Contents

List of Contributors XIII
Preface XXI

1 Minicircle Patents: A Short IP Overview of Optimizing Nonviral DNA Vectors 1
 Martin Grund and Martin Schleef
 References 6

2 Operator–Repressor Titration: Stable Plasmid Maintenance without Selectable Marker Genes 7
 Rocky M. Cranenburgh
 2.1 Introduction 7
 2.2 Antibiotics and Metabolic Burden 7
 2.3 The Mechanism of ORT 8
 2.4 ORT Strain Development 9
 2.5 ORT Miniplasmids 12
 2.6 DNA Vaccine and Gene Therapy Vectors 13
 2.7 ORT-VAC: Plasmid-Based Vaccine Delivery Using Salmonella enterica 14
 2.8 Recombinant Protein Expression 18
 2.9 Conclusions and Future Developments 19
 References 19

3 Selection by RNA–RNA Interaction: Maximally Minimized Antibiotic Resistance-Free Plasmids 23
 Juergen Mairhofer and Reingard Grabherr
 3.1 Gene Therapy and DNA Vaccines: Emerging Technologies 23
 3.1.1 Therapeutic Plasmids: General Design Principles 24
 3.2 Therapeutic Plasmids: Novel Design and the Problem of Selection 25
 3.2.1 Replication Control of ColE1-Type Plasmids as an Alternative Selection Marker 26
 3.2.2 The MINIback Concept: Selection by RNA–RNA Interaction 28
 3.2.3 Improved Production Processes by MINIback Plasmids 30
3.2.4 Improving Sequence Composition 32
3.2.5 Efficient Gene Transfer 32
3.3 Conclusions 33
Acknowledgments 33
References 33

4 Plasmid-Based Medicinal Products – Focus on pFAR: A Miniplasmid Free of Antibiotic Resistance Markers 37
Corinne Marie, Mickael Quiviger, Helen Foster, George Dickson, and Daniel Scherman

4.1 Introduction: Rationale for the Development of Biosafe DNA Plasmid Vectors 37
4.2 Specific Requirements for the Use of DNA Product as Medicines 39
4.2.1 Requirements for Plasmid Quality and Purity 39
4.2.2 Requirements for the Removal of Antibiotic Resistance Markers from Plasmid DNA 40
4.2.2.1 Requirements for Biosafe Plasmids 40
4.2.2.2 Positive Impact on the Removal of Antibiotic Resistance Markers 41
4.2.2.3 Effect of Plasmid Size on Gene Transfer Efficiency In Vitro and In Vivo 41
4.3 Nonviral Gene Vectors Devoid of Antibiotic Resistance Markers 43
4.3.1 Generalities 43
4.3.2 Selection Systems Devoid of Antibiotic Resistance Markers 43
4.3.2.1 Complementation of Host Auxotrophy by a Function-Encoded Plasmid 43
4.3.2.2 The Operator–Repressor Titration (ORT) System 44
4.3.2.4 RNA-Based Selection Marker 44
4.3.2.5 Suppression of a Nonsense Mutation 45
4.4 The pFAR Plasmid Family 46
4.4.1 Description of the Antibiotic-Free Selection System 46
4.4.2 pFAR Vectors Promote Efficient Expression in Several Types of Mammalian Cells 49
4.4.2.1 In Vitro Transfection Study 49
4.4.2.2 In Vivo Transfection Studies 50
4.4.3 Concluding Remarks on the pFAR4 Biosafe Miniplasmid 51
4.5 Concluding Remarks and Perspectives 52
Acknowledgments 53
References 53

5 Plasmid DNA Concatemers: Influence of Plasmid Structure on Transfection Efficiency 59
Christof Maucksch, Bronwen Connor, and Carsten Rudolph

5.1 Introduction 59
5.2 Plasmid DNA Topology and Size 60
5.3 Plasmid DNA Concatemers 62
5.4 Conclusions 67
Acknowledgments 67
References 68

6 Analytical Tools in Minicircle Production 71
Anja Rischmüller, Martina Viehues, Mareike Dieding, Markus Blaesen, Marco Schmeer, Ruth Baier, Dario Anselmetti, and Martin Schleef

6.1 Introduction 71
6.1.1 Gene Transfer for Therapy, Vaccination, and Stem Cells 71
6.1.2 Plasmids 72
6.1.3 Minicircle Systems 73
6.2 Production of Minicircles 74
6.2.1 The Parental Plasmid 74
6.2.2 Cultivation and Induction 74
6.2.3 Minicircle Preparation 77
6.3 Analytics of Minicircle Production 79
6.3.1 In-Process Control 79
6.3.1.1 Atomic Force Microscopy 79
6.3.1.2 Capillary Gel Electrophoresis 81
6.3.1.3 Continuous Flow Separation in Microfluidic Channels 82
6.3.2 Finished Product Control 86
6.4 Future Goals 88
Acknowledgments 88
References 89

7 Utilizing Minicircle Vectors for the Episomal Modification of Cells 93
Orestis Argyros, Suet-Ping Wong, Charles Coutelle, and Richard P. Harbottle

7.1 Introduction 93
7.2 Studies that Show Passive Episomal Maintenance of Minicircles In Vivo 94
7.3 Principles of Generating Minicircle Vectors Able to Support Episomal Maintenance 97
7.3.1 Episomal Maintenance of Minicircle S/MAR Vectors Generated by Flp Recombinase In Vitro 98
7.3.2 Episomal Maintenance of Minicircle S/MAR Vectors Generated Using Cre Recombinase In Vitro 99
7.3.3 Episomal Maintenance of S/MAR Vectors in Bovine and Murine Zygotes 101
7.4 Episomal Maintenance of S/MAR Minicircles In Vivo 102
7.5 Potential of Episomal Replication of S/MAR Minicircle Vectors 104
7.6 Possible Mechanisms Promoting the Episomal Maintenance of Minicircle Vectors 105
7.6.1 Histone Modifications 106
7.6.2 CpG Dinucleotide Content Reduction 106
8 Replicating Minicircles: Overcoming the Limitations of Transient and Stable Expression Systems 115
Kristina Nehlsen, Sandra Broll, Raju Kandimalla, Niels Heinz, Markus Heine, Stefanie Binius, Axel Schambach, and Jürgen Bode

8.1 Gene Therapy: The Advent of Novel Vector Vehicles 115
8.1.1 Nonviral Vectors Avoiding Genomic Disturbances 116
8.1.2 Independent Expression Units: Chromatin Domains 116
8.1.2.1 S/MARs: a Unifying Principle 118
8.1.2.2 S/MAR Actions Are Multifold and Context Dependent 119
8.1.2.3 Stress-Induced Duplex Destabilization: a Unifying Property of S/MARs 121
8.1.2.4 Chromosome-Based Expression Strategies: Episomes and/or Predetermined Integration Sites (RMCE) 123
8.2 Replicating Nonviral Episomes 123
8.2.1 Can the Yeast ARS Principle Be Verified for Mammalian Cells? 125
8.2.2 ARS and S/MARs: Common (SIDD-) Properties 125
8.2.3 S/MAR Plasmids: Verification of the Concept 126
8.2.3.1 Transcription into the S/MAR: Directionality and Rate 126
8.2.3.2 Cell and Nuclear Permeation 128
8.2.3.3 Nuclear Association Sites 129
8.2.3.4 RMCE-Based Elaboration Following Establishment 130
8.2.4 Remaining Shortcomings and Their Solution 132
8.2.4.1 Establishment and Maintenance: the EBV Paradigm 132
8.2.4.2 Vector Size Limitations 136
8.3 Minimalization Approaches 137
8.3.1 Oligomerizing S/MAR Modules: pMARS and Its Properties 139
8.3.2 Replicating Minicircles: a Solution with Great Promise 140
8.3.2.1 Establishment and Maintenance Parameters 141
8.3.2.2 Clonal Behavior 141
8.3.2.3 Bi-MC Systems 143
8.3.2.4 MC Size Reduction: “In Vivo Evolution” 144
8.3.2.5 Transcriptional Termination and Polyadenylation: an Intricate Interplay 146
8.3.2.6 Episomal Status: Proof and Persistence 147
8.3.3 Emerging Extensions and Refinements 149
8.3.3.1 Combination of Excision and RMCE Strategies 151
8.3.3.2 MC Withdrawal at Will 153
8.3.3.3 Pronuclear Injection and Somatic Cell Nuclear Transfer 155
8.3.3.4 From Cells to Organs 155
8.4 Summary and Outlook 156
Acknowledgments 157
References 158

9 Magnetofection of Minicircle DNA Vectors 165
Flavie Sicard, Cedric Sapet, Nicolas Laurent, Elodie Bertosio, Melanie Bertuzzi, and Olivier Zelphati

9.1 Introduction 165
9.2 Overview of Magnetofection Principles 167
9.3 Cellular Uptake 168
9.4 Diffusion through the Cytoplasm 169
9.5 Transgene Expression 169
9.6 Conclusions 172
References 173

10 Minicircle-Based Vectors for Nonviral Gene Therapy: In Vitro Characterization and In Vivo Application 177
Dennis Kobelt, Jutta Aumann, Martin Schleef, Marco Schmeer, Ulrike Stein, Peter M. Schlag, and Wolfgang Walther

10.1 Minicircle Technology for Nonviral Gene Therapy 177
10.2 Current Status of In Vivo Application of Minicircle Vectors 178
10.3 Jet Injection Technology for In Vivo Transfer of Naked DNA 180
10.4 Comparative Performance Analyses of Minicircle Vectors 183
10.5 In Vivo Application of Minicircle DNA by Jet Injection 185
References 186

11 Episomal Expression of Minicircles and Conventional Plasmids in Mammalian Embryos 189
Wiebke Garrels, Khursheed Iqbal, and Wilfried A. Kues

11.1 Introduction 189
11.2 Fate of Plasmids and Minicircles After Injection into Mammalian Embryos 191
11.2.1 Minicircle- and Plasmid-Mediated Expression in Early Embryos and Fetuses 191
11.2.2 Expression of Functional Genes in Preimplantation Embryos 195
11.3 Discussion 198
References 199

12 Tissue-Targeted Gene Electrodelivery of Minicircle DNA 203
Sophie Chabot, Muriel Golzio, and Justin Teissié

12.1 Introduction 203
12.2 Plasmid DNA Electrotransfer: From Principle to Technical Design 204
12.2.1 Mechanism of Gene Electrotransfer 204
12.2.2 Preclinical Applications 205
12.3 Implementation for Efficient Tissue-Targeted Gene Delivery 206
12.3.1 Design of DNA Vector 206
12.3.2 In Vitro Minicircle Electrotransfer 206
12.3.3 In Vivo MC Electrotransfer 207
12.3.3.1 Muscle 207
12.3.3.2 Tumor 208
12.3.3.3 Skin 209
12.4 Conclusions 209
Acknowledgments 209
References 210

13 Increased Efficiency of Minicircles Versus Plasmids Under Gene Electrotransfer Suboptimal Conditions: an Influence of the Extracellular Matrix 215
Vanessa Joubert, Franck M. André, Marco Schmeer, Martin Schleef, and Lluis M. Mir
13.1 Introduction 215
13.2 Methods 215
13.2.1 Cell Culture and Animals 215
13.2.2 Minicircle and Plasmid 216
13.2.3 Electrotransfer 216
13.2.4 Determination of the Reporter Gene (Luciferase) Activity 216
13.2.5 Data Analysis 217
13.3 Results 217
13.3.1 In Vitro 217
13.3.2 In Vivo 218
13.4 Discussion 220
13.5 Conclusions 223
Acknowledgments 224
References 224

Index 227