Contents

List of Contributors XVII
Preface XXIII
A Personal Foreword XXV

Part One Principles 1

1 Virtual Screening of Chemical Space: From Generic Compound Collections to Tailored Screening Libraries 3
Markus Boehm
1.1 Introduction 3
1.2 Concepts of Chemical Space 4
1.3 Concepts of Druglikeness and Leadlikeness 6
1.4 Diversity-Based Libraries 8
1.4.1 Concepts of Molecular Diversity 8
1.4.2 Descriptor-Based Diversity Selection 9
1.4.3 Scaffold-Based Diversity Selection 12
1.4.4 Sources of Diversity 13
1.5 Focused Libraries 15
1.5.1 Concepts of Focused Design 15
1.5.2 Ligand-Based Focused Design 16
1.5.3 Structure-Based Focused Design 17
1.5.4 Chemogenomics Approaches 18
1.6 Virtual Combinatorial Libraries and Fragment Spaces 20
1.7 Databases of Chemical and Biological Information 21
1.8 Conclusions and Outlook 24
1.9 Glossary 25
References 26
Preparing and Filtering Compound Databases for Virtual and Experimental Screening

Maxwell D. Cummings, Éric Arnoult, Christophe Buyck, Gary Tresadern, Ann M. Vos, and Jörg K. Wegner

2.1 Introduction 35
2.2 Ligand Databases 36
2.2.1 Chemical Data Structures 36
2.2.2 3D Conformations 38
2.2.3 Data Storage 39
2.2.4 Workflow Tools 39
2.2.5 Past Reviews and Recent Papers 40
2.3 Considering Physicochemical Properties 42
2.3.1 Druglikeness 42
2.3.2 Leadlikeness and Beyond 43
2.4 Undesirables 43
2.4.1 Screening Artifacts 44
2.4.2 Pharmacologically Promiscuous Compounds 45
2.5 Property-Based Filtering for Selected Targets 46
2.5.1 Antibacterials 47
2.5.2 CNS 49
2.5.3 Protein–Protein Interactions 51
2.6 Summary 52
References 53

Ligand-Based Virtual Screening

Herbert Koeppen, Jan Kriegl, Uta Lessel, Christofer S. Tautermann, and Bernd Wellenzohn

3.1 Introduction 61
3.2 Descriptors 62
3.3 Search Databases and Queries 67
3.3.1 Selection of Reference Ligands 67
3.3.2 Preparation of the Search Database 68
3.4 Virtual Screening Techniques 68
3.4.1 Similarity Searches 69
3.4.1.1 Similarity Measures 69
3.4.1.2 Practice of Similarity Searches 69
3.4.1.3 Selection of Descriptors 71
3.4.1.4 Data Fusion 72
3.4.2 Similarity Searches in Very Large Chemical Spaces 72
3.4.3 Machine Learning in Virtual Screening 74
3.4.3.1 Unsupervised Methods 75
3.4.3.2 Supervised Methods 75
3.4.3.3 Selected Techniques 76
3.4.3.4 Machine Learning Applications for Virtual Screening 78
3.4.4 Validation of Methods and Prediction of Success 78
4 The Basis for Target-Based Virtual Screening: Protein Structures 87

Jason C. Cole, Oliver Korb, Tjelvar S.G. Olsson, and John Liebeschuetz

4.1 Introduction 87
4.2 Selecting a Protein Structure for Virtual Screening 87
4.2.1 Why Are There Errors in Crystal Structures? 87
4.2.2 Possible Problems That May Occur in a Crystal Structure 91
4.2.2.1 Entirely Incorrect Models 91
4.2.2.2 Sequencing Errors 91
4.2.2.3 Misplaced Side Chains 91
4.2.2.4 Structural Disorder 92
4.2.2.5 Poorly Modeled Cofactors and Ligands 92
4.2.2.6 Erroneous Solvent 94
4.2.3 Structural Relevance 95
4.2.3.1 The Biologically Relevant Unit and Crystal Packing 95
4.2.4 Critical Evaluation of Models: Recognizing Issues in Structures 98
4.3 Setting Up a Protein Model for vHTS 101
4.3.1 Binding Site Definition 101
4.3.2 Protonation 104
4.3.3 Treatment of Solvent in Docking 104
4.3.4 Use of Protein-Based Constraints in Docking 105
4.3.5 Protein Flexibility 106
4.3.5.1 Pose Prediction 107
4.3.5.2 Virtual Screening 108
4.4 Summary 109
4.5 Glossary of Crystallographic Terms 110
4.5.1 R-Factor 110
4.5.2 Resolution 110
4.5.3 2mFo-DFc Map 110

References 110

5 Pharmacophore Models for Virtual Screening 115

Patrick Markt, Daniela Schuster, and Thierry Langer

5.1 Introduction 115
5.2 Compilation of Compounds 116
5.2.1 Chemical Structure Generation 116
5.2.2 Conformational Analysis 116
5.3 Pharmacophore Model Generation 117
5.3.1 State of the Art 117
5.3.2 Structure-Based Methods 117
5.3.3 Ligand-Based Methods 118
5.3.4 Limitations of Ligand-Based Methods 119
5.4 Validation of Pharmacophore Models 119

References 119
5.4.1 Chemical Databases for Validation 119
5.4.2 Enrichment Assessment 121
5.4.3 Enrichment Metrics 122
5.4.4 Receiver Operating Characteristic Curve Analysis 124
5.4.5 Area Under the ROC Curve 125
5.5 Pharmacophore-Based Screening 127
5.5.1 DS CATALYST 128
5.5.2 UNITY (GALAHAD/GASP) 128
5.5.3 LIGANDSCOUT 129
5.5.4 MOE 130
5.5.5 PHASE 130
5.6 Postprocessing of Pharmacophore-Based Screening Hits 131
5.6.1 Lead- and Druglikeness 131
5.6.2 Structural Similarity Analysis 131
5.7 Pharmacophore-Based Parallel Screening 132
5.8 Application Examples for Synthetic Compound Screening 133
5.8.1 17β-Hydroxysteroid Dehydrogenase 1 Inhibitors 133
5.8.2 Cannabinoid Receptor 2 (CB2) Ligands 134
5.8.3 Further Application Examples 136
5.9 Application Examples for Natural Product Screening 136
5.9.1 Cyclooxygenase (COX) Inhibitors 139
5.9.2 Sigma-1 (σ1) Receptor Ligands 139
5.9.3 Acetylcholinesterase Inhibitors 140
5.9.4 Human Rhinovirus Coat Protein Inhibitors 141
5.9.5 Quorum-Sensing Inhibitors 141
5.9.6 Peroxisome Proliferator-Activated Receptor γ Ligands 141
5.9.7 β-Ketoacyl-Acyl Carrier Protein Synthase III Inhibitors 142
5.9.8 5-Lipoxygenase Inhibitors 142
5.9.9 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors 142
5.9.10 Pharmacophore-Based Parallel Screening of Natural Products 143
5.10 Conclusions 143

References 144

6 Docking Methods for Virtual Screening: Principles and Recent Advances 153

Didier Rognan

6.1 Principles of Molecular Docking 153
6.1.1 Sampling Degrees of Freedom of the Ligand 154
6.1.1.1 Generation of Multiconformer Ligand Libraries 154
6.1.1.2 Incremental Construction 154
6.1.1.3 Stochastic Methods 155
6.1.2 Scoring Ligand Poses 156
6.1.2.1 Empirical Scoring Functions 156
6.1.2.2 Knowledge-Based Potential of Mean Force 156
6.1.2.3 Force Fields 157
6.1.2.4 Critical Evaluation of Scoring Functions 157
6.2 Docking-Based Virtual Screening Flowchart 158
6.2.1 Ligand Setup 158
6.2.2 Protein Setup 159
6.2.3 Docking 160
6.2.4 Postdocking Analysis 161
6.3 Recent Advances in Docking-Based VS Methods 162
6.3.1 Novel Docking Algorithms 162
6.3.2 Fragment Docking 164
6.3.3 Postdocking Refinement 164
6.3.3.1 Rescoring with Rigorous Scoring Functions 164
6.3.3.2 Topological Scoring by Protein–Ligand Interaction Fingerprint (IFP) 165
6.3.4 Addressing Protein Flexibility 166
6.3.5 Solvated or Dry? 168
6.4 Future Trends in Docking 168
References 169

Part Two Challenges 177

7 The Challenge of Affinity Prediction: Scoring Functions for Structure-Based Virtual Screening 179
Christoph Sotriffer and Hans Matter
7.1 Introduction 179
7.2 Physicochemical Basis of Protein–Ligand Recognition 180
7.3 Classes of Scoring Functions 185
7.3.1 Force Field-Based Methods 185
7.3.2 Empirical Scoring Functions 189
7.3.3 Knowledge-Based Scoring Functions 191
7.4 Interesting New Approaches to Scoring Functions 192
7.4.1 Improved Treatment of Hydrophobicity and Dehydration 192
7.4.2 Development and Validation of SFCscore 194
7.4.3 Consensus Scoring 195
7.4.4 Tailored Scoring Functions 196
7.4.5 Structural Interaction Fingerprints 199
7.5 Comparative Assessment of Scoring Functions 200
7.6 Tailoring Scoring Strategies in Virtual Screening 203
7.6.1 Toward a Strategy for Applying Scoring Functions 203
7.6.2 Retrospective Validation Prior to Prospective Virtual Screening 204
7.6.3 Lessons Learned: Improvements in Scoring Evaluations 205
7.6.4 Postfiltering Results of Virtual Screenings 205
7.7 Caveats for Development of Scoring Functions 206
7.7.1 General Points 206
7.7.2 Biological Data 207
7.7.3 Structural Data on Protein–Ligand Complexes and Decoy Data Sets 207
7.7.4 Cooperativity and Other Model Deficiencies 208
7.8 Conclusions 209
References 210

8 Protein Flexibility in Structure-Based Virtual Screening: From Models to Algorithms 223
Angela M. Henzler and Matthias Rarey
8.1 How Flexible Are Proteins? – A Historical Perspective 223
8.1.1 Ligand Binding Is Coupled with Protein Conformational Change 223
8.1.2 Types of Flexibility 224
8.2 Flexible Protein Handling in Protein–Ligand Docking 225
8.2.1 Docking Following Conformational Selection 227
8.2.1.1 Protein Flexibility Analysis and Protein Ensemble Generation 227
8.2.1.2 Ensemble-Based Docking Techniques 228
8.2.2 Induced Fit Docking: Single-Structure-Based Docking Techniques 231
8.2.2.1 Consecutive Ligand and Protein Conformational Change 232
8.2.2.2 Simultaneous Ligand and Protein Conformational Change 234
8.2.3 Integrated Docking Approaches 235
8.3 Flexible Protein Handling in Docking-Based Virtual Screening 236
8.3.1 Efficiency of Fully Flexible Docking Approaches in Retrospective 237
8.3.2 Discrimination of Binders and Nonbinders 238
8.4 Summary 238
References 239

9 Handling Protein Flexibility in Docking and High-Throughput Docking: From Algorithms to Applications 245
Claudio N. Cavasotto
9.1 Introduction: Docking and High-Throughput Docking in Drug Discovery 245
9.2 The Challenge of Accounting for Protein Flexibility in Docking 246
9.2.1 Theoretical Understanding of the Problem 246
9.2.2 Docking Failures Due to Protein Flexibility 247
9.3 Accounting for Protein Flexibility in Docking-Based Drug Discovery and Design 250
9.3.1 Receptor Ensemble-Based Docking Methods 252
9.3.2 Single-Structure-Based Docking Methods 253
9.3.3 Multilevel Methods 256
9.3.4 Homology Modeling 257
9.4 Conclusions 257
References 258
Contents

10 Consideration of Water and Solvation Effects in Virtual Screening 263
Johannes Kirchmair, Gudrun M. Spitzer, and Klaus R. Liedl
10.1 Introduction 263
10.2 Experimental Approaches for Analyzing Water Molecules 266
10.3 Computational Approaches for Analyzing Water Molecules 271
10.3.1 Molecular Dynamics Simulations 271
10.3.2 Empirical and Implicit Considerations of Solvation Effects 274
10.4 Water-Sensitive Virtual Screening: Approaches and Applications 275
10.4.1 Protein–Ligand Docking 275
10.4.2 Pharmacophore Modeling 278
10.5 Conclusions and Recommendations 281
References 282

Part Three Applications and Practical Guidelines 291

11 Applied Virtual Screening: Strategies, Recommendations, and Caveats 293
Dagmar Stumpfe and Jürgen Bajorath
11.1 Introduction 293
11.2 What Is Virtual Screening? 293
11.3 Spectrum of Virtual Screening Approaches 294
11.4 Molecular Similarity as a Foundation and Caveat of Virtual Screening 295
11.5 Goals of Virtual Screening 296
11.6 Applicability Domain 297
11.7 Reference and Database Compounds 299
11.8 Biological Activity versus Compound Potency 300
11.9 Methodological Complexity and Compound Class Dependence 301
11.10 Search Strategies and Compound Selection 302
11.11 Virtual and High-Throughput Screening 304
11.12 Practical Applications: An Overview 306
11.13 LFA-1 Antagonist 307
11.13.1 Similarity Searching 308
11.13.2 Results and Further Calculations 309
11.14 Selectivity Searching 310
11.14.1 Selectivity Searching for Cathepsin K-Selective Inhibitors 311
11.14.2 Selectivity Searching with 2D Fingerprints 312
11.14.3 Identification of Selective Inhibitors 313
11.15 Concluding Remarks 314
References 315

12 Applications and Success Stories in Virtual Screening 319
Hans Matter and Christoph Sotriffer
12.1 Introduction 319
12.2 Practical Considerations 320
12.3 Successful Applications of Virtual Screening 321
12.3.1 Structure-Based Virtual Screening 322
12.3.1.1 Kinases 322
12.3.1.2 Proteases 324
12.3.1.3 Nuclear Receptors 325
12.3.1.4 Short-Chain Dehydrogenases 327
12.3.1.5 G Protein-Coupled Receptors (GPCRs) 327
12.3.1.6 Antiinfectives 331
12.3.1.7 Other Target Proteins 333
12.3.2 Structure-Based Library Design 336
12.3.3 Ligand-Based Virtual Screening 338
12.3.3.1 Ion Channels 339
12.3.3.2 Kinases 340
12.3.3.3 Nuclear Hormone Receptors 341
12.3.3.4 G Protein-Coupled Receptors (GPCRs) 342
12.3.3.5 Other Protein Targets 345
12.4 Conclusion 347
References 348

Part Four Scenarios and Case Studies: Routes to Success 359
13 Scenarios and Case Studies: Examples for Ligand-Based Virtual Screening 361
Trevor Howe, Daniele Bemporad, and Gary Tresadern
13.1 Introduction 361
13.2 1D Ligand-Based Virtual Screening 362
13.3 2D Ligand-Based Virtual Screening 363
13.3.1 Examples from the Literature 363
13.3.2 Applications at J&JPRD Europe 366
13.4 3D Ligand-Based Virtual Screening 368
13.4.1 Methods 370
13.4.2 3DLBVS Examples 372
13.4.2.1 CRF1 Antagonists 372
13.4.2.2 Ion Channel Antagonism 375
13.4.2.3 Metabotropic Glutamate Receptor 375
13.5 Summary 376
References 377

14 Virtual Screening on Homology Models 381
Róbert Kiss and György M. Keserü
14.1 Introduction 381
14.2 Homology Models versus Crystal Structures: Comparative Evaluation of Screening Performance 382
14.2.1 Soluble Proteins 382
14.2.2 Membrane Proteins 392
14.3 Challenges of Homology Model-Based Virtual Screening

14.3.1 Level of Sequence Identity

14.3.2 Main-Chain Flexibility

14.3.3 Side-Chain Conformation: Induced Fit Effects of Ligands

14.3.4 Loop Modeling

14.4 Case Studies

14.4.1 Virtual Screening on the Homology Model of Histamine H4 Receptor

14.4.2 Virtual Screening on the Homology Model of Janus Kinase 2

References

15 Target-Based Virtual Screening on Small-Molecule Protein Binding Sites
Ralf Heinke, Urszula Uciechowska, Manfred Jung, and Wolfgang Sippl

15.1 Introduction

15.1.1 Pharmacophore-Based Methods

15.1.2 Ligand Docking

15.1.3 Virtual Screening

15.1.4 Binding Free Energy Calculations

15.2 Structure-Based VS for Histone Arginine Methyltransferase PRMT1 Inhibitors

15.2.1 Structure-Based VS of the NCI Diversity Set

15.2.2 Pharmacophore-Based VS

15.3 Identification of Nanomolar Histamine H3 Receptor Antagonists by Structure- and Pharmacophore-Based VS

15.3.1 Generation of Homology Model of the hH3R and hH3R Antagonist Complexes

15.3.2 Validation of the Homology Model by Docking Known Antagonists into the hH3R Binding Site

15.3.3 Pharmacophore-Based VS

15.3.4 Experimental Testing of the Identified Hits

15.3.5 Discussion of the Applied VS Strategies

15.4 Summary

References

16 Target-Based Virtual Screening to Address Protein–Protein Interfaces
Olivier Sperandio, Maria A. Miteva, and Bruno O. Villoutreix

16.1 Introduction

16.2 Some Recent PPIM Success Stories

16.3 Protein–Protein Interfaces

16.3.1 Interface Pockets, Flexibility, and Hot Spots

16.3.2 Databases and Tools to Analyze Interfaces

16.4 PPIMs’ Chemical Space and ADME/Tox Properties