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1.1
Introduction

Today�s challenge of making the drug discovery process more efficient remains
unchanged. The need for developing safe and innovative drugs, under the increas-
ing pressure of speed and cost reduction, has shifted the focus toward improv-
ing the early discovery phase of lead identification and optimization. �Fail early,
fail fast, and fail cheap� has often been quoted as the key principle contributing
to the overall efficiency gain in drug discovery. While high-throughput screen-
ing (HTS) of large compound libraries is still the major source for discovering
novel hits in the pharmaceutical industry, virtual screening has made an increas-
ing impact in many areas of the lead identification process and has evolved
into an established computational technology in modern drug discovery over the
past 10 years.

Traditionally, virtual screening is conducted simply by searching the company
proprietary database of its compound collections, and this approach continues to
be a mainstream application. However, the continuous development of novel
and more sophisticated virtual screening methods has opened up the possibility
to search also for compounds that do not necessarily exist in physical form in a
screening collection. Such compounds can be obtained either from a multitude
of external sources, such as compound libraries from commercial vendors, or from
public or commercial databases. Even more, virtual screening can deal with
molecules that purely exist as virtual entities derived from de novo design ideas
or enumeration of combinatorial libraries. Taken to its extreme, any molecule
conceivable by the human mind can in theory be evaluated by virtual screening.
This has led to the concept of chemical space comprising the entire collection of
all possible molecules – real and imaginary – that could be created. Since such a
chemical space is huge, it is crucial for the success of drug discovery to identify
those regions in chemical space that contain molecules of oral druglike quality
that are likely to be biologically active. Virtual screening has the unique
capability of not only searching the small fraction of chemical space occupied by
compounds in existing screening collections but also exploring new and so far
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undiscovered regions (Figure 1.1). The challenge for the future is to better define
and systematically explore those promising areas in chemical space.

1.2
Concepts of Chemical Space

Despite the fact that the term chemical space has received widespread attention
in drug discovery, only few concrete definitions have been proposed. Lipinski
suggested that chemical space �can be viewed as being analogous to the cosmo-
logical universe in its vastness, with chemical compounds populating space instead
of stars� [1]. More concrete, chemical space can be defined as the entire collection
of all meaningful chemical compounds, typically restricted to small organic
molecules [2]. To navigate through the vastness of chemical space, compounds
can be mapped onto the coordinates of a multidimensional descriptor space. Each
dimension represents various properties describing the molecules, such as phys-
icochemical or topological properties, molecular fingerprints, or similarity to a

Figure 1.1 Regions of biologically and
medicinally relevant chemical space within the
continuum of chemical space. Only a small
portion of chemical space has been sampled by
existing compound collections, which led to the

discovery of drugs (A). Virtual screening has the
unique opportunity to expand into unexplored
chemical space to find new pockets of space
where drugs are likely to be discovered (B).
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given reference compound [3]. Depending on the particular descriptor and property
set used for defining a chemical space, the representation of compounds in this
chemical space varies. Thus, the relative distribution of molecules within the
chemical space and the relationship between them strongly depend on the chosen
descriptor set. The consequence of this is that changes in chemical representation
ofmolecules are likely to result in changes in their neighborhood relationship. This
aspect is important to keep in mind when it comes to measuring diversity or
similarity within a set of molecules.

How vast is chemical space? Various estimates of the size of chemical space have
been proposed. The number of all possible, small organic compounds ranges
anywhere from 1018 to 10180 molecules [4]. The first attempt to systematically
enumerate all molecules of up to 13 heavy atoms applying basic chemical feasibility
rules resulted in less than 109 structures [5]. However, with every additional
heavy atom the number of possible structures grows exponentially due to the
combinatorial explosion of enumeration. Thus, it is estimated that with less than
30 heavy atoms more than 1063 molecules with a molecular weight of less than 500
can be generated, predicted to be stable at room temperature and stable toward
oxygen and water [6]. Compared to the estimated number of atoms in the entire
observable universe (1080), it seems that for all practical purposes chemical space is
infinite and any attempt to fully capture it even with computational methods appears
to be futile. Evenmore, in contrast to the number of compounds in a typical screening
collection of large pharmaceutical companies (106) it becomes clearly obvious that
only a tiny fraction of chemical space is examined.

One might ask why hit identification in drug discovery is successful, despite the
fact that only a very limited set of compounds within the entire chemical space is
being probed. It has been hypothesized that existing screening collections are not just
randomly selected from chemical space, but are already enrichedwithmolecules that
are likely to be recognized by biological targets [7]. Many synthesized compounds
have been derived from natural products, metabolites, protein substrates, natural
ligands, and other biogenic molecules. Hence, a certain �biogenic bias� is inherently
built into existing screening libraries resulting in an increased chance of finding
active hits. This observation indicates that, given the vast and infinite size of chemical
space, the goal should not be to exhaustively sample the entire space but to identify
those regions that contain compounds likely to be active against biological targets
(biologically relevant chemical space).

Another limiting factor is that not all biologically activemolecules have the desired
physicochemical properties required for oral drugs. There are many aspects impor-
tant for a biologically active compound to become a safe and orally administered
drug, such as absorption, permeability, metabolic stability, or toxicity. The concept
of druglikeness has been introduced to determine the characteristics necessary for
a drug likely to be successful. Over time, this has been further extended toward
leadlike criteria with more stringent rules and guidelines recommended for com-
pounds in a screening collection (Section 1.3). It is generally assumed thatmolecules
have an increased chance to be successfully developed into a medicine when they
satisfy lead- and druglike criteria (medicinally relevant chemical space).
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Unfortunately, not much is known about the size and regions of biologically and
medicinally relevant chemical space. Current definitions of such relevant spaces
often rely on the knowledge of existing, mostly orally administered drugs, and are
limited by the chemical diversity of historical screening collections and by the
biological diversity of known druggable targets. On one side, the data accumulated
so far suggest that compounds active against certain target families (e.g., GPCRs,
kinases, etc.) tend to cluster together in specific regions of chemical space [8]. For
individual targets from those families, the relevant chemical space seems to be well
defined, and the likelihood of finding drugs in these defined regions is high
(Section 1.5). On the other side, there are many target classes that have been deemed
as difficult or undruggable, such as certain proteases or phosphatases. Also, a fairly
unresolved area in drug discovery is the identification of small molecule modulators
of protein–protein interactions in biological signaling cascades [9]. It is assumed that
the chemical space represented by traditional screening collections is inadequate to
successfully tackle these �tough targets,� and new regions of chemical space need to
be explored. Possible sources of chemical matter potentially occupying such unex-
plored regions of space can be derived from natural products or through emerging
technologies such as diversity-oriented synthesis for generating natural product-like
combinatorial libraries (Section 1.4).

1.3
Concepts of Druglikeness and Leadlikeness

It has been demonstrated that the lead development stage contributes 40% to the
overall attrition rate throughout the whole drug development process, beginning
from the first assay development to final registration [10]. Therefore, it is assumed
that significant improvements can be realized in the early phase of lead iden-
tification and development. In-depth analysis of marketed oral drugs led to the
introduction of druglikeness that defines the physicochemical properties that
determine key issues of drug development, such as absorption and permeability.
Lipinski�s influential analysis of compounds failing to become orally administered
drugs resulted in the well-known �rule of five� [11]. In short, the rule predicts that
poor absorption or permeation of a drug is more likely to occur when there are
more than 5 H-bond donors, 10 H-bond acceptors, the molecular weight is greater
than 500, and the calculated log P is greater than 5 (Table 1.1). The concept of
druglikeness has been widely accepted and embraced by scientists in drug discovery
nowadays, withmany variations and extensions of the original rules, and it has served
its purpose well to help optimize pharmacokinetic properties of drug candidate
molecules [12, 13].

The rules defining druglikeness, however, should not necessarily be applied to
lead molecules. One of the reasons is the observation that, on average, compounds
in comparison to their initial leads become larger and more complex during the
lead optimization phase, and the associated physicochemical properties (e.g.,
molecular weight, calculated log P, etc.) increase accordingly [14, 15]. To ensure
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that the properties of an optimized compound remain within druglike space,
the criteria for leadlikeness have been more narrowly defined to accommodate the
expected growth during drug optimization (Table 1.1). Complementary to the
comparison of drug and lead pairs from historical data, Hann et al. analyzed in a
more theoretical approach, using a simplified ligand–receptor interaction model,
how the probability of finding a hit varies with the complexity of a molecule [16].
The model shows that the probability of observing a �useful interaction event�
decreases when molecules become increasingly complex. This suggests that less
complexmolecules, in accordance with leadlike criteria, aremore likely to turn into
hits (albeit weaker) serving as common starting points for the successful discovery
of drugs.

Another aspect underlining the importance of leadlike properties is associated
with the fundamental shift in the screening paradigm in drug discovery from
functional biological assays to biochemical assays. While biological assays measure
a true biological activity, biochemical assays are designed to measure specific
molecular interactions between a compound and its target. Biochemical assays are
highly sensitive assays, well suited for screening compounds in a high-throughput
fashion, but due to their artificial nature they are also susceptible to compound
interference resulting in false positive hits. It has been suggested that compounds
with leadlike properties also interact with their targets in a leadlike manner, that is,
by noncovalent binding through hydrogen bonds, hydrophobic interactions, and
monoionic bonding [17]. In general, such desirable interaction types result in
reversible, time-independent, and competitive binding characteristics allowing the
generation of meaningful structure–activity data. In contrast, nonleadlike com-
pounds tend to bind to their target in nonleadlike ways, such as forming covalent,
chelate, or polyionic bonds. Thus, nonleadlike compounds are more prone to
generating artifact data in biochemical assays.

Among the well-known offenders with nonleadlike properties are protein-
reactive compounds, warhead-containing agents, frequent hitters, and aggregator
compounds (Table 1.1) [18]. Computationally, the elimination of reactive and

Table 1.1 Comparison of properties typically used for leadlikeness and druglikeness criteria.

Properties Leadlikeness Druglikeness

Molecular weight (MW) �350 �500
Lipophilicity (clog P) �3.0 �5.0
H-bond donor (sum of NH and OH) �3 �5
H-bond acceptor (sum of N and O) �8 �10
Polar surface area (PSA) �120A

� 2 �150A
� 2

Number of rotatable bonds �8 �10
Structural filters Reactive groups

Warhead-containing agents
Frequent hitters
Promiscuous inhibitors
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warhead-containing compounds can be accomplished by applying various sets of
substructure filters [17, 19]. Frequent hitters can be identified by statistical models or
other virtual screening methods [20]. Aggregator compounds have been described
as being promiscuous inhibitors by forming aggregates in solution, resulting in
nonspecific binding and interference with the biochemical assay [21]. However, they
are difficult to predict computationally and require additional biophysical methods
(e.g., light scattering experiments) or modifications of the biochemical assay (e.g.,
addition of detergent or protein serum) to support their detection experimentally [22].
Exacerbating the problem, the interference of compounds in biochemical screens
resulting in artifact data mostly depends on the individual assay conditions, which
makes it difficult to develop generally applicable rules for detecting potential false
positives across different assays.

The ultimate goal of identifying compounds with leadlike properties is to design
high-quality screening libraries, whether it is for experimental or virtual screen-
ing purposes [23]. From a practical standpoint, it appears that leadlike criteria are
more straightforward to implement by applying rules to filter out nonleadlike
compounds, with the aim of enriching the compound collection with leadlikematter.
In other words, one can agree on which compounds not to screen, but the question
which compounds to screen often leads to lengthy debates among experienced
medicinal chemists.

1.4
Diversity-Based Libraries

Since the advent of large-scale combinatorial chemistry in drug discovery coupled
with high-speed parallel synthesis of thousands of compounds, the concept of
molecular diversity has increasingly gained importance. When little or nothing is
known about the biological target, it is often assumed that screening a compound
library as diverse as possible maximizes the chance of finding active hits. Moreover,
the continuous addition of compounds to the screening file, either from internal
combinatorial library efforts or through purchase of external compound collections,
is most valuable when the underlying overall diversity can be expanded. At the
same time, there is an ever-growing pressure to reduce costs by decreasing the
number of compounds that need to be screened while simultaneously maintaining
diversity. Hence, well-defined strategies for the optimal design of diversity-based
libraries are necessary.

1.4.1
Concepts of Molecular Diversity

The generally accepted understanding of molecular diversity is a quantitative
description of dissimilarity between molecules in a given set of compounds. The
exact interpretation of this concept, however, has created quite a heated
debate in the scientific literature [24]. For example, Roth fervently advocated that
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per se �there is no such thing as diversity� [25]. Diversity of chemical structure does
not necessarily imply diversity of biological activity. In order to be meaningful,
diversity can only be appliedwithin a frame of reference, that is, the biological assay.
Hence, structural diversity of compounds should be interpreted only with respect
to their relative effect in biological screens. Finding descriptors for biological
activity is necessary to describe the diversity of biological activities for compounds
present in a library. Unfortunately, it is often difficult or impossible to predict in
advance which descriptors are most effective in a given situation. While it remains
to be a matter of subjectivity what makes a compound set diverse and how to
quantify diversity, or if one compound set is more diverse than another, the
minimum value gained by a diversity application is the elimination of redundancy
within a screening set. A diverse set of compounds should contain only nonre-
dundant molecules that simultaneously span a wide range of properties covering
the chemical space.

The basis of removing redundancy from a compound set is formed by the general
belief that similar molecules typically exhibit similar biological activities. This
concept has been defined as the similarity property principle or neighborhood behavior,
and is the fundamental assumption behind all similarity and diversity applica-
tions [26]. Although generally accepted, one can quickly find arguments against
this principle, as there are many examples described where subtle modifications of
a compound can lead to dramatic changes in activity (activity cliffs, �magic methyl,�
etc.) or major changes in the molecular structure not resulting in significant activity
differences (flat SAR). From a statistical point of view, however, it has been
demonstrated that a set of compounds similar to an active hit contains a higher
number of actives compared to a random set, thus increasing the probability of
finding actives [27]. Various groups have analyzed large activity data sets and came
to the conclusion that on average there is a 30% chance that a compound within a
certain similarity cutoff (Tanimoto coefficient �0.85 using Daylight fingerprints) to
an active hit is itself active [28, 29]. The backside of this finding is that diversity
methods selecting a representative compound within a subset of similar compounds
incur a 70% chance of picking an inactive compound and excluding compounds
that might have had activity. Exacerbating the effect, diversity selections often tend to
more aggressively reduce the size of screening sets by loosening similarity criteria
beyond the range where the similarity property principle is applicable. This might
lead to a decreased coverage of biological space, limiting the chance of finding actives
within the chosen subset.

1.4.2
Descriptor-Based Diversity Selection

Various strategies for the design of diversity-based screening collections have been
proposed. Before initiating the selection process, somemore fundamental questions
should be addressed. For instance, it is often unclear how large a screening library
should be and how many cluster representatives need to be selected. Using
fingerprints and default similarity cutoffs for clustering (see above) and assuming
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the presence of actives in a cluster, there is only a 30% probability of identifying an
active hit when a single representative per cluster is chosen. The selection of five
compounds per cluster increases the chance of finding actives to 80% [28]. This
finding suggests the selection of multiple representatives per cluster to increase the
likelihood of uncovering actives. However, this comes at the expense of including
fewer clusters during the selection process.

A mathematical model was developed by Harper et al. to provide a more
quantitative framework for assessing the optimal parameters of a screening
collection and their effect on the probability of producing lead series in a given
biological assay [30]. For each cluster in a screening collection, the percentage
of compounds expected to hit the biological target, as well as the probability of
an existing lead molecule in the cluster, is empirically estimated. According to
the model, the expected number of lead series per screen (�lead discovery rate�)
increases linearly with the number of compounds in a screening library.
However, the probability of finding one or more lead series in a given screen
does not grow proportionally with the size of the library. For instance, it was
estimated that an average hit rate of 1.2 leads per screen is required to find at least
one lead on 70% of screens. To increase the proportion of screens identifying
leads to 80% and beyond requires a sharp increase in the number of compounds
to be screened. This result of diminishing returns has been experienced by many
companies when their screening collections have dramatically increased in size,
but it has not translated into a proportional increase in successful screening
campaigns. One of the main conclusions from the analysis is that, in order to
increase the chance of finding lead series, a screening library of a given size
should contain as many diverse clusters as possible, ideally with only one or few
representatives per cluster. Increasing the number of compounds per cluster at
the cost of decreasing the number of clusters ultimately lowers the likelihood of
finding leads.

In principle, there are three main steps required to carry out diversity-based
subset selections: (1) the calculation of descriptors representing the compound
structures, (2) a quantitative method to describe the similarity or dissimilarity of
molecules in relationship to each other, and (3) selection methods to identify
compounds based on their similarity or dissimilarity values that best represent
the entire compound set. In the following, the three steps are described in more
detail.

Numerous descriptors encoding molecular properties with varying degrees
of information content and complexity have been developed [31]. The current
version of the Dragon software alone calculates over 3200 molecular descrip-
tors [32]. The many different representations can be classified according to the
type of information they encode [4, 33]. Whole-molecule descriptors represent
different properties of a molecule in a single number, such as molecular weight
or calculated log P. Descriptors derived from 2D representations of molecules
include topological indices, which describe a structure according to its size and
shape by a single number, and fingerprint-based descriptors, characterizing
molecules by their substructural features. Graph-based molecular descriptors
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attempt to reduce themolecular complexity while capturing the overall information
content of the molecular topology and properties. Descriptors derived from the 3D
structure of molecules consist of fingerprint-based descriptors and other more
complex representations, encoding properties such as shape or pharmacophore
information of a molecule.

In order to quantify the degree of similarity or dissimilarity between two com-
pounds, various similarity coefficients have been developed for different applica-
tions, many of them widely used for chemical similarity searching [34]. Several
groups compared the performance of different similarity coefficients in combination
with various fingerprint types, and it was often found that the Tanimoto coefficient
markedly outperformed other similarity measures, making it the similarity coeffi-
cient of choice for fingerprint-based similarity searching [35].

Methods for selecting diverse subsets from a compound collection include
(1) dissimilarity-based compound selection, (2) clustering, (3) partitioning, and
(4) the use of optimization approaches, and are discussed in the following.
Dissimilarity-basedmethods involve the selection of compound sets thatmaximize
the dissimilarity between pairs of molecules [36]. In an iterative fashion, those
molecules from a compound collection that are mostly dissimilar to the already
selected compounds from the subset are added to the subset. TheMaxMin selection
technique and the sphere exclusion algorithm are the preferred methods of
choice among dissimilarity-based methods [37, 38]. Clustering methods involve
the identification of groups of compounds such that compounds within a cluster
are highly similar whereas compounds from different clusters are dissimilar.
Choosing one or only few representatives per cluster, usually the cluster centroids,
has been demonstrated to be the best strategy for designing a highly diverse
subset to maximize the chances of hit identification. Many different clustering
algorithms have been developed, and they can be divided into hierarchical and
nonhierarchical methods [39]. Since clustering is based on relative similarities of
molecules to each other and not on an absolute scale in chemical space, it is often
difficult to compare two different data sets, which is required, for instance, when
purchasing new compound collections. In contrast, partitioning or cell-based
methods provide an absolute measure of compounds in terms of their location
in chemical space, spanned by a predefined descriptor set [40]. A low-dimensional
descriptor space is required, where descriptors are mapped onto each axis of
the chemical space by binning (partitioning) the range of their values into a set
of cells. Molecules that fall into the same cells can be considered similar, and a
diverse subset of compounds is selected by taking one or a few representatives
from each cell. Pearlman�s well-known BCUT descriptors, typically mapped into
a six-dimensional space, were developed for the use in partitioning-based
approaches [41]. A chemical global positioning system, ChemGPS, was introduced
to provide a low-dimensional chemical space as a frame of reference suitable
for diversity analysis [42]. A set of 72 descriptors was condensed into a nine-
dimensional space by means of principal component analysis. Finally, optimiza-
tion-based approaches use genetic algorithms or simulated annealing to efficiently
sample large chemical spaces [43, 44].
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1.4.3
Scaffold-Based Diversity Selection

An alternative approach to describe the diversity of a compound collection has been
realized by the classification of molecules according to their underlying scaffolds.
Compared to methods using traditional descriptors such as fingerprints, scaffold
classification methods provide a different view of comparing databases of com-
pounds. Scaffold diversity and coverage, as well as over- or underrepresented regions
of scaffold space, can be easily assessed across different data sets, such as publicly or
commercially available screening collections [45]. Scaffold analysis is also applied
to HTS data to retrieve more chemically intuitive clustering results [46]. Finally,
classification of compounds according to their scaffolds can help identify privileged
structures and serve as a starting point for designing scaffold-focused libraries
(Section 1.5) [47, 48].

Although there is no exact definition for a molecular scaffold, it generally refers
to a common structural core motif. Scaffolds often resemble the chemotypes of
molecules, which medicinal chemists use to categorize compounds into chemical
series. Bemis and Murcko have introduced the widely used classification of com-
pounds according to their molecular framework [49]. The molecular framework of a
compound, also referred to as �Murcko scaffold,� is formed by deleting all terminal
acyclic side-chain atoms from the original molecule. In addition, all atom and bond
types can be removed to arrive at the graph framework of the molecule. The removal
of linker length and ring size information results in the reduced graph representation
of the molecule. The feature tree descriptor used in FTrees is a popular example
where compounds are described by a graph (tree) that represents each molecular
fragment and functional group (feature) as anode and their connectivity as edges [50].
This reduces the molecular descriptor complexity while still maintaining the
overall topology and property information, making this descriptor ideal for scaf-
fold hopping searches [51]. In a related approach, �molecular equivalence indices�
(MEQI) classify molecules with respect to a variety of structural features and
topological shapes, which can be used to hierarchically classify compound sets into
classes of chemotypes [52]. Recently, a hierarchical classification system, Scaffold
Tree, has been described [53]. Each level of the hierarchy consists of well-defined
chemical substructures by iteratively removing rings from themolecular framework.
Prioritization rules ensure that peripheral rings are removed first to achieve unique
classification trees. Besides the benefit of its visually intuitive presentation of the
scaffold tree, potential applications of this method are the detection of potential
chemical series from screening hits on the basis of their hierarchical classification
and the retrosynthetic combinatorial analysis of library compounds to identify the
scaffolds that have been most likely used. The idea of a hierarchical classification of
scaffolds has been expanded to incorporate the biological space associated with the
compounds. The program Scaffold Hunter has been developed both to analyze
the complex relationship of structure and activity data and to identify scaffolds of
compounds likely to contain the desired biological activity [54, 55]. Analogous to the
Scaffold Tree approach, scaffolds are hierarchically organized, however, using activity
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data as the key selection criterion during the structural deconstruction and tree
building process. Scaffolds that share activity with their neighboring scaffolds in the
hierarchical tree but are not represented by compounds in the data set are identified.
Such virtual scaffolds can serve as starting points for the discovery of new biologically
relevant scaffolds.

1.4.4
Sources of Diversity

Besides the established sources of obtaining diversity,mainly fromhistoric compound
collections, publicly or commercially available compound libraries, and natural
products, novel approaches toward expanding diversity have been described in the
recent literature.

The systematic enumeration of all possible organic molecules of up to 11 atoms of
C, N, O, and F, applying simple valence, chemical stability, and synthetic feasibility
rules, has been reported [56]. A total of 26.4 million compounds were generated and
collected in a chemical universe database (GDB-11). An extended version (GDB-13)
has been published that contains 970millionmolecules of up to 13 atoms of C, N, O,
S, and Cl enumerated in a similar manner, making it the largest database of publicly
available virtual molecules [5]. It contains a vast number of unexplored structures
and provides a new source for design ideas to identify bioactive small molecules and
scaffolds. The first successful application of the GDB discovering a novel class of
NMDA glycine site inhibitors has been recently reported [57].

Bioactive molecules have been shown to contain only a limited number of unique
ring systems. For that reason, in analogy to the chemical universe of theGDB, several
groups have explored the ring universe to identify novel ring systems and hetero-
aromatic scaffolds. A comprehensive collection of more than 40 000 different rings
extracted from the CAS registry has been classified into ring systems on the basis
of their topology, and it was shown that the distribution of rings is not continuous
but contains many significant voids [58]. A drug ring database containing ring
systems from proprietary and commercial compound collections has been devel-
oped as a source for scaffold replacement design [59]. Generating a database of over
600 000 heteroaromatic ring scaffolds, the comparison to scaffolds associated with
biological activity revealed that bioactive scaffolds are very sparsely distributed,
formingwell-defined �bioactivity islands� in virtual scaffold space [60]. It is, however,
unclear if biological activity is truly limited to only such small region of ring space,
or if most ring systems are simply not synthetically accessible and thus have never
been prepared. To overcome this limitation, the future challenge is to actively develop
novel synthetic routes to prepare molecules with so far unexplored ring systems.
A �virtual exploratory heterocyclic library� (VEHICLe) of almost 25 000 ring systems
was created, containing a complete enumerated set of heteroaromatic rings, with
rings being removed that are likely to be synthetically unfeasible according to a set
of empirical rules [61]. Interestingly, the authors find that only 1700 of them (7%)
have been published, and of these only a small percentage is routinely used in the
synthesis of druglike molecules. They highlight many simple and apparently
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tractable heterocycles that have not been described in the literature so far and put
out a �challenge to creative organic chemists to eithermake them or explain why they
cannot be made.�

It has been argued that the trend in drug discovery over the past decade toward
achiral, aromatic compounds, presumably due to their amenability to high-
throughput synthetic approaches, may have contributed to a higher failure rate of
drug development candidates [62]. Concurrently, it has been reported that the
complexity of a molecule is a key criterion determining the success of the drug
candidate [63]. The increase inmolecular complexity, measured as the extent of bond
saturation and the number of chiral centers, has been demonstrated to correlate with
an overall improved compound developability. Changes in molecular complexity
affect the three-dimensional shape of a compound, which might lead to improved
interactions with the target receptor. The resulting improved potency and selectivity
profile ultimately increases the chance of a successful drug candidate. Although
aromatic rings and achiral centers still dominantly define classical drug structures,
this might suggest a trend away from flat aromatic structures toward more complex
molecules.

In the recent past, natural products and natural product-like molecules that lie
outside the range of traditional �rule of five� druglike space have gained renewed
interest in drug discovery [64, 65]. Technological advances have enabled the com-
bination of approaches that leverage the unique diversity of building blocks from
natural product sources with the strength of combinatorial library design. The
diversity-oriented synthesis (DOS) approach allows the rapid synthesis of chemical
libraries containing structurally complex molecules with a range of scaffold varia-
tions and chiral centers, creating a broad distribution of diverse compounds capable
of binding a range of biological targets [66]. The main emphasis of natural product-
like drug discovery so far, however, is on the identification of novel tool compounds to
probe the target of interest and support further pharmacological in vitro studies, not
on the development of oral drugs [67, 68]. Finally, macrocyclic molecules (containing
a ring of seven ormore atoms) represent another emerging structural class outside of
classical oral druglike space, with a strong potential for historically difficult targets
such as protein–protein interactions [69]. Macrocycles are capable of forming high-
affinity interactions with the shallow contact surfaces that are typical for interfaces
involved in protein–protein interactions. Due to their intrinsic conformational
constraint, they can position arrays of functional groups across a wide interaction
area, without the penalty of introducing multiple rotatable bonds.

Virtual screening provides an excellent opportunity to explore large databases of
virtual small molecules and ring systems as highlighted above, supporting the
design of combinatorial libraries with novel scaffolds or ring systems, or can be
employed for tasks such as bioisosteric replacement design and scaffold hopping.
However, in order to increase the chance of successfully synthesizing molecules
proposed by virtual screening methods, more effort has to be put into the develop-
ment of predictive methods to account for chemical feasibility. Not only should it
include if a particular compound can be synthesized but it should also include if it
can be rapidly followed up (i.e., chemically enabled) with analogues during lead
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optimization in a medicinal chemistry campaign. Computational approaches to
assess synthetic accessibility have been described in the literature, mainly based on
retrosynthetic or complexity-based analysis of molecules [70, 71].

1.5
Focused Libraries

Random screening of compound libraries in a high-throughput fashion is the major
source of finding new leads in drug discovery when little or nothing is known about
a target. Modern HTS technologies can routinely screen millions of compounds in
a few weeks. However, in certain screening paradigms this approachmay not always
be feasible. For instance, the assay format cannot be scaled up to HTS format or only
a low-throughput cell-based assay is available. In this situation, it is necessary to
reduce the number of compounds to be screened, and the selection of diversity-based
compound subsets is a viable option (Section 1.4). At the beginning of a new drug
discovery project, it is often likely that information already exists to jump-start the
program. When sufficient knowledge about a drug target is available, the design of
targeted or focused libraries is possible. Various computational methods can �focus�
the selection of compounds toward individual targets or entire target classes. The
growing amount of knowledge for many drug targets and known drugs has resulted
in an increased number of publications that describe new methods for the design
of target and target family-focused libraries. Consequently, the screening of mod-
erately sized (104–105) focused libraries has emerged as a promising alternative and
efficient approach for lead identification.

1.5.1
Concepts of Focused Design

In their seminal work, Hopkins and coworkers mapped the entire known pharma-
cological space (biologically relevant chemical space) on the basis of a comprehen-
sive collection of literature data [8]. This compound-centric view allowed them to
identify targets for which drugs and chemical tools have been discovered, and how
they are related to each other. Not surprisingly, the most densely populated target
families represent attractive gene families that are actively pursued in drug discovery,
notably kinases, GPCRs, ion channels, proteases, phosphatases, and nuclear hor-
mone receptors. These multimember gene families, which account for more than
50% of the known human druggable genome, are also the prime candidates for
targeted library design efforts due to their family-wide similarities in molecular
recognition or enzymatic mechanisms.

A certain amount of prior knowledge about members of the target families is
required for the successful design of focused libraries. Increased efforts in collecting
and annotating pharmacological data of molecules are undertaken (Section 1.7). The
availability of an ever-growing number of protein structures in the ProteinData Bank
(PDB) facilitates the generation of structure-based knowledge of target classes.
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Depending on the type and amount of information available for a target family, one
can apply ligand-based, structure-based, or chemogenomics approaches for the
design of focused libraries, or ideally all methods can be combined in a comple-
mentary fashion [72]. Interestingly, while GPCRs represent the second largest gene
family (after kinases), they almost completely lack any structural information due to
their membrane-bound nature. Only recently, the first crystal structures of human
GPCR targets (b2 adrenergic, A2a adenosine receptors) have been solved. Hence, the
design of GPCR focused libraries in the past was often limited to ligand-based
methods. The development of refined homology models and prediction of ligand
binding modes start to compensate for the lack of GPCR structures, making
structure-based methods more amenable to focused library design [73].

1.5.2
Ligand-Based Focused Design

The use of simple molecular properties has been demonstrated to construct models
that discriminate compounds belonging to different target families. Depending
on their target family, bioactivemolecules show differences in their physicochemical
properties [74, 75]. These variations can be used either as simple descriptor-based
guidelines or to develop predictive models that focus the composition of chemical
libraries toward a particular target family. For example, a neural network model was
constructed on the basis of a small set of physicochemical properties to categorize
compounds asGPCR-like or non-GPCR-like [76]. According to themodel, GPCR-like
compounds tend to be less flexible, less polar, and more hydrophobic compared to
non-GPCR-like molecules. Other classification methods have been applied as well,
such as Bayesian models, recursive partitioning, self-organizing maps (SOM), and
other machine learning systems, in combination with various 2D or 3D descrip-
tors [77, 78]. BCUT descriptors not only are being used for diversity-based subset
selections (Section 1.4) but have also been employed to design focused libraries [79].
Instead of selecting diverse representatives from each cell in the low-dimensional
descriptor space, compounds from �promising cells� are chosen that contain known
active ligands.

Following a pharmacophore approach, a consensus 3D pharmacophore finger-
print based on a set of known GPCR ligands was created, which was subsequently
used for building GPCR focused libraries [80]. Using a four-point pharmacophore
fingerprint as a measure for similarity, GPCR-specific pharmacophores were iden-
tified and applied toward the design of focused libraries [81]. Particularly for large
target families where a wealth of data exists, such as kinases and GPCRs, known
ligands can be used to define queries to search against compound collections using
substructure and similarity searches, and identified molecules can be compiled into
focused screening collections [82, 83].

The notion that compounds with a benzodiazepine core were active as ligands
against a variety of GPCRs, such as central and peripheral benzodiazepine, kappa
opioid, and CCK receptors, has led to the privileged structure concept [84]. The
observed activity crossover of a single compound to multiple targets of the same
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gene family implies that an underlying molecular scaffold is �privileged� to lend its
activity to more than one receptor. The privileged structure concept has appeared
more frequently in the recent literature and is interpreted in two differentflavors [48].
In a strict sense, privileged structures should be defined as substructures with a
proven correlation to a particular target family, based on specifically defined key
structural elements that account for a commonality in molecular recognition across
the target familymembers. In a broader context, privileged structures are interpreted
as substructures emerging in compounds that showed effects on multiple target
proteins, irrespective of their underlying target families. It is unknown why these
fragments bind with higher than average frequency to multiple targets, and often
there is no clear dividing line between privileged structures and promiscuous
binders. Nevertheless, an increasing number of scaffolds have been described as
privileged structures, mainly for GPCR and kinase targets, including indoles,
biphenyls, benzopyranes, aryl piperazines, or aminopyrimidines [85].

Several groups have carried out fragmentation analyses of compounds active
against target families, and the observed frequently recurring fragmentswere used as
input for the design of focused libraries. In one of the first studies, a �retrosynthetic
combinatorial analysis procedure� (RECAP) was developed using a limited set of
defined fragmentation rules to identify privileged substructural elements [86]. Novel
kinase inhibitors were designed in a reconstructive approach by fragmentation of
known inhibitors and de novo assembly of fragments based on predictive models.
The authors noted that while this approach worked well in designing active
molecules, it remains to be challenging to also find selective kinase inhibitors [87].
A similar �virtual fragment linking� approach validated across a variety of different
target classes has also been reported [88]. A combination of virtual and experimental
(NMR, biochemical) screeningmethods was employed to identify novel scaffolds for
the design of kinase-targeted libraries [89].

These and other reports give evidence of frequently occurring substructural
elements connected to activity across a diverse panel of proteins. However, it is still
debatable if such privileged structures are truly privileged in a selective manner
against specific target families [90]. For instance, it is possible that fragments
occurring with high frequency are simply elements of druglike, easy to synthesize,
and therefore overrepresented molecules in compound collections. More thorough
analyses are required that study the selectivity of privileged structures against
target families and consider only statistically significant fragments by normalizing
their occurrences in active compounds versus mere incidence in the screening
libraries.

1.5.3
Structure-Based Focused Design

Compared to ligand-based approaches, the use of structure-based methods has
received less attention in the past, mainly due to their limited applicability to target
classes with available protein structures and also because some of the methods
such as docking still involve computationally intensive processes. Nevertheless, for
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certain target classes, particularly for kinases, significant amount of structural
information is available, making structure-based approaches a viable option for
compound selection and focused library design. The publication of the first human
GPCR crystal structures, as well as the development of more refined homology
models in combination with site-directed mutagenesis data and ligand structure–
activity relationships (SAR), has also advanced the design of structure-based focused
libraries for GPCR targets.

Protein–ligand docking and pharmacophore searching are the two main structure-
based techniques for searching a large number of compounds to design focused
libraries. Fast high-throughput docking methods allow the evaluation of large vir-
tual libraries in a protein binding pocket, followed by the selection of compounds
according to their docking scores. Due to the limited accuracy of scoring functions
in general, it is advisable to also maintain a certain amount of diversity within
the selected subset to facilitate the detection of potential new binding modes not
predicted by docking [91]. The docking of combinatorial libraries based on a selected
number of scaffolds, linkers, and functional groups allowed the design and syn-
thesis of a target-focused virtual library while optimizing size versus diversity [47].
For designing a kinase-focused library, various scaffolds were prioritized by dock-
ing small virtual libraries generated around each core. Scaffolds that led to consistently
docked structures according to cluster analysis were selected [92]. By docking
privileged fragments derived from fragmentation of known kinase inhibitors into
their respective protein bindingpockets, both ligand-based and structural information
was combined to assemble novel scaffold libraries for a kinase-focused library [93].

1.5.4
Chemogenomics Approaches

A new strategy in drug discovery termed chemogenomics has been defined as the
investigation of classes of compounds against families of functionally related
proteins [94]. It provides a unique approach to organize targets according to their
gene families and discover ligands for related targets in a systematic manner, thus
enhancing the efficiency of the drug discovery process [95]. Analogous to the
similarity property principle (i.e., similar chemical structures share similar biological
activities), the underlying assumption of chemogenomics is that similar biological
structures share similar ligands. Indeed, it has often been observed that compounds
active against one protein also show activity against othermembers of the same gene
family. Chemogenomics attempts to link chemical structures of bioactive molecules
and their effect on entire targets classes. Ultimately, insights into this relationship
enable the rational design of focused libraries against one or multiple gene family
members. Since the success of identifying and exploiting these links depends on the
availability of structural and biological data for a larger number of targets, chemo-
genomicsmethods have been applied largely to not onlymajor gene families, GPCRs
and kinasesmainly, but also proteases, nuclear hormone receptors, and ion channels.

Due to the lack of protein structures, similarities among GPCR targets have been
mainly explored by sequence-basedmethods. The conventional approach ofmapping
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the homology between GPCRs in a phylogenetic tree analysis employs full protein
sequences. More relevant from a drug design perspective, however, is the compar-
ison of targets based on their ligand recognition. Several groups have identified
putative ligand binding sites within the transmembrane region of GPCRs [96, 97].
The relevant amino acids defining the pockets (20–50 residues) can be represented by
their physicochemical properties (charged, polar, hydrophobic, aromatic, etc.) and
are converted into bit strings unique for each receptor. This enables a straightforward
comparison of ligand binding sites of targets across the entire gene family. Similarly,
�structural interaction fingerprints� (SIFt) were developed for kinase binding sites,
based on fingerprints derived from physicochemical properties of selected binding
site residues [98].

This approach can be applied to find novel sources of ligands for GPCRs without
existing leads by first evaluating similar GPCRs for which ligands are known. For
example, active compounds for the CRTH2 receptor were identified by screening
ligands from the structurally related AT1 and AT2 receptors [99]. Notably, the close
relationship between the CRTH2 and AT1/AT2 receptors was not revealed by their
full-length sequence homology. Small molecule antagonists for SSTR5 were iden-
tified by starting with a known histamine H1 antagonist, after a chemogenomics
analysis had shown a close similarity between SSTR5 and opioid, histamine,
dopamine, and serotonin receptors [100]. The same strategy has also been proposed
to identify ligands for several orphan GPCRs [97].

A more elaborate chemogenomics approach, �thematic analysis,� has been
developed by Biofocus to better characterize the binding regions across a range of
different GPCRs [101]. The putative ligand interaction site is divided into separate
microenvironments with well-defined properties for each subsite (themes) and
paired with matching fragments (motifs) based on known ligand structures.
Combined, these thematic fingerprints can be used to classify new GPCRs and
to design libraries focused on particular GPCR subclasses. A similar concept
termed �chemoprint� has been applied to GPCRs by systematically annotating key
interaction pairs of ligand fragments and their putative protein binding resi-
dues [102]. It is worth noting that in combination with homology modeling, the
authors have established amethod for deriving sequence-based 3Dpharmacophore
models for a wide range of GPCR targets, useful for virtual screening and focused
library design.

A ligand-centric view of chemogenomics is the classification of biological targets
based on activity profiles of diverse ligands [103]. These affinity fingerprints can then
serve as a measure of protein similarity. It has been demonstrated that clustering
of kinases based on their ligand SAR is different from the sequence-based cluster-
ing [104]. Both ligand- and structure-based classifications are often complementary
and provide alternative views of the same protein family. The BioPrint database from
Cerep comprises activity profiles of chemical structures experimentally measured
across a large number of targets. Using experimental binding data generated from
2000 druglike compounds on 40 GPCR targets, a global QSAR model employing
pharmacophore features relevant to GPCR binding characteristics has been devel-
oped and applied to design GPCR focused libraries [105].
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1.6
Virtual Combinatorial Libraries and Fragment Spaces

With today�s computational resources it is usually not a problem to exhaustively
search compounds from corporate collections, vendor libraries, or small combi-
natorial libraries, which typically range in the order of 105–107 molecules. However,
for large virtual combinatorial libraries and collections thereof, it becomes quickly
unfeasible to enumerate all possible virtual molecules in advance due to com-
binatorial explosion. Consequently, there has been an increasing interest in compu-
tational methods to find alternative ways to systematically search large virtual
combinatorial libraries, allowing a dramatic expansion of unexplored chemical space.

A solution to the problem is to encode molecules of virtual combinatorial libraries
not as enumerated products, but rather to keep them in their unenumerated form as
building blocks (fragments), together with linkage rules for how to combine them.
The efficiency of searching virtual combinatorial libraries in their fragment space
representation compared to their enumerated products is easily explained by the
different numbers of molecules that have to be processed during a similarity search.
For instance, if a two-component combinatorial library with 1000 building blocks
each is searched in its enumerated form, one million product structures have to be
compared to a given query. In contrast, only 2000 monomers have to be evaluated
in their corresponding fragment space. Extending this comparison to large sets
of combinatorial libraries, the number of products can by far exceed 1012 possible
virtual products, making a systematic enumeration unfeasible, whereas searching in
the equivalent fragment space keeps the number still at a manageable size.

A large fragment space encoding over 1013 possible product structures has been
created at Pfizer by taking a collection of 358 combinatorial libraries based on
proprietary validated reaction protocols [106]. This fragment space can be system-
atically explored with the similarity search program FTrees-FS (extension of FTrees)
that does not require the upfront enumeration of product structures [50, 107]. The
result is a list of virtual products similar to the search query, synthetically accessible
by one or more of the reaction protocols stored in the fragment space. Grouping
the virtual hits by their synthetic protocols allows a fast follow-up design of focused
libraries. A similar fragment space based on feature tree descriptors spanning 1011

potential products was generated using proprietary reaction protocols [108]. The
selection of diverse sets of input reagents enabled both diverse and focused decora-
tions of the central scaffolds identified by the search. In a related approach, a
�monomer-based similarity searching� (MoBSS) method has been developed using
atom pair descriptors [109]. To avoid time-consuming product enumeration, the
descriptors are generated from the monomers of virtual combinatorial libraries
collected in a fragment space. Since atom pair descriptors computed from inter-
atomic distances lend themselves to pairwise additivity, product atom pairs can be
rapidly computed from those of the constituent monomers through an arithmetic
manipulation.

Fragment spaces have also been assembled by rule-based fragmentation of drug
molecules. To build such a space, the RECAP program has been applied to drugs
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from theWorld Drug Index (WDI) and other druglike molecule collections [86, 110].
Applying a set of retrosynthetic rules, the drugmolecules are disconnected into their
individual fragments, and together with their associated link types they are incor-
porated into the fragment space. The large variety of generated fragments combined
with a countless number of possible recombinations based on a limited set of
connection rules permits a high degree of diversity of virtual products. However, this
comes at the expense of their synthetic feasibility, which in contrast to hits from
combinatorial fragment spaces is often unknown [111]. Predictive methods to assess
synthetic feasibility of virtual de novo molecules have been proposed [112].

The calculation of �basis products� is an efficient way of representing large
combinatorial libraries by strategically selecting subsets of compounds without
complete enumeration. They are derived by enumerating one building block at a
time while holding all other reaction components fixed, and this is consecutively
repeated for all other building blocks. In the case of a two-component reaction with
1000 monomers each, only 1999 basis products have to be enumerated (A1B1, A2B1,
A3B1, . . ., A1000B1, A1B2, A1B3, . . ., A1B1000). This way, any virtual product in the
combinatorial library is represented by a set of basis products (e.g., A3B7 represented
by A3B1 and A1B7). Basis products can be used in the same way as enumerated
combinatorial library products, such as property filtering or docking [113]. However,
the underlying assumption and limitation of this approach is that properties or
docking scores from the various building blocks behave in an additive manner.
A large number of virtual combinatorial libraries were also efficiently encoded by
Bayesian modeling [114]. Representative members from a large number of combi-
natorial libraries are used to derive a multicategory Bayesian model. The resulting
�Bayesian idea generator� (BIG) allows to predict the likelihood of a given compound
belonging to a certain combinatorial library. Several top-ranking libraries are
suggested and prioritized according to their Bayesian score.

Virtual combinatorial libraries can also be explored by structure-based virtual
screening methods without prior enumeration. Docking of large virtual combina-
torial libraries is offered by many docking programs, such as DREAMþþ , FlexXc,
CombiDOCK, and CombiGlide, among others [115]. Typically, the library templates
are placed in the binding pocket, and each subsite is individually probed by docking
the various R-groups of the library. Compounds with the highest scoring R-group
combinations are selected and synthesized as part of the focused library. Notably, the
FlexNovo software is capable of directly accessing fragment spaces generated as
described above [116].

1.7
Databases of Chemical and Biological Information

Numerous databases of chemical structures, biological targets, and bioactivity data
relevant for drug discovery have emerged in recent years. They are a unique source
both for generating new ideas to identify chemical matter and for providing
information-rich content for chemical and biological targets. Besides traditional
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compound databases with a large number of diverse chemical structures, there is an
increased interest in annotated compound libraries aiming at capturing information
to establish relationships between chemicalmatter and their biological function [117].
All relevant databases have been extensively reviewed in the literature. In the
following, representative public and commercial databases relevant for drug discov-
ery are highlighted (Table 1.2).

ZINC is a free database of commercially available compounds that in its current
version contains over 13million purchasable compounds from vendor catalogs [118].
Multiple formats are provided to fit the needs for various virtual screening applica-
tions such as substructure and similarity searches, property filtering, and docking.
Subsets of druglike, leadlike, and fragment compounds have been generated and can
be accessed separately. Similarly, ChemDB is a chemical database of over 5 million
small molecules collected from electronic catalogs of commercial vendors. In
addition, computational reaction models enable searches through virtual chemical
space by predicting hypothetical products synthetically accessible from building
blocks contained in the database [119]. Web-based chemistry search engines are
capable ofmining a large number ofmolecules from various public data repositories,
such as ChemSpider (20 million) and eMolecules (7 million), the latter also offering
databases for download to be used for virtual screening.

PubChem is a component of the NIH Molecular Libraries Roadmap Initiative
providing information on biological activities of small molecules. It is organized as
three interconnected databases, containing chemical samples froma variety of sources
(PubChem Substance), compound information related to substances such as physi-
cochemicalproperties anddescriptors for similarity searching (PubChemCompound),
and bioactivity data of chemical substances (PubChem BioAssay). The dynamically
growing primary databases contain over 61 million records of chemical substances,
25 million unique compound structures, and bioactivity data from more than 1600
assays. Data mining approaches to create representative subsets for virtual screening
purposes [120] and cross-assay analyses of bioactivity data to study polypharmacology
behavior in the PubChem collection [121] have been described. Other publicly avail-
able compound databases annotated with biological data are ChemBank with over
1.2 million chemicals [122] and DrugBank covering almost 4800 drugs [123].

Several commercial databases of annotated compound libraries exist, mostly
compiled from literature and patent sources. The StARLITe database (nowChEMBL)
is a large collection of chemicals mined from literature, including target and
bioactivity information for 500 000 compounds. TheWOMBAT (World of Molecular
Bioactivity) database from Sunset Molecular contains 300 000 molecular entries
associated with biological activities and target information [124]. Jubilant BioSys,
GVK Bio, and Aureus Pharma are commercial providers of large target-centric
compound databases, focusing mostly on large target classes such as kinases,
GPCRs, nuclear hormone receptors, or ion channels. The databases integrate
chemical structures with activity data and target information collected from literature
and published patents.

Nowadays, more than 60% of new chemical substances entering the Chemical
Abstract Service (CAS) registry are sourced from patents. Thus, in addition to
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capturing information from literature and available compounddatabases, themining
of chemical and biological data from the patent literature is attracting considerable
attention. Not only does it provide a mostly untapped source of ideas for new lead
generation but it also allows to identify regions in chemical space already investigated.
The use of text analytics tools is an efficient way to mine the drug and patent
literature [125]. Researchers at IBM have developed a system that enables the user
tomine patents from theUSPatent corpus [126].A chemical annotator recognizes and
extracts chemical entities in patent documents, and a name-to-structure converter
generates molecular structures that are stored in a database for similarity searching.
The authors were able to index 3.6 million unique chemical structures from 4.4
million patents. A similar patent database, SureChem from Reel Two, was created by
extracting all chemical names from the full text of US, EPO, JP, and WO patents and
contains 11 million unique chemical structures covering 18 million patents.

A limiting factor is that text analytics methods are largely confined to specific
compounds exemplified in the patents, which are only a small portion of the theoret-
ically possible chemical structures represented in the Markush claim. The improved
access to searchable databases of Markush structures and the development of sophis-
ticated chemoinformatics tools to efficiently mine and enumerate the potentially
billions of claimed chemical structures are the next logical steps toward capturing the
vast chemical space contained in the patent corpus [127, 128].

1.8
Conclusions and Outlook

Virtual screening increasingly impacts the hit finding process in drug discovery by
preselecting compounds for biological evaluation. Due to a high false positive rate
associated with most virtual screening methods, the selection of only few cherry-
picked compounds to identify active molecules (�needle in the haystack�) is often
less likely to be successful. It rather plays to its strength when virtual screening is
applied in the context of narrowing down the number of compounds to be tested by
enriching screening sets with drug- and leadlike compounds likely to be active, that
is, molecules in biologically and medicinally relevant chemical space. Eliminating
compounds with nondruglike and nonleadlike properties from a screening collec-
tion is often not considered as virtual screening, but it is a crucial factor contribut-
ing to the overall success of high-quality lead identification. Reducing the number
of compounds for efficient biological testing can be accomplished by carefully
applying diversity-based selection criteria. The design of focused libraries targeting
a specific protein or protein family is a proven method of choice to increase the
chances of finding active leads. The unique capability of virtual screening to search
compounds in their virtual form not only allows access to the small fraction of
chemical space represented by existing screening libraries but also allows to expand
into other regions of chemical space (Figure 1.2). Virtual screening of compound
collections from external sources (vendors, patents, and literature), the design of
large virtual combinatorial libraries and their efficient representation as frag-
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ment spaces, or recently emerging alternative sources of diverse chemical matter
(de novo enumerated small molecules or ring scaffolds) offer plenty of opportu-
nities. However, the future challenge remains to more reliably predict biological
activity and chemical feasibility of compounds being proposed for synthesis.
Ultimately, the goal of next-generation virtual screening methods is the identifi-
cation and systematic exploration of truly synthetically accessible and biologically
and medicinally relevant chemical space.

1.9
Glossary

Chemical library Collection of chemical compounds.
Chemical space Collection of all possible meaningful compounds, typically

restricted to small organic molecules.
Chemogenomics Discovery and description of classes of compounds against

families of functionally related proteins.
Combinatorial
chemistry

Generation of large collections of compound libraries by
systematic combination of smaller building blocks. Large
virtual combinatorial libraries are often created in the form
of fragment spaces.

Figure 1.2 Virtual screening has the capability
to expand searches outside of typical screening
libraries (amenable to HTS) into new
dimensions of chemical space. The various

sources of accessible chemical spaces are
described throughout the text. Typical or
estimated numbers of compounds are
highlighted in bold.
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Diversity-based
library

Compound library designed to create a maximally diverse
collection of compounds to cover a broad range of protein
classes, especially when they are unknown or difficult to
target.

Druglikeness Physicochemical properties to improve the likelihood of
success in drug development.

Focused library Compound library designed around selected, often privileged
scaffolds tailored toward targeting specific protein families
(GPCRs, kinases, etc.).

Fragment space Chemical space representation wheremolecules are encoded
as building blocks (fragments) and linkage rules.

Leadlikeness Criteria for ideal lead molecules that serve as a basis for
further chemical optimization in a medicinal chemistry
campaign.

Molecular diversity Quantitative description how different molecules are from
each other in a compound collection.

Privileged structure A single molecular framework or frequently occurring frag-
ment able to provide ligands for multiple receptors, often
within a protein family.

Similarity property
principle

Fundamental assumption that similar compounds typically
exhibit similar biological activity; also referred to as neigh-
borhood behavior.
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