Contents

Preface XI List of Contributors XIII

Nitric Oxide: Chemistry, Biosynthesis, and Physiological Role 1

Shamsul Hayat, Syed Aiman Hasan, Masaki Mori, Qazi Fariduddin, and Aqil Ahmad ٧

1.1 Introduction 1

1

- 1.2 Nitric Oxide Chemistry 2
- 1.3 Biosynthesis of Nitric Oxide 3
- 1.4 Physiological Role of Nitric Oxide 5
- 1.4.1 Effect of Nitric Oxide on Seed Dormancy 5
- 1.4.2 Effect of Nitric Oxide on Growth 6
- 1.4.3 Effect of Nitric Oxide on Senescence 6
- 1.4.4 Effect of Nitric Oxide on Nitrate Reductase Activity 7
- 1.4.5 Effect of Nitric Oxide on Respiration 7
- 1.4.6 Effect of Nitric Oxide on Stomatal Movement 7
- 1.4.7 Effect of Nitric Oxide on Chlorophyll Content 7
- 1.4.8 Effect of Nitric Oxide on Photosynthesis 8
- 1.4.9 Effect of Nitric Oxide on Antioxidant System 8
- 1.4.10 Effect of Nitric Oxide on Programmed Cell Death 9
- 1.5 Nitric Oxide and Cross Talk with Classical Plant Hormones 10
- 1.5.1 Auxins and Nitric Oxide 10
- 1.5.2 Abscisic Acid and Nitric Oxide 11
- 1.5.3 Cytokinins, Gibberellins, and Nitric Oxide 11
- 1.5.4 Ethylene and Nitric Oxide 12
 - References 12

2 Electron Paramagnetic Resonance as a Tool to Study Nitric Oxide Generation in Plants 17 Susana Puntarulo, Sebastián Jasid, Alejandro D. Boveris, and Marcela Simontacchi

2.1 Introduction 17

VI Contents

3

- 2.1.1Chemistry of Nitrogen-Active Species 17
- 2.1.2 Biological Effects of NO 18
- 2.2 Methods of NO Detection 19
- 2.2.1 Determination of NO by Specific Electrodes 19
- 2.2.2 Determination of NO by Spectrophotometric
- and Fluorometric Methods 19
- 2.2.3 Determination of NO by Electron Paramagnetic Resonance 20
- 2.2.3.1 Specific Experimental Advances 20
- 2.3 Use of EPR Methodology for Assaying Enzyme Activities 22
- 2.3.1 NOS-Like Dependent NO Generation 24
- 2.3.2 Nitrate Reductase-Dependent NO Generation 24
- 2.4 Application of EPR Methods to Assess NO Generation During Plant Development 26
- 2.5 Conclusions 27 References 27
 - Calcium, NO, and cGMP Signaling in Plant Cell Polarity 31
- Ana Margarida Prado, José A. Feijó, and David Marshall Porterfield 3.1 Introduction 31
- Cell Polarity and Plant Gametophyte Development 33 3.2
- 3.3 Calcium Signaling in Pollen and Fern Spores 34
- 3.4 NO/cGMP Signaling in Pollen and Fern Spores 35
- 3.5 NO/cGMP in Pollen–Pistil Interactions 38
- 3.6 Ovule Targeting and NO/cGMP 39
- 3.7 $Ca^{2+}/NO/cGMP$ Connection? 42
- Closing Perspectives 46 3.8
 - References 48

4 Nitric Oxide and Abiotic Stress in Higher Plants 51

Francisco J. Corpas, José M. Palma, Marina Leterrier, Luis A. del Río, and Juan B. Barroso

- 4.1 Introduction 51
- Nitric Oxide and Related Molecules 52 4.2
- Chemistry of Nitric Oxide in Plant Cells 4.2.1 52
- 4.2.2 Reactive Nitrogen Species 52
- 4.3 Cellular Targets of NO 54
- 4.3.1 Nitrosylated Metals 54
- 4.3.2 Protein S-Nitrosylation 55
- 4.3.3 Protein Tyrosine Nitration 55
- 4.3.4 Nitrolipids 55
- 4.3.5 Nucleic Acid Nitration 56
- NO and Gene Regulation 56 4.3.6
- Functions of NO in Plant Abiotic Stress 57 4.4
- 4.4.1 Salinity 57

- 4.4.2 Ultraviolet Radiation 58
- 4.4.3 Ozone 58
- 4.4.4 Mechanical Wounding 59
- 4.4.5 Toxic Metals (Cadmium and Aluminum) 59
- 4.5 Concluding Remarks 60 References 61
- 5 Polyamines and Cytokinin: Is Nitric Oxide Biosynthesis the Key to Overlapping Functions? 65
 - Rinukshi Wimalasekera and Günther F.E. Scherer
- 5.1 Introduction 65
- 5.2 Cytokinin- and Polyamine-Induced NO Biosynthesis 66
- 5.3 Tissue Distribution of Zeatin-Induced and PA-Induced
- NO Formation 67
- 5.4 Nitric Oxide, Cytokinin, and Polyamines in Plant Growth and Development and in Abiotic and Biotic Stresses 68
- 5.4.1 Embryogenesis 68
- 5.4.2 Flowering 69
- 5.4.3 Senescence 69
- 5.4.4 Programmed Cell Death 69
- 5.4.5 Abiotic Stresses 70
- 5.4.6 Biotic Stresses 71 References 73

6 Role of Nitric Oxide in Programmed Cell Death 77

Michela Zottini, Alex Costa, Roberto De Michele, and Fiorella Lo Schiavo

- 6.1 Programmed Cell Death in Plants 77
- 6.1.1 PCD Hallmarks and Regulation 78
- 6.2 NO as a Signaling Molecule 79
- 6.2.1 NO Is Able to Induce or Inhibit PCD 79
- 6.2.2 Nitric Oxide and PCD in Hypersensitive Response 80
- 6.2.3 Signaling Component in SA-Induced NO Production 80
- 6.3 Role of Mitochondria in NO-Induced PCD 84
- 6.4 Conclusions 85 References 85
- 7 Nitrate Reductase-Deficient Plants: A Model to Study Nitric Oxide Production and Signaling in Plant Defense Response to Pathogen Attack 89
 - Ione Salgado, Halley Caixeta de Oliveira, and Marcia Regina Braga
- 7.1 Introduction 89
- 7.2 Physicochemical Basis of NO Signaling 91
- 7.3 Defense Responses Mediated by NO 92
- 7.3.1 Accumulation of Defensive Compounds 92

VIII Contents

7.3.2	Hypersensitive Response 93
7.3.3	Systemic Responses 94
7.3.4	Stomatal Closure 94
7.4	Substrates for NO Production During Plant–Pathogen
	Interactions 95
7.4.1	Production of NO from L-Arginine 95
7.4.2	Production of NO from Nitrite 95
7.5	The Role of Nitrate Reductase in NO Production During
	Plant–Pathogen Interactions 97
	References 98
8	Effective Plant Protection Weapons Against Pathogens Pequire
0	"NO Bullets" 103
	luzia V. Modele
Q 1	Introduction 103
0.1	Nitric Oxide and Reactive Oxygen Species in the
0.2	Hupersensitive Desponse 104
83	Nitric Ovide and Divitoalevin Production 107
0.J 0.J	Nitric Oxide and the Solicylic Acid Signaling Dathway 108
0.4	Nitric Oxide and the Jagmonic Acid Signaling Pathway 100
8.J 8.C	Nitric Oxide and the Jasmonic Acid Signaling Pathway 109
8.0 9.7	Nitric Oxide and Gene Regulation 109
0./	Concluding Demontra 111
8.8	Concluding Remarks 111
	References 111
9	The Role of Nitric Oxide as a Bioactive Signaling Molecule in
	Plants Under Abiotic Stress 115
	Gang-Ping Hao and Jian-Hua Zhang
9.1	Introduction 116
9.2	Biosynthesis of Nitric Oxide Under Abiotic Stress 116
9.2.1	NO Generated from NOS-Like Activity Under Abiotic Stress 116
9.2.2	NO Generated from NR Under Abiotic Stress 120
9.3	NO Signaling Functions in Abiotic Stress Responses 121
9.3.1	Function of NO Under Drought Stress 122
9.3.2	Function of NO Under Salt Stress 123
9.3.3	Function of NO Under Ultraviolet Radiation 125
9.3.4	Function of NO Under Heat and Low Temperature 126
9.3.5	Function of NO Under Heavy Metal Stress 126
9.3.6	Function of NO Under Other Abiotic Stresses 127
9.4	NO Signal Transduction in Plants Under Abiotic Stress 128
9.4.1	cGMP-Dependent Signaling 128
9.4.2	Downstream Signaling for NO Action 129
9.5	Interactions of NO Signaling with Other Signaling Molecules in
	Plant Response to Abiotic Stress 131
	References 135

10	Interplay Between Nitric Oxide and Other Signals Involved in Plant Resistance to Pathogens 139
	Jolanta Floryszak-Wieczorek and Magdalena Arasimowicz-Jelonek
10.1	Introduction 139
10.2	NO Burst 140
10.3	Cooperation of NO with H_2O_2 in Triggering Programmed Cell Death 142
10.4	Cross Talk of NO with Salicylic Acid, Jasmonic Acid, and Ethylene 145
10.5	The Role of NO in the Micro- and Macroscale of Plant Communication 146
10.5.1	NO Cell Signaling Domain 147
10.5.2	NO in Short-Distance Communication 147
10.5.3	NO from Cross- to Long-Distance Communication 148
10.6	Does NO Participate in Stressful Memory of the Plant? 149
10.7	NO and Plant Recovery from Stress 151
10.8	NO in the Offensive Strategy of the Pathogen 154
10.9	Concluding Remarks 155
	References 155
11	Nitric Oxide Signaling by Plant-Associated Bacteria 161 Michael F. Cohen, Lorenzo Lamatting, and Hideo Yamasaki
11.1	Introduction 161
11.2	Production of Nitric Oxide by Bacteria 162
11.2.1	Nitrification 162
11.2.2	Denitrification 163
11.2.3	Nitric Oxide Synthase 164
11.3	Regulatory Roles for Nitric Oxide in Bacteria 164
11.3.1	Metabolic Regulation 164
11.3.2	Regulation of Biofilm Formation 165
11.3.3	Stimulation of Oxidative and Nitrosative Defenses 165
11.4	Bacterial Nitric Oxide in Plant–Bacteria Interactions 166
11.4.1	Production of NO in Response to Plant Products 166
11.4.2	Plant Responses to Bacterial NO: The Azospirillum–Tomato
	Interaction 166
11.4.3	Perspectives 169
	References 169
12	Nitric Oxide Synthase-Like Protein in Pea (Pisum sativum L.) 173 Mui-Yun Wong, Jengsheng Huang, Eric L. Davis, Serenella Sukno, and Yee-How Tan
12.1	Introduction 173
12.2	Physiological and Immunoblot Analyses of NOS-Like Protein
12.3	Isolation and Characterization of an NOS-Like Protein of Pea 177

X Contents

12.4 12.5	Molecular Cloning and Analyses of an NOS-Like Gene of Pea181Correlation Study of NOS-Like Gene Expression and NOS Activity
	in Compatible and Incompatible Pea–Bacteria Interactions 184
	References 185
13	Posttranslational Modifications of Proteins by Nitric Ovide
15	A New Tool of Metabolome Regulation 189
	Jasmeet Kaur Abat and Renu Deswal 189
13.1	Introduction 189
13.2	S-Nitrosylation 190
13.2.1	S-Nitrosylation and Ethylene Biosynthesis 191
13.2.2	S-Nitrosylation and Photosynthesis 192
13.2.3	S-Nitrosylation and Glycolysis 194
13.2.4	S-Nitrosylation and Biotic/Abiotic Stresses 195
13.3	Tyrosine Nitration 197
13.4	Binding to Metal Centers 198
13.5	Conclusions and Prospects 198
	References 200

Index 203