Contents

List of Contributors XIII Perface XXI

1 Minicircle Patents: A Short IP Overview of Optimizing Nonviral DNA Vectors 1 Martin Grund and Martin Schleef References 6

2 Operator–Repressor Titration: Stable Plasmid Maintenance without Selectable Marker Genes 7

Rocky M. Cranenburgh

- 2.1 Introduction 7
- 2.2 Antibiotics and Metabolic Burden 7
- 2.3 The Mechanism of ORT 8
- 2.4 ORT Strain Development 9
- 2.5 ORT Miniplasmids 12
- 2.6 DNA Vaccine and Gene Therapy Vectors 13
- 2.7 ORT-VAC: Plasmid-Based Vaccine Delivery Using Salmonella enterica 14
- 2.8 Recombinant Protein Expression 18
- 2.9 Conclusions and Future Developments 19 References 19
- 3 Selection by RNA–RNA Interaction: Maximally Minimized Antibiotic Resistance-Free Plasmids 23

Juergen Mairhofer and Reingard Grabherr

- 3.1 Gene Therapy and DNA Vaccines: Emerging Technologies 23
- 3.1.1 Therapeutic Plasmids: General Design Principles 24
- 3.2 Therapeutic Plasmids: Novel Design and the Problem of Selection 25
- 3.2.1 Replication Control of ColE1-Type Plasmids as an Alternative Selection Marker 26
- 3.2.2 The MINIback Concept: Selection by RNA–RNA Interaction 28
- 3.2.3 Improved Production Processes by MINIback Plasmids 30

VII

VIII Contents

3.2.4 3.2.5 3.3	Improving Sequence Composition 32 Efficient Gene Transfer 32 Conclusions 33 Acknowledgments 33 References 33
4	Plasmid-Based Medicinal Products – Focus on pFAR: A Miniplasmid Free of Antibiotic Resistance Markers 37 Corinne Marie, Mickaël Quiviger, Helen Foster,
4.1	George Dickson, and Daniel Scherman Introduction: Rationale for the Development of Biosafe DNA Plasmid Vectors 37
4.2	Specific Requirements for the Use of DNA Product as Medicines 39
4.2.1	Requirements for Plasmid Quality and Purity 39
4.2.2	Requirements for the Removal of Antibiotic Resistance Markers from Plasmid DNA 40
4.2.2.1	Requirements for Biosafe Plasmids 40
4.2.2.2	Positive Impact on the Removal of Antibiotic Resistance Markers 41
4.2.2.3	Effect of Plasmid Size on Gene Transfer Efficiency In Vitro and
	In Vivo 41
4.3	Nonviral Gene Vectors Devoid of Antibiotic Resistance Markers 43
4.3.1	Generalities 43
4.3.2	Selection Systems Devoid of Antibiotic Resistance Markers 43
4.3.2.1	Complementation of Host Auxotrophy by a Function-Encoded Plasmid <i>43</i>
4.3.2.2	The Operator–Repressor Titration (ORT) System 44
4.3.2.3	Protein-Based Antidote/Poison Selection Systems 44
4.3.2.4	RNA-Based Selection Marker 44
4.3.2.5	Suppression of a Nonsense Mutation 45
4.4	The pFAR Plasmid Family 46
4.4.1	Description of the Antibiotic-Free Selection System 46
4.4.2	pFAR Vectors Promote Efficient Expression in Several Types of Mammalian Cells 49
4.4.2.1	In Vitro Transfection Study 49
4.4.2.2	In Vivo Transfection Studies 50
4.4.3	Concluding Remarks on the pFAR4 Biosafe Miniplasmid 51
4.5	Concluding Remarks and Perspectives 52 Acknowledgments 53 References 53
5	Plasmid DNA Concatemers: Influence of Plasmid Structure on Transfection Efficiency 59 Christof Maucksch, Bronwen Connor, and Carsten Rudolph
5.1	Introduction 59
5.2	Plasmid DNA Topology and Size 60
3.4	

- 5.3 Plasmid DNA Concatemers 62
- 5.4 Conclusions 67 Acknowledgments 67 References 68

6 Analytical Tools in Minicircle Production 71

Anja Rischmüller, Martina Viefhues, Mareike Dieding, Markus Blaesen, Marco Schmeer, Ruth Baier, Dario Anselmetti, and Martin Schleef

- 6.1 Introduction 71
- 6.1.1 Gene Transfer for Therapy, Vaccination, and Stem Cells 71
- 6.1.2 Plasmids 72
- 6.1.3 Minicircle Systems 73
- 6.2 Production of Minicircles 74
- 6.2.1 The Parental Plasmid 74
- 6.2.2 Cultivation and Induction 74
- 6.2.3 Minicircle Preparation 77
- 6.3 Analytics of Minicircle Production 79
- 6.3.1 In-Process Control 79
- 6.3.1.1 Atomic Force Microscopy 79
- 6.3.1.2 Capillary Gel Electrophoresis 81
- 6.3.1.3 Continuous Flow Separation in Microfluidic Channels 82
- 6.3.2 Finished Product Control 86

6.4 Future Goals 88 Acknowledgments 88 References 89

7.1

7 Utilizing Minicircle Vectors for the Episomal Modification of Cells 93

Orestis Argyros, Suet-Ping Wong, Charles Coutelle, and Richard P. Harbottle Introduction 93

- 7.2 Studies that Show Passive Episomal Maintenance of Minicircles In Vivo 94
- 7.3 Principles of Generating Minicircle Vectors Able to Support Episomal Maintenance 97
- 7.3.1 Episomal Maintenance of Minicircle S/MAR Vectors Generated by Flp Recombinase *In Vitro* 98
- 7.3.2 Episomal Maintenance of Minicircle S/MAR Vectors Generated Using Cre Recombinase *In Vitro* 99
- 7.3.3 Episomal Maintenance of S/MAR Vectors in Bovine and Murine Zygotes 101
- 7.4 Episomal Maintenance of S/MAR Minicircles In Vivo 102
- 7.5 Potential of Episomal Replication of S/MAR Minicircle Vectors 104
- 7.6 Possible Mechanisms Promoting the Episomal Maintenance of Minicircle Vectors *105*
- 7.6.1 Histone Modifications 106
- 7.6.2 CpG Dinucleotide Content Reduction 106

X Contents

7.6.3	Vector Establishment in the Correct Nuclear Compartment 107
7.6.4	Access to Replication Machinery by S/MARs 107
7.7	Conclusions 110
	References 110
8	Replicating Minicircles: Overcoming the Limitations of Transient and
	Stable Expression Systems 115
	Kristina Nehlsen, Sandra Broll, Raju Kandimalla, Niels Heinz, Markus
	Heine, Stefanie Binius, Axel Schambach, and Jürgen Bode
8.1	Gene Therapy: The Advent of Novel Vector Vehicles 115
8.1.1	Nonviral Vectors Avoiding Genomic Disturbances 116
8.1.2	Independent Expression Units: Chromatin Domains 116
8.1.2.1	S/MARs: a Unifying Principle 118
8.1.2.2	S/MAR Actions Are Multifold and Context Dependent 119
8.1.2.3	Stress-Induced Duplex Destabilization: a Unifying Property of S/MARs 121
8.1.2.4	Chromosome-Based Expression Strategies: Episomes and/or
	Predetermined Integration Sites (RMCE) 123
8.2	Replicating Nonviral Episomes 123
8.2.1	Can the Yeast ARS Principle Be Verified for
	Mammalian Cells? 125
8.2.2	ARS and S/MARs: Common (SIDD-) Properties 125
8.2.3	S/MAR Plasmids: Verification of the Concept 126
8.2.3.1	Transcription into the S/MAR: Directionality and Rate 126
8.2.3.2	Cell and Nuclear Permeation 128
8.2.3.3	Nuclear Association Sites 129
8.2.3.4	RMCE-Based Elaboration Following Establishment 130
8.2.4	Remaining Shortcomings and Their Solution 132
8.2.4.1	Establishment and Maintenance: the EBV Paradigm 132
8.2.4.2	Vector Size Limitations 136
8.3	Minimalization Approaches 137
8.3.1	Oligomerizing S/MAR Modules: pMARS and Its Properties 139
8.3.2	Replicating Minicircles: a Solution with Great Promise 140
8.3.2.1	Establishment and Maintenance Parameters 141
8.3.2.2	Clonal Behavior 141
8.3.2.3	Bi-MC Systems 143
8.3.2.4	MC Size Reduction: "In Vivo Evolution" 144
8.3.2.5	Transcriptional Termination and Polyadenylation: an Intricate
	Interplay 146
8.3.2.6	Episomal Status: Proof and Persistence 147
8.3.3	Emerging Extensions and Refinements 149
8.3.3.1	Combination of Excision and RMCE Strategies 151
8.3.3.2	MC Withdrawal at Will 153
8.3.3.3	Pronuclear Injection and Somatic Cell Nuclear Transfer 155
8.3.3.4	From Cells to Organs 155

8.4 Summary and Outlook 156 Acknowledgments 157 References 158

9 Magnetofection of Minicircle DNA Vectors 165

Flavie Sicard, Cedric Sapet, Nicolas Laurent, Elodie Bertosio, Melanie Bertuzzi, and Olivier Zelphati

- 9.1 Introduction 165
- 9.2 Overview of Magnetofection Principles 167
- 9.3 Cellular Uptake 168
- 9.4 Diffusion through the Cytoplasm 169
- 9.5 Transgene Expression 169
- 9.6 Conclusions 172
 - References 173
- 10Minicircle-Based Vectors for Nonviral Gene Therapy: In Vitro
Characterization and In Vivo Application177

Dennis Kobelt, Jutta Aumann, Martin Schleef, Marco Schmeer, Ulrike Stein, Peter M. Schlag, and Wolfgang Walther

- 10.1Minicircle Technology for Nonviral Gene Therapy177
- 10.2 Current Status of *In Vivo* Application of Minicircle Vectors 178
- 10.3 Jet Injection Technology for *In Vivo* Transfer of Naked DNA 180
- 10.4 Comparative Performance Analyses of Minicircle Vectors 183
- 10.5 *In Vivo* Application of Minicircle DNA by Jet Injection 185 References 186
- 11 Episomal Expression of Minicircles and Conventional Plasmids in Mammalian Embryos 189

Wiebke Garrels, Khursheed Iqbal, and Wilfried A. Kues

- 11.1 Introduction 189
- 11.2 Fate of Plasmids and Minicircles After Injection into Mammalian Embryos 191
- 11.2.1 Minicircle- and Plasmid-Mediated Expression in Early Embryos and Fetuses 191
- 11.2.2 Expression of Functional Genes in Preimplantation Embryos 195
- 11.3 Discussion 198 References 199
- 12 Tissue-Targeted Gene Electrodelivery of Minicircle DNA 203
 - Sophie Chabot, Muriel Golzio, and Justin Teissié
- 12.1 Introduction 203
- 12.2 Plasmid DNA Electrotransfer: From Principle to Technical Design 204
- 12.2.1 Mechanism of Gene Electrotransfer 204
- 12.2.2 Preclinical Applications 205
- 12.3 Implementation for Efficient Tissue-Targeted Gene Delivery 206

Contents

- 12.3.1 Design of DNA Vector 206
- 12.3.2 In Vitro Minicircle Electrotransfer 206
- 12.3.3 In Vivo MC Electrotransfer 207
- 12.3.3.1 Muscle 207
- 12.3.3.2 Tumor 208
- 12.3.3.3 Skin 209
- Conclusions 209 12.4 Acknowledgments 209 References 210
- 13 Increased Efficiency of Minicircles Versus Plasmids Under Gene Electrotransfer Suboptimal Conditions: an Influence of the Extracellular Matrix 215

Vanessa Joubert, Franck M. André, Marco Schmeer, Martin Schleef, and Lluis M. Mir

- 13.1 Introduction 215
- Methods 215 13.2
- Cell Culture and Animals 215 13.2.1
- Minicircle and Plasmid 216 13.2.2
- 13.2.3 Electrotransfer 216
- 13.2.4 Determination of the Reporter Gene (Luciferase) Activity 216
- 13.2.5 Data Analysis 217
- 13.3 Results 217
- 13.3.1 In Vitro 217
- 13.3.2 In Vivo 218
- 13.4 Discussion 220
- 13.5 Conclusions 223

Acknowledgments 224 References 224

Index 227

XII