Contents

Preface
List of Acronyms

1 Introduction

2 Chemical Risks in a Multi-Plant Context

2.1 Introduction
2.2 Safety Risks Versus Security Risks
2.3 The Safety-Risk Spectrum
2.4 The Security-Risk Spectrum
2.5 Multi-Plant Chemical Risks
2.5.1 Domino Effects
2.5.2 Domino-Events Categorization
2.5.3 Domino Effects in the Past
2.5.4 Multi-Plant Chemical-Risk Measurement
2.6 Multi-Plant Chemical-Risk Management
2.7 Hypothetical Benefits Associated with Multi-Plant Chemical Risks
2.8 Safety-Risk Assessment and Safety-Risk Management
2.9 Security-Risk Assessment and Security-Risk Management
2.10 Summary and Conclusions

3 A Multi-Plant Safety and Security Culture: The Requirements

3.1 Introduction
3.2 Encouraging Companies to Install a Multi-Plant-Safety and -Security Culture
3.3 The Present State-of-The-Art to Deal with Safety and Security Risks
3.3.1 A Plant-Safety Culture
3.3.2 A Plant Operator Security Plan
3.3.3 Cooperative Strategies in Chemical Clusters
3.3.4 Enhancing Collaboration in Chemical Multi-Plant Areas

*Multi-Plant Safety and Security Management in the Chemical and Process Industries. G.L.L. Reniers
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-32551-1*
3.4	Coping with the Future: Developing a Multi-Plant-Safety and -Security Culture	43
3.5	Summary and Conclusions	47
4.1	Introduction	49
4.2	Managing Safety, Quality, Environment, and Security	51
4.2.1	Introduction	51
4.2.2	Safety-Management Systems	54
4.2.3	Security-Management Programs	56
4.2.4	Setting Up a Multi-Plant Initiative	56
4.3	Plant-, Joint- and Multi-Plant-Safety and -Security-Management Stakeholders	62
4.3.1	Introduction	62
4.3.2	Parties Involved	63
4.3.3	The Multi-Plant (Safety & Security) Council (MPC)	66
4.4	Practical Recommendations for Achieving Plant or Multi-Plant-Safety Loop of Continuous Improvement	72
4.4.1	Introduction	72
4.4.2	Prevention of (Accidental) Chemical Accidents	72
4.4.2.1	Safe Work Practices	72
4.4.2.2	Safety Training	72
4.4.2.3	Group Meetings	75
4.4.2.4	Pursuing In-House Safety Rules and Complying with Regulations	75
4.4.2.5	Safety Promotion	75
4.4.2.6	Contractor and Employee Evaluation, Selection and Control	75
4.4.2.7	Safety Inspection, Monitoring and Auditing	75
4.4.2.8	Maintenance Regimes	76
4.4.2.9	Hazard Analysis	76
4.4.2.10	Control of Movement and Use of Hazardous Chemicals	76
4.4.2.11	Documentation Control and Records	76
4.4.3	Mitigation of Chemical Accidents	76
4.4.4	Follow-Up of Incidents, Incident Investigation and Corrective Actions	78
4.5	Practical Recommendations for Achieving Plant or Multi-Plant-Security Loop of Continuous Improvement	79
4.5.1	Introduction	79
4.5.2	Prevention of (Intentional) Chemical Accidents	79
4.5.2.1	Execution of Security-Risk Assessments (Security-Vulnerability Analyses)	79
4.5.2.2	Focus on Security	80
4.5.2.3	Security Promotion	80
4.5.2.4	Good Basic Housekeeping	80
4.5.2.5	Reduction of Access Points to a Minimum	80
4.5.2.6 Installation of Appropriate Physical Measures 80
4.5.2.7 Personnel Security 81
4.5.2.8 Enhanced IT Security Precautions 81
4.5.2.9 Planning and Testing of Business Continuity Plans 81
4.5.2.10 Documentation Control and Records 81
4.5.3 Follow-Up and Corrective Actions 82
4.6 System Implementation 82
4.7 Summary and Conclusions 84

5 A Multi-Plant Safety and Security Culture—The People: Facilitating Multi-Plant Safety and Security Collaboration 87
5.1 Introduction 87
5.2 A Multi-Plant-Safety-Management Framework 88
5.2.1 Inherent Safety 88
5.2.2 Developing an External Domino-Accident-Prevention Framework: Hazwim 93
5.2.2.1 Introduction 93
5.2.2.2 Hazop, What-If Analysis and the Risk Matrix 94
5.2.2.3 An External Domino-Accident-Prevention Framework: Hazwim 97
5.2.2.4 Discussion 105
5.3 A Multi-Plant-Security-Management Framework 105
5.3.1 The Principles 105
5.3.1.1 General Security Policy 108
5.3.1.2 Organization, Planning and Documentation 108
5.3.1.3 Communication and Cooperation 108
5.3.1.4 Training, Education and Guidance 108
5.3.1.5 Crisis Management 108
5.3.1.6 Audits 108
5.3.1.7 Third-Party Verification 108
5.3.2 Achieving Solid Security for a Chemical Industrial Area 110
5.3.3 Shaping a Framework for Indoor Security Cooperation: InSec 111
5.3.4 Shaping a Network for Outdoor Security Cooperation: OutSec 116
5.3.5 Assessing and Evaluating Security Staffing Levels in a Multi-Plant Area 116
5.4 Summary and Conclusions 121

6 A Multi-Plant Safety and Security Culture—The Technology: Developing the Tools to Advance Multi-Plant Safety and Security 123
6.1 Introduction 123
6.2 A Multi-Plant Domino-Risk Methodology and -Decision Support Tool 124
6.2.1 Prevention Optimization in Industrial Areas: A Theoretical Domino-Effects-Evaluation Model for Developing Domino-Risk Software 124
6.2.1.1 Drawbacks of Current Domino-Risk Software in a Multi-Plant Context 124
Contents

6.2.1.2 Approach for Elaborating Industrial Area Knock-On Software 126
6.2.2 User-Friendly Software for Planning Domino-Effects Prevention in a Multi-Plant Context 130
6.2.2.1 Introduction 130
6.2.2.2 External Domino-Risk Analysis 131
6.2.2.3 A Suggested Multi-Plant Domino-Effect-Prioritization Methodology 132
6.2.2.4 Mathematical Approach and Working Procedure for the Suggested Multi-Plant Domino-Effect-Prioritization Methodology 135
6.2.2.5 Developing a Mathematical Model for Carrying Out the Preliminary Safety and Security Part of the Suggested Multi-Plant Domino-Effect-Prioritization Methodology 136
6.2.2.6 Developing a Mathematical Model for Carrying Out the Security Part of the Suggested Multi-Plant Domino-Effect-Prioritization Methodology 142
6.2.2.7 Developing a Mathematical Model for Carrying Out the Safety Part of the Suggested Multi-Plant Domino-Effect-Prioritization Methodology 149
6.3 Summary and Conclusions 155

7 Assessing, Evaluating and Continuously Optimizing Operational Staffing Levels Within a Multi-Plant Area 157
7.1 Introduction 157
7.2 Staffing-Level (SL)-Assessment Management Model 159
7.3 Instrument for Existing Staffing-Level Assessment (IESLA) 161
7.4 The MCSL Method 163
7.5 Roadmap of Staffing-Level Assessment 172
7.6 The Way Towards Continuous Staffing-Level Improvement in Industrial Areas 174
7.7 Summary and Conclusions 182

8 Multi-Plant Site-Integrated Safety and Security Governance 185
8.1 Introduction 185
8.2 From Individual Plant Safety and Security Know-How to Multi-Plant Safety and Security Knowledge 185
8.3 Towards a Design Code of Good Practice for Integrating Multi-Plant-Safety and -Security Building Blocks 188
8.4 Planning for Safety and Security Sustainability 191
8.5 Summary and Conclusions 196

9 Game-Theory: A Mathematical Technique to Convince Company Top Management to Invest in Multi-Plant Safety and Security 199
9.1 Introduction 199
9.2 Qualitative Discussion on Multi-Plant-Safety and -Security Investments 201