Contents

Preface XIII List of Contributors XV

1 Materials Modeling – Challenges and Perspectives 1

Miguel Vaz Jr., Eduardo A. de Souza Neto, and Pablo Andreś Muñoz-Rojas

V

- 1.1 Introduction 1
- 1.2 Modeling Challenges and Perspectives 3
- 1.2.1 Mechanical Degradation and Failure of Ductile Materials 3
- 1.2.1.1 Remarks 7
- 1.2.2 Modeling of Cellular Structures 8
- 1.2.2.1 Remarks 14
- 1.2.3 Multiscale Constitutive Modeling 15
- 1.3 Concluding Remarks 18 Acknowledgments 19 References 19

2 Local and Nonlocal Modeling of Ductile Damage 23

José Manuel de Almeida César de Sá, Francisco Manuel Andrade Pires, and Filipe Xavier Costa Andrade

- 2.1 Introduction 23
- 2.2 Continuum Damage Mechanics 25
- 2.2.1 Basic Concepts of CDM 25
- 2.2.2 Ductile Plastic Damage 26
- 2.3 Lemaitre's Ductile Damage Model 27
- 2.3.1 Original Model 27
- 2.3.1.1 The Elastic State Potential 28
- 2.3.1.2 The Plastic State Potential 29
- 2.3.1.3 The Dissipation Potential 29
- 2.3.1.4 Evolution of Internal Variables 30
- 2.3.2 Principle of Maximum Inelastic Dissipation 31
- 2.3.3 Assumptions Behind Lemaitre's Model 32
- 2.4 Modified Local Damage Models 33
- 2.4.1 Lemaitre's Simplified Damage Model 33

VI Contents

2.4.1.1	Constitutive Model 33
2.4.1.2	Numerical Implementation 34
2.4.2	Damage Model with Crack Closure Effect 37
2.4.2.1	Constitutive Model 37
2.4.2.2	Numerical Implementation 40
2.5	Nonlocal Formulations 42
2.5.1	Aspects of Nonlocal Averaging 44
2.5.1.1	The Averaging Operator 44
2.5.1.2	Weight Functions 45
2.5.2	Classical Nonlocal Models of Integral Type 45
2.5.2.1	Nonlocal Formulations for Lemaitre's Simplified Model 46
2.5.3	Numerical Implementation of Nonlocal Integral Models 47
2.5.3.1	Numerical Evaluation of the Averaging Integral 48
2.5.3.2	Global Version of the Elastic Predictor/Return Mapping Algorithm 49
2.6	Numerical Analysis 57
2.6.1	Axisymmetric Analysis of a Notched Specimen 57
2.6.2	Flat Grooved Plate in Plane Strain 62
2.6.3	Upsetting of a Tapered Specimen 63
2.6.3.1	Damage Prediction Using the Lemaitre's Simplified Model 65
2.6.3.2	Damage Prediction Using the Lemaitre's Model with Crack Closure
	Effect 67
2.7	Concluding Remarks 68
	Acknowledgments 69
	References 69
3	Recent Advances in the Prediction of the Thermal Properties of Metallic
	Hollow Sphere Structures 73
	Thomas Fiedler, Irina V. Belova, Graeme E. Murch, and Andreas Öchsner
3.1	Introduction 73
3.2	Methodology 74
3.2.1	Lattice Monte Carlo Method 75
3.2.2	Finite Element Method 77
3.2.2.1	Basics of Heat Transfer 77
3.2.2.2	Weighted Residual Method 77
3.2.2.3	Discretization and Principal Finite Element Equation 78
3.2.3	Numerical Calculation Models 89
3.3	Finite Element Analysis on Regular Structures 91
3.4	
2 5	Finite Element Analysis on Cubic-Symmetric Models 94
3.5	Finite Element Analysis on Cubic-Symmetric Models 94 LMC Analysis of Models of Cross Sections 98
3.5 3.5.1	Finite Element Analysis on Cubic-Symmetric Models 94 LMC Analysis of Models of Cross Sections 98 Modeling 98
3.5 3.5.1 3.5.2	Finite Element Analysis on Cubic-Symmetric Models 94 LMC Analysis of Models of Cross Sections 98 Modeling 98 Results 101
3.5 3.5.1 3.5.2 3.6	Finite Element Analysis on Cubic-Symmetric Models 94 LMC Analysis of Models of Cross Sections 98 Modeling 98 Results 101 Computed Tomography Reconstructions 103
3.5 3.5.1 3.5.2 3.6 3.6.1	Finite Element Analysis on Cubic-Symmetric Models 94 LMC Analysis of Models of Cross Sections 98 Modeling 98 Results 101 Computed Tomography Reconstructions 103 Computed Tomography 104
3.5 3.5.1 3.5.2 3.6 3.6.1 3.6.2	Finite Element Analysis on Cubic-Symmetric Models 94 LMC Analysis of Models of Cross Sections 98 Modeling 98 Results 101 Computed Tomography Reconstructions 103 Computed Tomography 104 Numerical Analysis 104
3.5 3.5.1 3.5.2 3.6 3.6.1 3.6.2 3.6.2.1	Finite Element Analysis on Cubic-Symmetric Models 94 LMC Analysis of Models of Cross Sections 98 Modeling 98 Results 101 Computed Tomography Reconstructions 103 Computed Tomography 104 Numerical Analysis 104 Microstructure 105

- 3.6.2.2 Mesostructure 106
- 3.6.3 Results 106
- 3.7 Conclusions 108 References 109

4 Computational Homogenization for Localization and Damage 111

Thierry J. Massart, Varvara Kouznetsova, Ron H. J. Peerlings, and Marc G. D. Geers

- 4.1 Introduction 111
- 4.1.1 Mechanics Across the Scales 111
- 4.1.2 Some Historical Notes on Homogenization 112
- 4.1.3 Separation of Scales 113
- 4.1.4 Computational Homogenization and Its Application to Damage and Fracture 114
- 4.2 Continuous–Continuous Scale Transitions 115
- 4.2.1 First-Order Computational Homogenization 115
- 4.2.2 Second-Order Computational Homogenization 119
- 4.2.3 Application of the Continuous–Continuous Homogenization Schemes to Ductile Damage 121
- 4.3 Continuous–Discontinuous Scale Transitions 125
- 4.3.1 Scale Transitions and RVE for Initially Periodic Materials 126
- 4.3.1.1 First-Order Scale Transitions 126
- 4.3.1.2 Choice of the Mesoscopic Representative Volume Element 127
- 4.3.1.3 Boundary Conditions for the Unit Cell 128
- 4.3.2 Localization of Damage at the Fine and Coarse Scales 129
- 4.3.2.1 Fine-Scale Localization Implicit Gradient Damage 129
- 4.3.2.2 Detection of Coarse-Scale Localization as a Bifurcation into an Inhomogeneous Deformation Pattern 130
- 4.3.2.3 Illustration of the Localization Analysis 132
- 4.3.2.4 Identification and Selection of the Localization Orientation 135
- 4.3.3 Localization Band Enhanced Multiscale Solution Scheme 135
- 4.3.3.1 Introduction of the Localization Band 136
- 4.3.3.2 Coupled Multiscale Scheme for Localization 137
- 4.3.4 Scale Transition Procedure for Localized Behavior 139
- 4.3.4.1 Multiscale Solution Procedure 139
- 4.3.4.2 Causes of Snapback in the Averaged Material Response 139
- 4.3.4.3 Strain Jump Control for Embedded Band Snapback 140
- 4.3.4.4 Dissipation Control for Unit-Cell Snapback 141
- 4.3.5 Solution Strategy and Computational Aspects 142
- 4.3.5.1 Governing Equations for the Macroscopic and Mesoscopic Solution Procedures 142
- 4.3.5.2 Extraction of Consistent Tangent Stiffness for Unit-Cell Snapback Control 144
- 4.3.5.3 Discretization and Linearization of the Macroscopic Solution Procedure 144

VIII Contents

4.3.5.4	Introduction of Localization Bands upon Material Bifurcation 146
4.3.6	Applications and Discussion 147
4.3.6.1	Selection of Localized Solutions 147
4.3.6.2	Mesostructural Snapback in a Tension–Compression Test 149
4.3.6.3	Size Effect in a Shear–Compression Test 151
4.3.6.4	Masonry Shear Wall Test 152
4.4	Closing Remarks 159
	References 160
5	A Mixed Optimization Approach for Parameter Identification Applied to
	the Gurson Damage Model 165
	Pablo Andreś Muñoz-Rojas, Luiz Antonio B. da Cunda, Eduardo L.
	Cardoso, Miguel Vaz Jr., and Guillermo Juan Creus
5.1	Introduction 165
5.2	Gurson Damage Model 166
5.2.1	Influence of the Parameter Values on Behavior of the Damage
	Model 171
5.2.2	Recent Developments and New Trends in the Gurson Model 175
5.3	Parameter Identification 177
5.4	Optimization Methods – Genetic Algorithms and Mathematical
	Programming 179
5.4.1	Genetic Algorithms 180
5.4.1.1	Formulation 181
5.4.1.2	Implementation 184
5.4.2	Gradient-Based Methods 184
5.4.2.1	General Procedure 184
5.4.2.2	Sequential Linear Programming (SLP) 185
5.4.2.3	Globally Convergent Method of Moving Asymptotes (GCMMA) 185
5.5	Sensitivity Analysis 187
5.5.1	Modified Finite Differences and the Semianalytical Method 188
5.6	A Mixed Optimization Approach 192
5.7	Examples of Application 192
5.7.1	Low Carbon Steel at $25 \degree C$ 192
5.7.2	Aluminum Alloy at 400 °C 197
5.8	Concluding Remarks 200
	Acknowledgments 200
	References 201
6	Semisolid Metallic Alloys Constitutive Modeling for the Simulation of
	Thixoforming Processes 205
	Roxane Koeune and Jean-Philippe Ponthot
6.1	Introduction 205
6.2	Semisolid Metallic Alloys Forming Processes 207
6.2.1	Thixotropic Semisolid Metallic Alloys 208
6.2.2	Different Types of Semisolid Processing 209

- 6.2.2.1 Production of Spheroidal Microstructure 210
- 6.2.2.2 Reheating 212
- 6.2.2.3 Forming 213
- 6.2.3 Advantages and Disadvantages of Semisolid Processing 215
- 6.3 Rheological Aspects 216
- 6.3.1 Microscopic Point of View 216
- 6.3.1.1 Origins of Thixotropy 216
- 6.3.1.2 Transient Behavior 217
- 6.3.1.3 Effective Liquid Fraction 222
- 6.3.2 Macroscopic Point of View 222
- 6.3.2.1 Temperature Effects 222
- 6.3.2.2 Yield Stress 222
- 6.3.2.3 Macrosegregation 223
- 6.4 Numerical Background in Large Deformations 223
- 6.4.1 Kinematics in Large Deformations 223
- 6.4.1.1 Lagrangian Versus Eulerian Coordinate Systems 223
- 6.4.1.2 Deformation Gradient and Strain Rate Tensors 225
- 6.4.2 Finite Deformation Constitutive Theory 225
- 6.4.2.1 Principle of Objectivity 225
- 6.4.2.2 Different Classes of Materials 226
- 6.4.2.3 A Corotational Formulation 228
- 6.4.2.4 Linear Elastic Solid Material Model 229
- 6.4.2.5 Linear Newtonian Liquid Material Model 230
- 6.4.2.6 Hypoelastic Solid Material Models 231
- 6.4.2.7 Liquid Material Models 236
- 6.4.2.8 Comparison of Solid and Liquid Approaches 236
- 6.5 State-of-the-Art in FE-Modeling of Thixotropy 237
- 6.5.1 One-Phase Models 237
- 6.5.1.1 Apparent Viscosity Evolution 238
- 6.5.1.2 Yield Stress Evolution 243
- 6.5.2 Two-Phase Models 244
- 6.5.2.1 Two Coupled Fields 244
- 6.5.2.2 Coupling Sources 245
- 6.6 A Detailed One-Phase Model 246
- 6.6.1 Cohesion Degree 247
- 6.6.2 Liquid Fraction 248
- 6.6.3 Viscosity Law 248
- 6.6.4 Yield Stress and Isotropic Hardening 250
- 6.7 Numerical Applications 250
- 6.7.1 Test Description 250
- 6.7.2 Results Analysis 251
- 6.7.2.1 First Validation of the Model under Isothermal Conditions 251
- 6.7.2.2 Thermomechanical Analysis 252
- 6.7.2.3 Residual Stresses Analysis 253
- 6.7.2.4 Internal Variables Analysis 253

X Contents

6.8	Conclusion 254 References 255
7	Modeling of Powder Forming Processes; Application of a Three-invariant Cap Plasticity and an Enriched Arbitrary Lagrangian–Eulerian FE Method 257
	Amir R. Khoel
/.1	Introduction 25/
/.Z	Inree-Invariant Cap Plasticity 260
7.2.1	Commutation of Doubler Dispertity Material 202
/.Z.Z	Computation of Powder Property Matrix 264
/.Z.3	Model Assessment and Parameter Determination 265
7.2.3.1	Model Assessment 265
/.2.3.2	Parameter Determination 26/
/.5	Arbitrary Lagrangian–Eulerian Formulation 269
/.3.1	ALE Governing Equations 2/0
/.3.Z	ALE Einite Element Discretization 272
/.3.3 7.2.4	ALE FINITE Element Discretization 275
/.J.4 7 2 4 1	Matarial (Lagrangian) Dhaga 275
7.3.4.1	Smoothing Phase 276
7.3.4.2	Convection (Fulerian) Phase 278
7.3.4.3	Numerical Modeling of an Automotive Component 279
7.5.5	Enriched ALE Finite Element Method 282
7.4 1	The Extended FFM Formulation 283
742	An Enriched ALE Finite Element Method 286
7421	Level Set Undate 287
7422	Stress Undate and Numerical Integration 288
743	Numerical Modeling of the Coining Test 201
7.5	Conclusion 295
, 10	Acknowledgments 295
	References 296
8	Functionally Graded Piezoelectric Material Systems – A Multiphysics
	Perspective 301
	Wilfredo Montealegre Rubio, Sandro Luis Vatanabe, Gláucio Hermogenes
	Paulino, and Emílio Carlos Nelli Silva
8.1	Introduction 301
8.2	Piezoelectricity 302
8.3	Functionally Graded Piezoelectric Materials 304
8.3.1	Functionally Graded Materials (FGMs) 304
8.3.2	FGM Concept Applied to Piezoelectric Materials 306
8.4	Finite Element Method for Piezoelectric Structures 309
8.4.1	The Variational Formulation for Piezoelectric Problems 309
8.4.2	The Finite Element Formulation for Piezoelectric Problems 310

- 8.4.3 Modeling Graded Piezoelectric Structures by Using the FEM 312
- 8.5 Influence of Property Scale in Piezotransducer Performance 314
- 8.5.1 Graded Piezotransducers in Ultrasonic Applications 314
- 8.5.2 Further Consideration of the Influence of Property Scale: Optimal Material Gradation Functions 319
- 8.6 Influence of Microscale 322
- 8.6.1 Performance Characteristics of Piezocomposite Materials 326
- 8.6.1.1 Low-Frequency Applications 326
- 8.6.1.2 High-Frequency Applications 328
- 8.6.2 Homogenization Method 328
- Examples 332 8.6.3
- Conclusion 335 8.7 Acknowledgments 335 References 336

9 Variational Foundations of Large Strain Multiscale Solid Constitutive Models: Kinematical Formulation 341

Eduardo A. de Souza Neto and Raúl A. Feijóo

- 9.1 Introduction 341
- Large Strain Multiscale Constitutive Theory: Axiomatic Structure 343 9.2
- 9.2.1 Deformation Gradient Averaging and RVE Kinematics 346
- Consequence: Minimum RVE Kinematical Constraints 346 9.2.1.1
- Minimum Constraint on Displacement Fluctuations 347 9.2.1.2
- 9.2.2 Actual Constraints: Spaces of RVE Velocities and Virtual Displacements 348
- 9.2.3 Equilibrium of the RVE 349
- 9.2.3.1 Strong Form of Equilibrium 350
- 9.2.3.2 Solid-Void/Pore Interaction 350
- 9.2.4 Stress Averaging Relation 351
- 9.2.4.1 Macroscopic Stress in Terms of RVE Boundary Tractions and Body Forces 351
- 9.2.5 The Hill-Mandel Principle of Macrohomogeneity 352
- 9.3 The Multiscale Model Definition 353
- 9.3.1 The Microscopic Equilibrium Problem 354
- 9.3.2 The Multiscale Model: Well-Posed Equilibrium Problem 354
- Specific Classes of Multiscale Models: The Choice of V_{μ} 9.4 356
- Taylor Model 356 9.4.1
- The Taylor-Based Constitutive Functional: the Rule of Mixtures 357 9.4.1.1
- Linear RVE Boundary Displacement Model 359 9.4.2
- 9.4.3 Periodic Boundary Displacement Fluctuations Model 359
- 9.4.4 Minimum Kinematical Constraint: Uniform Boundary Traction 360
- Models with Stress Averaging in the Deformed RVE Configuration 361 9.5
- Problem Linearization: The Constitutive Tangent Operator 362 9.6
- Homogenized Constitutive Functional 363 9.6.1
- 9.6.2 The Homogenized Tangent Constitutive Operator 364

XII Contents

9.7	Time-Discrete Multiscale Models 366
9.7.1	The Incremental Equilibrium Problem 367
9.7.2	The Homogenized Incremental Constitutive Function 367
9.7.3	Time-Discrete Homogenized Constitutive Tangent 368
9.7.3.1	Taylor Model 369
9.7.3.2	The General Case 369
9.8	The Infinitesimal Strain Theory 371
9.9	Concluding Remarks 372
	Appendix 373
	Acknowledgments 376
	References 376
10	A Homogenization-Based Prediction Method of Macroscopic Yield Strength of Polycrystalline Metals Subjected to Cold-Working 379 Kenjiro Terada, Ikumu Watanabe, Masayoshi Akiyama, Shigemitsu Kimura, and Kouichi Kuroda
10.1	Introduction 379
10.2	Two-Scale Modeling and Analysis Based on Homogenization
10 2 1	Two-Scale Boundary Value Problem 383
10.2.2	Micro-Macro Coupling and Decoupling Schemes for the Two-Scale
101212	BVP 385
10.2.3	Method of Evaluating Macroscopic Yield Strength after Cold-Working 386
10.3	Numerical Specimens: Unit Cell Models with Crystal Plasticity 387
10.4	Approximate Macroscopic Constitutive Models 390
10.4.1	Definition of Macroscopic Yield Strength 391
10.4.2	Macroscopic Yield Strength at the Initial State 391
10.4.3	Approximate Macroscopic Constitutive Model 393
10.4.4	Parameter Identification for Approximate Macroscopic Constitutive Model 393
10.5	Macroscopic Yield Strength after Three-Step Plastic Forming 395
10.5.1	Forming Condition 395
10.5.2	Two-Scale Analyses with Micro–Macro Coupling and Decoupling Schemes 396
10.5.3	Evaluation of Macroscopic Yield Strength after Three-Step Plastic
	Forming 398
10.6	Application for Pilger Rolling of Steel Pipe 401
10.6.1	Forming Condition 401
10.6.2	Decoupled Microscale Analysis 403
10.6.3	Evaluation of Macroscopic Yield Strength after Pilger Rolling
	Process 406
10.7	Conclusion 408
	References 409
	Index 413