Contents

List of Contributors XIX

Part I Estrogens, Progestins, Allopregnanolone and Neuroprotection 1

1 Interactions of Estradiol and Insulin-like Growth Factor-I in Neuroprotection: Implications for Brain Aging and Neurodegeneration 3

María-Angeles Arévalo, Luis M. García-Segura, and Iñigo Azcoitia

1.1 Introduction: Hormones, Brain Aging, and Neurodegeneration 3
1.2 Estradiol, IGF-I, Brain Aging, and Neuroprotection 4
1.3 Molecular Interactions of Estrogen Receptors and IGF-I Receptor in the Brain 5
1.4 Regulation of IGF-I Receptor Signaling by Estradiol in the Brain 5
1.5 Regulation of Estrogen Receptor Transcriptional Activity by IGF-I in Neural Cells 6
1.6 Implications of the Cross Talk between Estrogen Receptors and IGF-I Receptors for Brain Aging, and Neurodegeneration 6

Acknowledgment 8

References 8

2 Structure–Nongenomic Neuroprotection Relationship of Estrogens and Estrogen-Derived Compounds 13

James W. Simpkins, Kun Don Yi, Evelyn Perez, and Douglas Covey

2.1 Introduction 13
2.2 In vitro Assessments of Structure–Neuroprotective Activity Relationships 14

2.2.1 Estradiol and Other Known Estratrienes 15
2.2.2 A-Ring Derivatives 15
2.2.3 B- and C-Ring Derivatives 16
2.2.4 D-Ring Derivatives 17
2.2.5 Correlation between Inhibition of TBARs and Protection against Glutamate and IAA 17

2.2.6 Estrogen Receptor Binding 17
5.2 Programming 65
 5.2.1 Epidemiology 65
 5.2.2 Birth Weight and Neuropsychiatric Disorders 66
5.3 Glucocorticoids and Fetal Development 66
5.4 Glucocorticoids: the Endocrine Programming Factor 68
 5.4.1 Placental 11β-HSD2: a Barrier to Maternal Glucocorticoids 69
 5.4.2 Glucocorticoid Programming 70
 5.4.3 Transgenerational Effects 71
 5.4.4 The Placenta 71
 5.4.5 A Common Mechanism? 71
5.5 Fetal Tissue Glucocorticoid Sensitivity 72
5.6 Stress and Glucocorticoids: Key Programmers of the Brain 74
 5.6.1 Programming the HPA Axis 74
 5.6.2 Sex-Specific Effects 75
 5.6.3 Programming Behavior 75
5.7 CNS Programming Mechanisms 76
 5.7.1 The GR Gene: a Common Programming Target? 77
 5.7.2 Epigenetics 78
5.8 Glucocorticoid Programming in Humans 78
 5.8.1 Clinical Use of Prenatal Glucocorticoid Therapy 78
 5.8.2 Consequences of Human Fetal Glucocorticoid Overexposure 79
 5.8.3 Programming and Posttraumatic Stress Disorder (PTSD) 80
 5.8.4 Programming Other Glucocorticoid Metabolizing Enzymes 81
5.9 Future Perspectives and Therapeutic Opportunities 82
5.10 Overview 83
References 84

6 Regulation of Structural Plasticity and Neurogenesis during Stress and Diabetes; Protective Effects of Glucocorticoid Receptor Antagonists 103
 Paul J. Lucassen, Carlos P. Fitzsimons, Erno Vreugdenhil, Pu Hu, Charlotte Oomen, Yanina Revsin, Marian Joëls, and Edo Ronald de Kloet
6.1 The Stress Response 103
6.2 HPA Axis and Glucocorticoids 104
6.3 Glucocorticoid Actions 104
6.4 Feedback Regulation 104
6.5 Stress and Depression 105
6.6 Stress-Induced Viability Changes in the Hippocampus: Effect on Function, Volume, Cell Number, and Apoptosis 106
6.7 Effects of Stress on Dendritic Atrophy, Spine, and Synaptic Changes 107
6.8 Adult Hippocampal Neurogenesis 107
6.9 Effect of Stress on Adult Hippocampal Neurogenesis 109
6.10 Normalization of the Effects of Stress on the Hippocampus by Means of GR Blockade 110
7 Neuroactive Steroids and Peripheral Neuropathy 121
Roberto C. Melcangi, Silvia Giatti, Marzia Pesaresi, Donatella Caruso, and Marc J. Tetel
7.1 Introduction 121
7.2 Regulation of Neuroactive Steroid Responsiveness in Peripheral Nerves 122
7.2.1 Synthesis and Metabolism of Neuroactive Steroids 122
7.2.2 Classical and Nonclassical Steroid Receptors are Expressed in Peripheral Nerves 123
7.3 Schwann Cell Responses to Neuroactive Steroids 123
7.4 Sexually Dimorphic Changes of Neuroactive Steroid Levels Induced by Pathology in Peripheral Nerves 126
7.5 Neuroactive Steroids as Protective Agents in PNS 126
7.5.1 Aging Process 126
7.5.2 Physical Injury 127
7.5.3 Diabetic Neuropathy 128
7.6 Chemotherapy-Induced Peripheral Neuropathy 128
7.7 Concluding Remarks 129
Acknowledgments 129
References 129

8 Neuroprotective and Neurogenic Properties of Dehydroepiandrosterone and its Synthetic Analogs 137
Ioannis Charalampopoulos, Iakovos Lazaridis, and Achille Gravanis
8.1 Introduction 137
8.2 Neuroprotective and Neurogenic Effects of DHEA in Hippocampal Neurons 138
8.3 Neuroprotective Effects of DHEA in Nigrostriatal Dopaminergic Neurons 140
8.4 Neuroprotective Effects of DHEA in Autoimmune Neurodegenerative Processes 141
8.5 Neuroprotective Effects of DHEA against Brain Ischemia and Trauma 142
8.6 Signaling Pathways Involved in the Effects of DHEA on Neuronal Cell Fate 144
8.7 Therapeutic Perspectives of DHEA and its Synthetic Analogs in Neurodegenerative Diseases 146
References 147
9 Neurosteroids and Pain 155
Christine Patte-Mensah, Laurence Meyer, Véronique Schaeffer, Cherkaouia Kibaly, and Ayikoe G. Mensah-Nyagan

9.1 Introduction 155
9.2 General Background on Neurosteroids 155
9.3 Overview on Pain 156
9.4 Involvement of Endogenous Neurosteroids in the Control of Pain 157
9.4.1 Evidence for the Local Production of Neurosteroids in the Spinal Circuit 157
9.4.2 Endogenous Neurosteroids and Pain Modulation 162
9.5 Conclusion 164
Acknowledgments 164
References 164

Part III Polypeptide Hormones and Neuroprotection 171

10 The Insulin/IGF-1 System in Neurodegeneration and Neurovascular Disease 173
Przemyslaw (Mike) Sapieha and Lois Smith

10.1 Introduction 173
10.2 Insulin and Insulin Growth Factors 174
10.3 Local versus Systemic Actions 174
10.4 Insulin/IGF Signaling Pathway 175
10.5 The Insulin/IGF Axis in the Brain 176
10.6 Insulin/IGF and Neuroprotection 176
10.7 Alzheimer's Disease 178
10.8 Parkinson's Disease 179
10.9 Vascular Dementia 179
10.10 Neurovascular Degeneration 180
10.11 Conclusion 182
References 182

11 Leptin Neuroprotection in the Central Nervous System 189
Feng Zhang, Suping Wang, Armando P. Signore, Zhongfang Weng, and Jun Chen

11.1 Introduction 189
11.1.1 Origin, Source, and Structure of Leptin 189
11.1.2 Functions of Leptin 189
11.1.3 Leptin Receptors 190
11.1.4 Leptin Transport across the Blood–Brain Barrier 191
11.2 Mutation of Leptin or Leptin Receptors 192
11.3 Neurotrophic Role of Leptin 193
11.4 Leptin Neuroprotection against Disorders of the Central Nervous System 193
11.4.1 Acute Neurological Disorders 193
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4.2</td>
<td>Neurodegenerative Diseases and Other Disorders</td>
<td>196</td>
</tr>
<tr>
<td>11.4.3</td>
<td>Leptin Neuroprotective Mechanisms</td>
<td>199</td>
</tr>
<tr>
<td>11.5</td>
<td>Significance</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>199</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Somatostatin and Neuroprotection in Retina</td>
</tr>
</tbody>
</table>

Kyriaki Thermos

12.1 Introduction 205
12.2 Somatostatin and Related Peptides 206
12.3 Somatostatin Receptors and Signaling 206
12.4 Somatostatin and its Receptors in Retina 206
12.5 Localization of Somatostatin Receptors in Retinal Neurons 207
12.5.1 Sst$_1$ 208
12.5.2 Sst$_2$ 208
12.5.3 Sst$_3$ 209
12.5.4 Sst$_4$ 209
12.5.5 Sst$_5$ 209
12.6 Somatostatin Receptor Function in Retinal Circuitry 209
12.6.1 Effects on Glutamate Release 210
12.6.2 Effects on Dopamine Release 210
12.6.3 Effects on Nitric Oxide/GMP 210
12.6.4 Effects on Somatostatin Release 211
12.7 Neuroprotection by Somatostatin Analogs 212
12.7.1 Retinal Ischemia and Excitotoxicity 212
12.7.2 Anti-Ischemic Actions of SRIF 212
12.7.2.1 Ex vivo Studies 212
12.7.2.2 In vivo Studies 213
12.8 Mechanisms of SRIF’s Neuroprotection 213
12.8.1 Involvement of NO/cGMP 213
12.8.2 NO/cGMP Mediates SRIF’s Neuroprotective Effects 214
12.9 Therapeutic Potential of Somatostatin Agents 216
12.10 Conclusions 217

Acknowledgments 217

Abbreviations 218

References 218

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Neurotrophic Effects of PACAP in the Cerebellar Cortex</td>
</tr>
</tbody>
</table>

Anthony Falluel-Morel, Hubert Vaudry, Hitoshi Komuro, Dariusz C. Gorecki, Ludovic Galas, and David Vaudry

13.1 Expression of PACAP and its Receptors in the Developing Cerebellum 227
13.2 Effects of PACAP on Granule Cell Proliferation 229
13.3 Effects of PACAP on Granule Cell Migration 229
13.4 Effects of PACAP on Granule Cell Survival 231
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>Effects of PACAP on Granule Cell Differentiation</td>
<td>231</td>
</tr>
<tr>
<td>13.6</td>
<td>Functional Relevance</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>234</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>234</td>
</tr>
<tr>
<td>14</td>
<td>The Corticotropin-Releasing Hormone in Neuroprotection</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>Christian Behl and Angela Clement</td>
<td></td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>237</td>
</tr>
<tr>
<td>14.2</td>
<td>The CRH Family of Proteins and Molecular Signal Transduction</td>
<td>238</td>
</tr>
<tr>
<td>14.3</td>
<td>From the Physiology to the Pathophysiology of CRH</td>
<td>239</td>
</tr>
<tr>
<td>14.4</td>
<td>CRH and Neurodegenerative Conditions</td>
<td>240</td>
</tr>
<tr>
<td>14.5</td>
<td>Protective Activities of CRH</td>
<td>240</td>
</tr>
<tr>
<td>14.6</td>
<td>Lessons from the Heart</td>
<td>244</td>
</tr>
<tr>
<td>14.7</td>
<td>Outlook</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>245</td>
</tr>
<tr>
<td>15</td>
<td>Neuroprotective and Neurogenic Effects of Erythropoietin</td>
<td>251</td>
</tr>
<tr>
<td></td>
<td>Helmar C. Lehmann and Ahmet Höke</td>
<td></td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>251</td>
</tr>
<tr>
<td>15.2</td>
<td>EPO in Models of Neonatal Hypoxic-Ischemic Brain Injury</td>
<td>251</td>
</tr>
<tr>
<td>15.3</td>
<td>EPO in Models of Ischemic Stroke in Adults</td>
<td>253</td>
</tr>
<tr>
<td>15.4</td>
<td>EPO in Models of Traumatic Brain Injury and Spinal Cord Trauma</td>
<td>257</td>
</tr>
<tr>
<td>15.5</td>
<td>EPO in Experimental Autoimmune Encephalomyelitis</td>
<td>257</td>
</tr>
<tr>
<td>15.6</td>
<td>EPO in Models of Peripheral Neuropathy</td>
<td>258</td>
</tr>
<tr>
<td>15.7</td>
<td>Summary</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Part IV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hormones and Neurogenesis</td>
<td>265</td>
</tr>
<tr>
<td>16</td>
<td>Thyroid Hormone Actions on Glioma Cells</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Min Zhou, Harold K. Kimelberg, Faith B. Davis, and Paul J. Davis</td>
<td></td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>267</td>
</tr>
<tr>
<td>16.2</td>
<td>Origins of Glioma</td>
<td>267</td>
</tr>
<tr>
<td>16.3</td>
<td>Glioma Cell Biology</td>
<td>268</td>
</tr>
<tr>
<td>16.4</td>
<td>Thyroid Hormone Analogs, Transport, and Metabolism</td>
<td>270</td>
</tr>
<tr>
<td>16.5</td>
<td>Thyroid Hormones and Brain Development</td>
<td>270</td>
</tr>
<tr>
<td>16.6</td>
<td>Nongenomic Actions of Thyroid Hormones</td>
<td>271</td>
</tr>
<tr>
<td>16.7</td>
<td>Hypothyroidism Suppresses Growth of Glioma in Patients</td>
<td>273</td>
</tr>
<tr>
<td>16.8</td>
<td>Molecular Mechanisms of Hypothyroidism-Induced Clinical Suppression</td>
<td>273</td>
</tr>
<tr>
<td>16.8.1</td>
<td>Thyroid Hormone and Proliferation of Tumor Cells</td>
<td>274</td>
</tr>
</tbody>
</table>
16.8.2 Angiogenic Action of Thyroid Hormones 274
16.8.3 Antiapoptotic Action of Thyroid Hormones 274
16.8.4 Tumor Suppression Actions of Tetrac 275
16.9 Future Perspectives 275

References 276

17 Gonadal Hormones, Neurosteroids, and Clinical Progestins as Neurogenic Regenerative Agents: Therapeutic Implications 281
Lifei Liu and Roberta Diaz Brinton
17.1 Introduction 281
17.2 Gonadal Hormones, Neurosteroids, and Neurogenesis 282
17.2.1 Ovarian Hormone Regulation of Adult Neurogenesis 284
17.2.2 Estrogen Regulation of Adult Neurogenesis 284
17.2.3 Progestagen Regulation of Adult Neurogenesis 286
17.2.4 Progesterone Regulation of Adult Neurogenesis 287
17.2.5 Clinical Progestin Regulation of Neurogenesis 287
17.2.6 Androgen Regulation of Adult Neurogenesis 288
17.2.7 Testosterone and DHT Regulation of Adult Neurogenesis 288
17.2.8 DHEA Regulation of Adult Neurogenesis 289
17.3 Neurosteroid Regulation of Adult Neurogenesis 290
17.3.1 Pregnenolone and Pregnenolone Sulfate Regulation of Adult Neurogenesis 290
17.3.2 Allopregnanolone Regulation of Adult Neurogenesis 291
17.4 Gonadal Steroids, Clinical Progestins, and Neurosteroids as Neuroregenerative Therapeutics: Challenges and Strategies 292
17.4.1 Targeting Neurogenesis as a Treatment for Neurodegenerative Disease 293
17.4.2 APα as a Regenerative Factor to Promote Functional Neurogenesis and Diminish Alzheimer’s Pathology 294

References 295

18 Gonadotropins and Progestogens: Obligatory Developmental Functions during Early Embryogenesis and their Role in Adult Neurogenesis, Neuroregeneration and Neurodegeneration 305
Craig S. Atwood and Sivan Vadakkadath Meethal
18.1 Introduction 305
18.2 Hormonal Regulation of Human Embryogenesis 305
18.2.1 The Missing Links 305
18.2.2 Trophoblastic Hormone Secretion 306
18.2.3 Human Embryonic Stem Cells: A Complete Model System for Understanding the Cellular and Molecular Mechanisms Regulating Early Human Embryogenesis 308
18.2.4 Progesterone, Human Chorionic Gonadotropin, and Early Human Embryogenesis 308
18.2.4.1 Regulation of Blastulation by Human Chorionic Gonadotropin and Progesterone 308
18.2.4.2 Regulation of Neurulation by Human Chorionic Gonadotropin and Progesterone 310
18.2.4.3 Regulation of Organogenesis by Human Chorionic Gonadotropin and Progesterone 312
18.2.5 Opioid Signaling and Early Human Embryogenesis 312
18.3 Progesterone: an Essential Neurotrophic Hormone during All Phases of Life 313
18.4 Age-Related Loss of Progesterone: Implications in the Pathophysiology of Neurodegenerative Diseases 314
18.4.1 Alzheimer's Disease 315
18.4.1.1 Amyloid-β Precursor Protein and Neurogenesis 315
18.4.1.2 Hormonal Regulation of Neurogenesis via Modulation of AβPP Metabolism 316
18.4.1.3 Progesterone in the Treatment of AD 316
18.4.2 Stroke 317
18.5 Conclusion 318
References 319

19 Human Neural Progenitor Cells: Mitotic and Neurogenic Effects of Growth Factors, Neurosteroids, and Excitatory Amino Acids 331
Masatoshi Suzuki, Jacalyn McHugh, and Narisorn Kitiyanant
19.1 Introduction 331
19.2 Neural Stem/Progenitor Cells as a Model of Human Cortical Development 331
19.3 Mitotic and Neurogenic Effects of a Neurosteroid: Dehydroepiandrosterone (DHEA) 332
19.4 Glutamate Enhances Proliferation and Neurogenesis in hNPCs 336
19.5 Increased Neurogenic “Radial Glial”-like Cells within Human Neurosphere Cultures 338
19.6 Conclusions 341
Acknowledgments 342
References 342

20 Corticosterone, Dehydroepiandrosterone, and Neurogenesis in the Adult Hippocampus 347
Joe Herbert and Scarlet Bella Pinnock
20.1 Background 347
20.2 Glucocorticoids and Neurogenesis in the Adult Hippocampus 348
20.2.1 Regulation by Corticoid Levels 348
20.2.2 Regulation by the Corticoid Diurnal Rhythm 350
20.2.3 Dehydroepiandrosterone (DHEA) 354
20.2.4 Downstream Actions: pCREB and Wnt3a 357
20.2.5 Relevance to Depression 358
20.3 Conclusion 360
Acknowledgments 360
References 360

Index 367