the mechanisms
underlying drag reduction [104] critically depend on the model. Indeed, in Figure 1.4
we note a significant increase in drag reduction as we move from FENE-P (L = 30) to
Giesekus (a=1/900), even when the maximum extensional viscosity predicted
under these conditions from both models is the same. This enhancement of drag
reduction with the Giesekus model has also been observed by other investigators [65],
and it is consistent with the hypothesis on the effect of second normal stress
difference (present only in the Giesekus model) in drag-reducing flows [104].

Itis of interest that even smaller differences between the models, for example, only
affecting the detail way that the extensional viscosity depends on the extensional rate
(at steady state) and/or the time (during transients), without affecting other rheo-
logical parameters, such as the second normal stress difference, may also contribute
to significant changes in the predicted drag reduction. Such is the case when a variant
of the FENE-P model, the FENE-PB, is introduced in the calculations [57]. Note that
both the FENE-P and the FENE-PB predict zero second normal stress difference in
simple shear flow and for the same L value (L=30 here) the same maximum
extensional viscosity [57]. However, the fact that the latter corresponds to a higher
steady-state extensional viscosity at intermediate extensional rates reaching the
asymptotic maximum value at smaller extensional rates [57], and also corresponds
to faster transients, is sufficient to lead to significantly higher drag reductions, almost
as high as those observed with the Giesekus model (@ = 1/900), as seen in Figure 1.4.

Even more striking than the above observations is the fact that additional simula-
tions show that there is also a secondary effect to the flow keeping the same model
and the same maximum extensional viscosity! Indeed, when the combination of the
L and B, parameters is varied in the FENE-P model, in such a way as to keep the
maximum extensional viscosity constant, (1—f,)L? = 90, we still see some changes
in the solution and in particular in the drag reduction, as shown in Figure 1.5. As we
can see there, the drag reduction seems to significantly increase for small values of
the extensibility parameter L, corresponding to smaller values of the solvent ratio, 3.
A possible explanation of this effect can be again the detail way the extensional
viscosity responds to intermediate extensional rates at steady state and/or to
intermediate times during transients, albeit the differences in this case are much
smaller than those seen before between the FENE-PB and the FENE-P cases. This
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Figure 1.5 Effect of the maximum extensional viscosity to the drag reduction, FENE-P model.

further reinforces our belief that although the extensional viscosity is the primary
factor that controls drag reduction, one needs to consider supplemental information
in addition to its maximum predicted (saturation) value at infinite extensional rates.
This may be explained since despite the fact that typical extensional rates encountered
in turbulent DNS are large, they are not infinite, and they definitely vary with time.
Thus, it is also important to examine the dependence of the extensional viscosity on
the extensional rate and/or time, and the current data seem to support such a view.

Beyond this correlation of model parameters with average macroscopic effects,
such as represented by the overall drag reduction, one can find in the detailed
numerical results a wealth of additional information. For example, looking at the
root mean square of the velocity fluctuation profiles, such as those shown in
Figure 1.6, one can clearly see that with increasing viscoelasticity the turbulent
velocity fluctuations become more anisotropic. While the rms values of the stream-
line component increase, those in the shearwise and spanwise directions decrease.
The increased anisotropicity has also been confirmed recently through the calcula-
tion from DNS of the Lumley anisotropic tensors [105] as has been measured
experimentally [106, 107]; it is also interesting to note that this anisotropy tensor
information may be used to better understand the drag reduction mechanism [108].
As also seen for Figure 1.6, these changes are accompanied with a clear shift of the
streamline rms maximum, typically occurring in the buffer layer, further away from
the wall, offering another indication (beyond that seen with the mean streamline
profiles in Figure 1.2) of the widening of the wall eddies structures with viscoelas-
ticity. Incidentally, this is also further corroborated by a recent analysis of the large,
coherent structures in the flow (eddies) [58, 75].

Form the above DNS findings, it became obvious that the coherence of the large-
scale structures is significantly enhanced in the presence of polymer additives.
Simultaneously, the eddies become considerably weaker and therefore less capable
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Figure 1.6 The rms velocity fluctuations at friction Reynolds 180. (Adapted from Ref. [54].)

of transferring momentum from the wall. This effect emerges, therefore, naturally as
the main mechanism through which turbulence increases drag. This effect has been
unequivocally connected through DNS to the enhanced resistance to extension
offered by polymer molecules in their stretched state. For example, in Figure 1.7

Figure 1.7 Vorticity (with blue) and trace of
conformation tensor (with yellow) isosurfaces,
close to their maximum values, obtained in a
FENE-P polymer simulation of turbulent
channel flow. The flow is from back to front with
the bottom and top surfaces representing the
channel walls. The close-to-maximum vorticity

isosurfaces paint the eddies, whereas the close-
to-maximum trace of the conformation tensor
isosurfaces the location of the most stretched
polymer chains in the flow — their close
correlation is an indication of the role of the

polymers in eddies formation. Alternative
rendering of the data also shown in Ref. [58].
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we see that the most stretched molecules (as documented from the isosurfaces
corresponding to close to the maximum value obtained for the trace of the confor-
mation tensor that can be used to characterize the macromolecular deformation) are
to be found near the surface of those eddies (as represented by vorticity isosurfaces at
values close to the maximum streamline vorticity). Also, in that figure one can notice
thelarge size of the eddies, much larger than the corresponding Newtonian turbulent
channel flow, that closely parallels the increase in the streak spacing also observed
in experiments with dilute polymer solutions [23]. In fact, from the first DNS
publication [47] it has been noted that the empirically derived linear relationship
between the increased streak spacing A ™ and the drag reduction DR, at small values
of drag reduction for dilute polymer solutions [23], A" = 1.9DR + 99.7, has also been
confirmed from the DNS results [47]. This substantial increase in the streaky
structures has also been confirmed in subsequent DNS works with both FENE-P
and Giesekus models [50].

The main outcome of the DNS studies has, therefore, been the ample supply of
evidence (a small sample of which is provided here) in favor of an extensional
viscosity thickening-driven drag reduction mechanism exactly as foreseen by Metz-
ner and coworkers [15] and also independently postulated by Lumley [14]: as the
eddies form at the wall, they see with viscoelasticity an increased resistance due to the
predominantly extensional character of the velocity deformation and the enhanced
resistance to extensional deformation offered by polymers. As a result, the eddies are
larger in length, have smaller vorticity values, and are more sluggish; therefore, they
become less effective in transferring momentum from the wall, resulting in drag
reduction. This is also illustrated in the significantly depressed, by viscoelasticity,
values for the streamwise vorticity as seen in Figure 1.8. In the same figure, we see
the changes in the vorticity close to the wall because of the changes in the friction
Reynolds number. Most of the changes happen when the Reynolds number increases
from 125 to 180, then some changes still occur as the Reynolds number increases to
395, from which point there are no perceptible changes as the Reynolds number
increases further to 590. The vorticity is one of the quantities most sensitive to
Reynolds number change. Figure 1.8 provides evidence that for Reynolds number
larger than 395 the results next to wall have converged.

Finally, a very important quantity for determining the wall friction is the Reynolds
stress. As numerous DNS studies [47, 54-57, 59, 60, 62—65, 109] have shown, a major
viscoelastic effect is a significant lowering in the Reynolds stress in agreement with
experimental evidence [22, 23, 25, 26, 62, 110]. In addition, results from a more
detailed quadrant analysis have also been reported [58, 111] and show most changes
due to viscoelasticity to be concentrated with the fourth and second quadrant events
that are found to be significantly decreased in magnitude due to viscoelasticity in the
viscous sublayer and the buffer layers, as has been observed experimentally [22, 23].
Furthermore, for a constant friction Reynolds number, we have shown [53, 58] that
viscoelasticity is responsible for significantly lowering the production in the Reynolds
stresses, in agreement with experiments [23, 48]. A similar decrease is observed in the
magnitudes of the terms representing the pressure—velocity gradient correlations,
transport, and the overall (viscous and viscoelastic) diffusion and dissipation.
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Figure 1.8 Effect of the friction Reynolds number on the vorticity components. (Adapted from
Ref. [54].)

Simultaneously, the peaks in the profiles widen and shift toward the centerline. The
changes are on the order of 30-70% and are localized in the near-wall boundary layer
(y* < 75-100), leaving the region far away from the wall virtually unaffected.
Regarding the terms appearing on the enstrophy budgets, the changes observed
due to viscoelasticity are qualitatively similar but much more dramatic in magnitude
with reductions of 80-90% being typical. In fact, it is this drastic annihilation of the
enstrophy in the wall boundary that may explain the saturation of the drag reduction
at a level of about 30-40% obtained with the FENE-P dilute polymer solution
constitutive model [58].

14.3
Effects of Numerical Parameters

It is important to mention several computational and numerical issues related to the
sensitivity of the results to

e time integration scheme;

o different values for the numerical diffusivity;

o different mesh sizes;

o different computational domain sizes;

o long time integration (both in transient and in stationary state).

First, we should comment on the semi-implicit/explicit and fully implicit schemes.
The fully implicit scheme gives more physical results and is more accurate and more
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Figure1.9 Comparison between the semi-implicit/explicit and the fully implicit scheme for the rms
vorticity fluctuations. (Adapted from Ref. [55].)

stable allowing considerably larger time steps of integration to be used. On the other
hand, it requires both more computational memory and more arithmetic operations
per time step. A comparison between these two schemes is offered in Figure 1.9, in
which the average vorticity components are given as a function of the distance from
the wall. It is clearly seen there that the fully implicit scheme with At=10"> and
mesh size 96 x 97 x 96 yields the same statistics with the semi-implicit/explicit
scheme with At=2 x 10~* and mesh size 144 x 145 x 144.

Second, we present some thoughts about the role of artificial diffusivity in relation
to spectral simulations. So far, all indications are that some diffusivity in viscoelastic
turbulence simulations is unavoidable (added either explicitly, as is done in spectral
methods, or implicitly by using diffusive low-order approximations, such as finite
differences, especially when upwind formulations or linearizations in particle
Lagrangian formulations [112] are used) as we have seen in all successful simulations
of complex viscoelastic flows. Indeed, it is believed that the need to have a confor-
mation diffusion term is the same as the need to add a diffusive term in solving for a
passive scalar advection equation in a turbulent flow: it is due to the feature that
any chaotic flow field has in creating finer and finer features in the distribution of any
passive scalar that it is advected upon its action ([82] and references therein). We
stipulate that this is exactly what is happening with the conformation tensor. This
becomes even more obvious when one examines the equation for each one of the
conformation tensor eigenvalues (Eq. (16) in Ref. [41]) that is exactly like a passive
scalar advection equation plus two extra scalar terms, one representing velocity
gradient stretching and the other polymer relaxation.

However, the magnitude of the artificial diffusivity has to be kept small, and,
when probing convergence of the results with mesh refinement, for consistency,
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Figure 1.10 Effect of the mesh size and the numerical diffusivity. (Adapted from Ref. [54].)

as the mesh resolution increases, the numerical diffusivity should also decrease.
Indeed, this is happening in the convergence study shown in Figure 1.10. The fact
that after two successive refinements of the mesh resolution (accompanied by
corresponding decreases in the numerical diffusivity) the results for the rms
velocities are almost the same is a strong evidence that at least in that case we have
reached convergence in the results to a solution independent of the value of the
artificial diffusivity. Although every effort has been made in the reported calcula-
tions to use diffusivity values that were judged as similarly not altering the
physical content of the results, it is to be noted that as the parameter values
and/or models change, the role of numerical diffusivity needs to be carefully
reexamined. In particular, this is one of the most important factors as extreme
range of the parameter values is reached, such as when we approach maximum
drag reduction.

In view of the observed enhancement of the larger scales of turbulence by the
viscoelasticity of the flow, special attention has also to be paid to viscoelastic
simulations to allow a large enough computational domain so that even the larger
scales of turbulence can develop. So far, only limited investigations of this effect
have been carried out mainly due to the significant computational cost associated
with it. Such an example is offered here for the rather small friction Reynolds
number 125. In this case, as shown in Figure 1.11, the results obtained after a
significant enlargement of the domain by 50% in each direction are almost the
same. In this figure, it is interesting to point out another characteristic result
arising from the interaction of viscoelasticity with the turbulent flow. In particular,
note that the average profile for the trace of the conformation tensor shows a
pronounced peak not at the wall (where the maximum shear rates are obtained) but
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Figure 1.11  Effect of the computational domain.

rather at the beginning of the buffer layer where most of the eddies action takes
place. This is a clear indication that the most significant molecular deformation
occurs due to the transient extensional characteristics of the flow that accompany
the formation of eddies. Note that the issue of identification of the velocity
structures that give rise to that pronounced peak in macromolecular deformation
(and therefore is critical in the elucidation of details of the drag reduction
mechanism) is still a subject of active investigation [105].

1.5
Conclusions and Thoughts on Future Work

We offered in this chapter an overview of some of the most important elements of
recent viscoelastic computational work on turbulent channel flow under drag-
reducing conditions. After a brief history on the polymer-induced drag reduction
phenomenon and presentation of recent computational works, we focused on
spectral DNS of turbulent channel flow for dilute polymer solutions. We first
presented the governing equations, with emphasis on the two most popular models
(FENE-P and Giesekus). Then, we presented the key elements of the spectral method-
based numerical algorithms. Following that we discussed in some detail the most
important changes to the turbulence induced by viscoelasticity. We can summarize
those here as a significant enhancement of the size of the buffer layer, the streamline
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velocity fluctuations, and the size of the main eddies that form there, while there is
a significant weakening of the streamwise vorticity, and therefore the intensity of the
eddies, the Reynolds stress, and the shearwise and spanwise velocity fluctuations.
All these were found to contribute to drag reduction through the displacement of the
log-law component of the mean streamline velocity profile in agreement with
experimental observations. The sensitivity of the above findings to flow and rheo-
logical parameters provided significant evidence for the primary role of the exten-
sional viscosity in drag reduction, exactly as originally proposed by Metzner and
Lumley.

Atpresent, the numerical simulation activity in this area is focusing on deepening
our understanding of the changes induced by viscoelasticity in the structure of
turbulence flows. For example, we can mention here the continuing work on the exact
coherent states [72], on large-scale structure dynamics through K-L analysis in
time [105], and, most recently, on the investigation of the effects of viscoelasticity
on small (dissipative) scales of turbulence and intermittency through an analysis of
the probability density functions of the velocity and velocity derivatives [113]. These
investigations, in addition to further elucidating the underlying mechanism for drag
reduction, can also contribute possibly to the development of low-dimensional
models of turbulence from first principles. In parallel, as the work to develop various
»—e-based empirical models of drag reduction [17] is continuing, the DNS data are
expected to be further utilized to test those ideas.

Still considerable challenges remain as the strength of viscoelasticity increases
and the region of maximum drag reduction is approached due to the very steep
computational requirements to evaluate mesh-converged numerical solutions un-
der those conditions. Issues related to polymer inhomogeneities are also important
— see, for example, the experimental data of Refs [26, 114] suggesting polymer
aggregation and filament formation under conditions of maximum drag reduction.
In addition, there is a considerable room for improvement in the development of
LES and averaged equations for general viscoelastic turbulent flows, moving beyond
channel and pipe flows. One thing is sure that the polymer-induced drag reduction
problem is a very challenging one that will keep numerical analysts occupied for a
long time.
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