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Introduction to Crystalline Anisotropy
and the Crystal Plasticity Finite Element Method

Crystalline matter is mechanically anisotropic. This means that the instantaneous
and time-dependent deformation of crystalline aggregates depends on the direction
of the mechanical loads and geometrical constraints imposed. This phenomenon
is due to the anisotropy of the elastic tensor, Figure 1.1, and to the orientation
dependence of the activation of the crystallographic deformation mechanisms (dis-
locations, twins, martensitic transformations), Figure 1.2.

An essential consequence of this crystalline anisotropy is that the associated me-
chanical phenomena such as material strength, shape change, ductility, strain hard-
ening, deformation-induced surface roughening, damage, wear, and abrasion are
also orientation-dependent. This is not a trivial statement as it implies that me-
chanical parameters of crystalline matter are generally tensor-valued quantities.
Another major consequence of the single-crystal elastic-plastic anisotropy is that it
adds up to produce also macroscopically directional properties when the orienta-
tion distribution (crystallographic texture) of the grains in a polycrystal is not ran-
dom. Figure 1.3a,b shows such an example of a plain carbon steel sheet with a pre-
ferred crystal orientation (here high probability for a crystallographic f111g plane
being parallel to the sheet surface) after cup drawing. Plastic anisotropy leads to
the formation of an uneven rim (referred to as ears or earing) and a heterogeneous

Figure 1.1 Elastic anisotropy in a polycrystal resulting from superposition of single-crystal
anisotropy.
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2 1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method

Figure 1.2 Plastic anisotropy in a single crystal due to distinct crystallography.

Figure 1.3 Consequence of plastic anisotropy
when drawing a textured sheet into a cup. The
orientation distribution before deformation ex-
hibits a high volume fraction of grains with a

crystallographic [111] axis parallel to the sheet
normal. The arrows in (a) mark six ears result-
ing from preferential material flow. (b) The
corresponding crystal plasticity finite element
simulation.

distribution of material thinning during forming. It must be emphasized in that
context that a random texture is not the rule but a rare exception in real materials.
In other words, practically all crystalline materials reveal macroscopic anisotropy.
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1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method 3

A typical example of such macroscopic anisotropy is the uniaxial stress–strain
curve, which is the most important mechanical measure in the design of structural
materials. The introductory statement made above implies that uniaxial stress–
strain curves represent an incomplete description of plastic deformation as they
reduce a six-dimensional yield surface and its change upon loading to a one-dimen-
sional (scalar) yield curve, see Figure 1.4. Another consequence of this statement is
that the crystallographic texture (orientation distribution) and its evolution during
forming processes is a quantity that is inherently connected with plasticity theo-
ry, more precisely, with the anisotropy of the underlying plasticity mechanisms.
Texture can, hence, be used to describe the integral anisotropy of polycrystals in
terms of the individual tensorial behavior of each grain and the orientation-depen-
dent boundary conditions among the crystals. Formally, the connection between
shear and texture evolution becomes clear from the fact that any deformation gra-
dient can be expressed as the combination of its skew-symmetric portion, which
represents a pure rotation leading to texture changes if not matched by the rota-
tion implied by plastic shear, and a symmetric tensor that is a measure of pure
stretching. Plastic shear, hence, creates both shape and orientation changes, except
for certain highly symmetric shears. Therefore, a theory of the mechanical prop-
erties of crystals must include, first, the crystallographic and anisotropic nature
of those mechanisms that create shear and, second, the orientation(s) of the crys-

Figure 1.4 Flow stress and strain hardening of anisotropic materials are tensor quantities.
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4 1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method

tal(s) studied relative to the boundary conditions applied (e.g., loading axis, rolling
plane).

Early approaches to describe anisotropic plasticity under simple boundary con-
ditions considered these aspects, such as the Sachs (1928), Taylor (1938), Bishop–
Hill, and Kröner (1961) formulations. However, these approaches were neither de-
signed for considering explicitly the mechanical interactions among the crystals in
a polycrystal nor for responding to complex internal or external boundary condi-
tions, see Figure 1.5a–d. Instead, they are built on certain simplifying assumptions
of strain or stress homogeneity to cope with the intricate interactions within a poly-
crystal.

For that reason variational methods in the form of finite element approximations
have gained enormous momentum in the field of crystal mechanical modeling.
These methods, which are referred to as crystal plasticity finite element (CPFE)
models, are based on the variational solution of the equilibrium of the forces and
the compatibility of the displacements using a weak form of the principle of virtual
work in a given finite-volume element. The entire sample volume under consider-
ation is discretized into such elements. The essential step which renders the defor-
mation kinematics of this approach a crystal plasticity formulation is the fact that
the velocity gradient is written in dyadic form. This reflects the tensorial crystal-
lographic nature of the underlying defects that lead to shear and, consequently, to
both shape changes (symmetric part) and lattice rotations (skew-symmetric part),
see Chapter 3. This means that the CPFE method has evolved as an attempt to
employ some of the extensive knowledge gained from experimental and theoret-
ical studies of single-crystal deformation and dislocations to inform the further
development of continuum field theories of deformation. The general framework
supplied by variational crystal plasticity formulations provides an attractive vehi-
cle for developing a comprehensive theory of plasticity that incorporates existing
knowledge of the physics of deformation processes (Arsenlis et al., 2004; Curtin
and Miller, 2003; Vitek, Mrovec, and Bassani, 2004a) into the computational tools
of continuum mechanics (Zienkiewicz, 1967; Zienkiewicz and Taylor, 2005) with
the aim to develop advanced and physically based design methods for engineering
applications (Zhao et al., 2004a).

One main advantage of CPFE models lies in their capability to solve crystal
mechanical problems under complicated internal and/or external boundary con-
ditions. This aspect is not a mere computational advantage, but it is an inher-
ent part of the physics of crystal mechanics since it enables one to tackle those
boundary conditions that are imposed by inter- and intragrain micro-mechanical
interactions, Figure 1.6 (Sachtleber, Zhao, and Raabe, 2002). This is not only es-
sential to study in-grain or grain cluster mechanical problems but also to better
understand the often quite abrupt mechanical transitions at interfaces (Raabe et
al., 2003).

However, the success of CPFE methods is not only built on their efficiency in
dealing with complicated boundary conditions. They also offer high flexibility with
respect to including various constitutive formulations for plastic flow and hard-
ening at the elementary shear system level. The constitutive flow laws that were
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1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method 5

Figure 1.5 The increasing complexity of crys-
tal-scale micromechanics with respect to the
equilibrium of the forces and the compatibility
of the displacements for different situations:
(a, b) Single-slip situation in a single crystal
presented in stress space. (c) Portion of a
single-crystal yield surface with three slip sys-
tems. (d) Multislip situation in a polycrystal

where all different crystals have to satisfy an
assumed imposed strain in their respective
yield corners. If the strain is homogeneous,
this situation leads to different stresses in
each crystal (Raabe et al., 2002a, 2004a). τcrit :
critical shear stress; σTBH: Taylor–Bishop–Hill
stress state (stress required to reach a yield
corner).

suggested during the last few decades have gradually developed from empirical
viscoplastic formulations (Asaro and Rice, 1977; Rice, 1971) into microstructure-
based multiscale models of plasticity including a variety of size-dependent effects
and interface mechanisms (Arsenlis and Parks, 1999, 2002; Arsenlis et al., 2004;
Cheong and Busso, 2004; Evers, Brekelmans, and Geers, 2004a,b; Evers et al., 2002;
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6 1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method

Figure 1.6 Experimental example of the
heterogeneity of plastic deformation at
the grain and subgrain scale using an alu-
minum oligocrystal with large columnar
grains (Sachtleber, Zhao, and Raabe, 2002).
The images show the distribution of the ac-
cumulated von Mises equivalent strain in a
specimen after Δy/y0 D 8 and 15% thickness
reduction in plane strain (y0 is the initial sam-
ple height). The experiment was conducted

in a lubricated channel-die setup. White lines
indicate high-angle grain boundaries derived
from electron backscatter diffraction micro-
texture measurements. The equivalent strains
(determined using digital image correlation)
differ across some of the grain boundaries by
a factor of 4–5, giving evidence of the enor-
mous orientation-dependent heterogeneity of
plasticity even in pure metals.

Ma and Roters, 2004; Ma, Roters, and Raabe, 2006a,b). In this context it should be
emphasized that the finite element method itself is not the actual model but the
variational solver for the underlying constitutive equations. Since its first introduc-
tion by Peirce et al. (1982), the CPFE method has matured into a whole family of
constitutive and numerical formulations which have been applied to a broad variety
of crystal mechanical problems. See Table 1.1 for examples and Roters et al. (2010)
for a recent review.

In this book we give an overview of this exiting simulation method. In Part One
we introduce the fundamentals of the approach by briefly reiterating the basics of
the underlying metallurgical mechanisms, of continuum mechanics, and of the
finite element method.

Subsequently, in Part Two, we discuss the details of classical and more advanced
dislocation-based constitutive models which are currently used in this field. In this
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1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method 7

Table 1.1 Some examples for different applications of the crystal plasticity finite element (CPFE)
method.

Application of the CPFE
method

References

Forming, deep drawing,
process modeling, cup
drawing, springback, earing,
wire drawing, extrusion,
anisotropy, design

Beaudoin et al. (1993), Beaudoin et al. (1994), Neale
(1993), Kalidindi and Schoenfeld (2000), Nakamachi, Xie,
and Harimoto (2001), Zhao et al. (2001), Xie and
Nakamachi (2002), Raabe et al. (2002a) McGarry et al.
(2004), Raabe and Roters (2004), Zhao et al. (2004a), Tugcu
et al. (2004), Delannay et al. (2005), Li, Kalidindi, and
Beyerlein (2005), Raabe, Wang, and Roters
(2005), Tikhovskiy, Raabe, and Roters (2006), Delannay,
Jacques, and Kalidindi (2006), Chen, Lee, and To
(2007), Raabe (2007), Nakamachi, Tam, and Morimoto
(2007), Ocenasek et al. (2007), Tikhovskiy, Raabe, and
Roters (2007), Li, Donohue, and Kalidindi (2008c), Li et al.
(2008b), Zhuang et al. (2008), Delannay et al.
(2009), Zamiri, Bieler, and Pourboghrat (2009)

Surface roughening, ridging,
roping, thin-film mechanics

Becker (1998), Raabe et al. (2003), Zhao, Radovitzky, and
Cuitino (2004b), Yue (2005), Siska, Forest, and Gumbsch
(2007), Zhao et al. (2008)

Damage, fatigue, cyclic
loading, void growth, fretting

Bruzzi et al. (2001), Turkmen, Dawson, and Miller
(2002), Goh, Neu, and McDowell (2003), Turkmen et al.
(2003), Kysar, Gan, and Mendez-Arzuza (2005), Dick and
Cailletaud (2006), Sinha and Ghosh (2006), Potirniche et al.
(2006), Zhang and McDowell (2007), Cheong, Smillie, and
Knowles (2007), Dunne, Walker, and Rugg (2007a), Liu et al.
(2007), Bieler et al. (2009), Kumar et al. (2008), Mayeur,
McDowell, and Neu (2008), Patil et al. (2008), Watanabe et
al. (2008), McDowell (2008), Mayama, Sasaki, and Kuroda
(2008), Borg, Niordson, and Kysar (2008)

Creep, high-temperature
deformation, diffusion
mechanisms

McHugh and Mohrmann (1997) Balasubramanian and
Anand (2002), Hasija et al. (2003), Bower and Wininger
(2004), Venkatramani, Ghosh, and Mills (2007), Agarwal et
al. (2007), Venkataramani, Kirane, and Ghosh (2008), Xu et
al. (2009)

Nanoindentation, pillar testing,
microbending, microscale
deformation, miniaturized
mechanical testing

Wang et al. (2004), Zaafarani et al. (2006), You et al.
(2006), Raabe, Ma, and Roters (2007a), Casals, Ocenasek,
and Alcala (2007), Zaafarani et al. (2008), Alcala, Casals, and
Ocenasek (2008), Weber et al. (2008), Xu et al. (2009), Demir
et al. (2009)
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8 1 Introduction to Crystalline Anisotropy and the Crystal Plasticity Finite Element Method

Table 1.1 Some examples . . . (continued).

Application of the CPFE
method

References

Grain boundary mechanics,
Hall–Petch behavior, grain
interaction, grain size effects,
strain gradient effects,
nonlocal formulations,
interface mechanics,
superplasticity

Becker and Panchanadeeswaran (1995) Mika and Dawson
(1998), Acharya and Beaudoin (2000), Meissonnier, Busso,
and O’Dowd (2001) Barbe et al. (2001), Raabe et al.
(2001), Evers et al. (2002), Park et al. (2002), Clarke,
Humphreys, and Bate (2003), Wei and Anand (2004), Fu,
Benson, and Meyers (2004), Evers, Brekelmans, and Geers
(2004a), Evers, Brekelmans, and Geers (2004b), Diard et al.
(2005), Bate and Hutchinson (2005), Wei, Su, and Anand
(2006), Murphy et al. (2006), Deka et al. (2006), Ma, Roters,
and Raabe (2006a), Ma, Roters, and Raabe (2006b), Counts
et al. (2008a), Gurtin, Anand, and Lele
(2007), Venkatramani, Ghosh, and Mills (2007), Okumura
et al. (2007), Gerken and Dawson (2008b), Gerken and
Dawson (2008a), Kuroda and Tvergaard (2008a), Bitzek et al.
(2008), Borg, Niordson, and Kysar (2008), Li et al. (2009)

In-grain texture formation,
grain-scale mechanics,
mesoscale, nonuniform
deformation, texture evolution,
texture stability, anisotropy

Peirce et al. (1982), Peirce, Asaro, and Needleman
(1983), Asaro and Needleman (1985) Becker (1991), Becker
et al. (1991), Bronkhorst, Kalidindi, and Anand
(1992), Kalidindi, Bronkhorst, and Anand (1992), Beaudoin
et al. (1995), Becker and Panchanadeeswaran
(1995), Beaudoin, Mecking, and Kocks (1996), Beaudoin,
Mecking, and Kocks (1996), Sarma and Dawson
(1996b), Sarma and Dawson (1996a), Bertram, Böhlke, and
Kraska (1997), Mika and Dawson (1998), Sarma,
Radhakrishnan, and Zacharia (1998), Forest (1998), Mika
and Dawson (1999), Miehe, Schröder, and Schotte
(1999), Bhattacharyya et al. (2001), Raabe et al. (2001), Miller
and Turner (2001), Kalidindi (2001), Balasubramanian and
Anand (2002), Van Houtte, Delannay, and Kalidindi
(2002), Delannay, Kalidindi, and Van Houtte (2002), Raabe,
Zhao, and Mao (2002b), Raabe et al. (2002c) Sachtleber,
Zhao, and Raabe (2002), Kim and Oh (2003), Clarke,
Humphreys, and Bate (2003), Choi (2003), Zaefferer et al.
(2003), Erieau and Rey (2004), Roters et al. (2004), Bate and
An (2004), Raabe, Zhao, and Roters (2004b), Li, Van Houtte,
and Kalidindi (2004), Sarma and Radhakrishnan
(2004), Anand (2004), Roters, Jeon-Haurand, and Raabe
(2005), Van Houtte et al. (2005), Li, Kalidindi, and Beyerlein
(2005), Van Houtte et al. (2006), Delannay, Jacques, and
Kalidindi (2006), Tang et al. (2006), Tikhovskiy, Raabe, and
Roters (2006), Kim and Oh (2006), Murphy et al.
(2006), daFonseca et al. (2006), You et al. (2006), Musienko
et al. (2007), Han and Dawson (2007), Lee, Wang, and
Anderson (2007), Tikhovskiy, Raabe, and Roters
(2007), Zhao et al. (2008), Mayeur, McDowell, and Neu
(2008), Delannay et al. (2009) Zhang et al. (2009)
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Table 1.1 Some examples . . . (continued).

Application of the CPFE
method

References

Dislocation-based constitutive
modeling

Arsenlis and Parks (1999), Arsenlis and Parks
(2002), Arsenlis and Tang (2003), Arsenlis et al.
(2004), Evers et al. (2002), Evers, Brekelmans, and Geers
(2004b), Cheong and Busso (2004), Ma and Roters
(2004), Evers, Brekelmans, and Geers (2004a), Ma, Roters,
and Raabe (2006a), Ma, Roters, and Raabe
(2006b), McDowell (2008), Li et al. (2009)

Deformation twinning Kalidindi (1998), Staroselsky and Anand (1998), Marketz et
al. (2002), Staroselskya and Anand (2003), Marketz, Fischer,
and Clemens (2003), Salem, Kalidindi, and Semiatin (2005)

Martensite mechanics, phase
transformation, shape memory

Marketz and Fischer (1994), Marketz and Fischer
(1995), Tomita and Iwamoto (1995), Diani, Sabar, and
Berveiller (1995), Diani and Parks (1998), Cherkaoui,
Berveiller, and Sabar (1998), Cherkaoui, Berveiller, and
Lemoine (2000), Thamburaja and Anand (2001), Tomita
and Iwamoto (2001), Govindjee and Miehe (2001), Anand
and Gurtin (2003), Turteltaub and Suiker
(2005), Thamburaja (2005), Lan et al. (2005), Turteltaub and
Suiker (2006b), Tjahjanto, Turteltaub, and Suiker
(2008), Geers and Kouznetsova (2007),

Multiphase mechanics Hartig and Mecking (2005), Tjahjanto, Roters, and
Eisenlohr (2007), Mayeur, McDowell, and Neu (2008), Inal,
Simha, and Mishra (2008), Vogler and Clayton (2008)

Crystal plasticity and
recrystallization

Bate (1999), Raabe and Becker (2000), Raabe
(2000), Radhakrishnan et al. (2000), Raabe (2002), Takaki et
al. (2007), Raabe (2007), Semiatin et al. (2007), Zambaldi et
al. (2007), Loge et al. (2008)

Numerical aspects, finite
element shape effects, mesh
dependence, accuracy, robust
integration methods, texture
discretization

Miehe (1996), Bachu and Kalidindi (1998), Harewood and
McHugh (2006), Amirkhizi and Nemat-Nasser
(2007), Harewood and McHugh (2007), Kuchnicki, Cuitino,
and Radovitzky (2006), Melchior and Delannay (2006), Zhao
et al. (2007), Li, Yang, Sun (2008a), Eisenlohr and Roters
(2008), Ritz and Dawson (2009), Barton et al. (2004), Gerken
and Dawson (2008b)

context we explain the representation of dislocation slip, displacive transformations
such as martensite formation and mechanical twinning, and the failure mecha-
nism within such a variational framework. Also, we address homogenization and
numerical aspects associated with the finite element solution of crystal plasticity
problems.

Finally, Part Three presents a number of microscopic, mesoscopic, and macro-
scopic applications from the field of CPFE modeling.
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