Index

a
acclerometer 286
adhesion energy 82, 223
adhesion promoter 36, 44
adhesive bonding 216
adhesive injection method 141 ff
adhesive wafer bond, permanent 54
adhesive wafer bonding see also polymer
 adhesive wafer bonding 32 ff
 – bond chamber for 22
 – features of 19
 – for producing three-dimensional LSI 140
 – for three-dimensional integration 301
 – SOG-based 19 ff
 – with thermoplastic polymer (HD-3007) 56
 – with thermosetting polymers for
 permanent wafer bonds (BCB) 54 ff
 – with thermosetting polymers for
 temporary wafer bonds (mr-I 9000) 54 ff
adhesive, liquid organic 141
adsorption theory 36
advanced MEMS device 284 ff
aligned bonding 244 ff
alkali-containing glass 64, 68
aluminum nitride substrate 205, 208
aluminum/silicon oxide DBITM hybrid
 bonding 270
annealing temperature 101
 – for direct bonded wafer pairs 86, 88
 – in plasma-activated bonding 110 f
anodic bonding 63 ff
 – bonding current 67
 – characterization of the bond quality 69
 – effect on flexible micromechanical
 structures 71
 – electrical degradation of devices during
 71
 – electrical effects of 74
 – features of 63
 – formation of oxide layer 66
 – glasses for 68
 – in high vacuum 70
 – layer contacting 64 ff
 – mechanism of 64 ff
 – of patterned wafers for MEMS 290 ff
 – prevention of electrical degradation during
 73
 – reactions in the interface regions during
 66
 – with thin films 75
application
 – of adhesive wafer bonding with SOG
 layers 29 f
 – of anodic bonding 63
 – of copper bonded wafers 178
 – of copper/tin SLID bonding 201
 – of direct wafer bonding 93 f
 – of direct wafer bonding in ultrahigh
 vacuum 90
 – of elastomer bonding/de-bonding
 technique 363
 – of electrostatic temporary wafer bonding
 379 f
 – of eutectic gold-tin bonding 120, 133,
 150 f, 157
 – of glass frit bonding 14 ff
 – of gold/tin SLID bonding 204
 – of hybrid copper/BCB bonding platform
 220
 – of hybrid copper/BCB redistribution layer
 bonding 218 f
 – of plasma-activated bonding 111
 – of polymer adhesive wafer bonding 34
 – of three-dimensional integration
 technology 306 ff
 – of metal/silicon oxide DBITM hybrid
 bonding 273 f
atmospheric-pressure plasma 107, 112
b
back-end-of-the-line (BEOL) process see also TSV processing 216, 238, 303
backgrinding 339 f, 359
backside contact formation 359, 375 ff, 379
backside metallization 380
backside processing 329 ff, 334 f, 342, 356
backside solder bump 341
backside TSV 311
BCB see benzocyclobutene
benzocyclobutene (BCB) 40, 54, 217, 283
BEOL interconnect 303
BEOL see back-end-of-the-line process
binder burn-out 10
binder polymerization 10
bipolar chucking 369
BISV see bonded interstrata via
blanket copper-to-copper direct bonding 161 ff, 239 f, 245
blister test 109
blistering 93
bond chamber
– for adhesive wafer bonding 22
bond strength
– in direct copper/silicon dioxide bonding 241, 246
– of anodic wafer bonds 69
– of copper bonded wafers 168, 246
– of glass frit bonds 14
– of MEMS 287
– of plasma-treated wafers 103
– of SLID bonds 207 f
– of SOG layer bonds 23 ff
– techniques for testing the 108, 240, 245, 248
bond wave propagation 82
bonded interstrata via (BISV) 215, 218, 303
bonding
– of bumped wafers 363
– of carrier and device wafer 358 f
– of patterned surfaces 243
bonding current 67
bonding interface 14
– analysis of, by electron dispersive X-ray (EDX) 250
– analysis of, by in situ thermal evolution X-ray reflectivity (XRR) 248 f
– dislocations in the 92
– electrical characterization of copper/copper direct 252
– in DBI™ 266
– in direct copper/silicon dioxide bonding 240 ff
– in the hybrid copper/BCB system 224 ff
– properties of 90, 251 ff
bonding pressure 56, 58
– in copper/tin SLID bonding 193 f
– in localized wafer bonding 51
– in thermocompression copper bonding 167
bonding strength see bond strength
bonding temperature 48, 56, 58
– in copper/tin SLID bonding 193 f
– in thermocompression copper bonding 167
– of anodic wafer bonding 63
– of anodic wafer bonding with glass thin films 75 f
– of polymer adhesive wafer bonding 33
boundary layer 35
bridge dicing 283
B-stage polymer 42, 54
bubble see interface defect 93
bump reflow 121 ff
bumping 341
c
C2W bonding see chip-to-wafer bonding
capillary force 83
capped inertial sensor 15
carrier wafer 330, 338, 356, 359
– material for 372
– re-use of 364
– processing of 357
cavity in micromechanical devices, vacuum-sealed 70
characterization of wafer bond quality
– criteria for 108
– of copper bonded wafers 169 ff
– of plasma-activated wafer bonds 110 f
chemical bonding 36
chemical-mechanical polishing (CMP) 24, 31, 114, 167, 218, 222, 239
chip alignment 349, 381
chip design based on three-dimensional integration 307, 312
chip stacked flexible memory 319
chip-on-chip (CoC) technology 308
chip-to-wafer (C2W) bonding 308
chip-to-wafer stacking using ICV-SLID soldering 342
chip-to-wafer thermode bonding 135
chuck 112
– electrostatic wafer chuck (ESC) 367, 371
– for glass frit bonding 13
– for polymer adhesive wafer bonding 44
– vacuum 356, 360
CIS see CMOS image sensor
clamping force 368, 371
CMOS
– compatibility to bonding methods 114, 204, 262
– low-k three dimensional integration 276 ff
– possible influence of electrostatic fields on 378
– shrinkage 307
CMOS image sensor (CIS) 114, 310 ff
– three-dimensional backside illuminated 273 ff
– via-last process on 338 ff
CMOS technology 178
CMOS wafer 29, 30, 94, 271, 273
CMP see chemical-mechanical polishing
CoC memory on logic solution 319 ff
CoC technology see chip-on-chip technology 308 ff
coefficient of thermal expansion (CTE) 39, 269
contact resistance of copper/copper direct bonding interfaces 251 ff
contamination removal 103, 166 ff
copolyester 41
copper bonded layer
– morphology of 163, 165
– oxide distribution in 164
copper DBITM 270
copper dishing 239 ff
copper microbump 202
copper nanorod 177
copper/copper bonding 161 ff
– alignment accuracy of 171 ff
– application in three-dimensional integration 217 ff
– direct 177, 238 ff
– for three-dimensional TSV interconnection 303 ff
– low-temperature 176 ff
– nonblanket 174 ff
copper/dielectric hybrid bonding 176
copper/silicon dioxide DBITM hybrid bonding 270
copper/silicon dioxide direct bonding 240 ff
– advantages of 237
copper/tin phase diagram 187
copper/tin SLID process 184 ff, 346
– application of 201 ff
– bond formation 189, 191 ff
– bonding parameters used in 193
– copper/tin-to-copper/tin symmetric bonding 198
– fluxless oxidation-free 196 ff
– required material properties for 190
copper-to-copper bonding see also copper/copper direct bonding 216, 242, 245 ff, 257
covalent bond 34
crack-opening method 30, 108 ff
creeping see viscoelastic effect
CTE mismatch 46 ff, 53, 102, 155 ff, 204, 208, 267
CTE see coefficient of thermal expansion
curing 37
3D BSI-CIS see CMOS image sensor,
three-dimensional backside illuminated daisy chain structure 148 ff, 154 ff, 210, 256 ff, 270 ff, 340
damascene CMP process 239
damascene metal/silicon dioxide DBITM process flow 263
damascene-patterned copper 176, 218
DBC substrate see direct bonded copper substrate
dBD see dielectric barrier discharge
DBITM technology (direct bond interconnect) 177, 261 ff
dCBE technique see double cantilever technique
DDR memory 315 ff
debonding 331
– room temperature, low stress 335 ff
– single-wafer 333
– slide-off 332
– using a release layer and liftoff 335 ff
– 355
– process of cold 360 ff
Debye force 83
deglazing 9
degradation of MOS
– by high electric fields 73 ff
– by sodium contamination 72
deposition
– of polymer adhesives 44
– of thin glass layers 75
device encapsulation 282 ff
device layer 94, 135, 301, 304
device wafer 356, 359
– thickness of 361
– via first 330
– via last 330
dicing 282
dicing before grinding (DBG) approach 363
die assembly with SLID bonding 347 f
die bonding 120
 – die-to-wafer bonding 148, 238, 255
 – die-to-wafer stacking using ICV-SLID soldering 342 ff
dielectric barrier discharge (DBD) 89, 107, 11
dielectric bonding 303
dielectric layer material 373 f
diffusion bonding 250
diffusion copper bonding see also thermocompression copper bonding 162 f
diffusion theory 36
 dipole-dipole interaction 34
direct bond interconnect see DBITM technology
direct bonded copper (DBC) substrate 205, 208
direct wafer bonding 81 ff
 – in advanced substrates for microelectronics 93, 290
 – in ultrahigh vacuum 89, 92
 – low-temperature 88
 – of patterned wafers for MEMS 287 ff
 – of silicon wafers 102
 – physical characterization 82 ff, 91
 – principle of 101
 – properties of wafers for 82
 – surface chemistry of 82 ff, 91
 – techniques for 84 f
 – using hydrophilic surfaces 84 f, 90, 102
 – using hydrophobic surfaces 86, 102
 dislocation in bonded hydrophobic wafers 92
double cantilever beam (DCB) technique 241, 245
DRAM system
 – by Elpida 317 f
 – by NED 317 f
 – by Samsung 315 f
e-carrier see mobile electrostatic carrier
 edge chipping 337
 edge pretrimming 337
 edge protection 337, 360
 elastomer adhesive 36, 38, 362
 elastomer coating layer 357 ff
 electric field 368
 electrical characterization of bonded interconnects 251 ff
 electrical degradation 71 f
 electrical testing using daisy chains 339
electrode material for electrostatic temporary wafer bonding 374
electron probe microanalysis (EPMA) of microbumps 146 ff
 electroplating of gold/tin solder 121, 127, 130 f, 294 ff
electrostatic bonding see anodic bonding
electrostatic clamping 349, 367, 371
 – of foils 381
 – of insulating substrates 381
 – of thin wafers for bumping 380 f
 electrostatic die handling 381
 electrostatic force 65, 71, 83
 – in a plate capacitor 368 f
 electrostatic interaction 36, 65
electrostatic wafer chuck (ESC) 367, 371
capsulation
 – hermetic 120
 – of bolometer pixels 205
 – of MEMS 282 f, 293
 – of surface micromachine sensors 15
 – on wafer level 283
 – vacuum, on wafer-level 70 f
 epoxy adhesive 40, 357 ff, 361
 – injection of 146, 151
eutectic bonding 119 ff
 – advantages of 119 f
 – preconditioning in 125 f, 132
eutectic gold/indium bonding 139 ff, 146
 – fabrication process for LSI test chips applying 149 f
 eutectic gold/tin bonding 120 ff
 – of patterned wafers for MEMS 293 ff

F2F bonding see face-to-face bonding
face-to-face (F2F) bonding 308
feedthrough 283
FEOL process see front-end-of-line process
Ferro FX-11-036 5
field-assisted sealing see anodic bonding
filler for glass frit materials 4, 8
flexible interlayer 26 f, 31
flexible substrate 371, 379
flip-chip bonding 294, 347
flip-chip reflow soldering 121, 127
flip-chip/underfill hybrid bond 261
fluoropolymer 41
fluxless bonding 196 ff
foundry activity 323
four-point bending technique 222 f, 245, 340
fracture toughness 109, 112
frictional nonreflowable surface structure 53
front-end-of line (FEOL) process see also TSV processing 301
fully processed wafer 3
fusion bonding see direct wafer bonding 81

GaAs wafer, SOG-coated 28
GaAs/InP wafer pair bonded with SOG layer 29
GaAs/Si wafer pair bonded with SOG layer 25
germanium-coated wafer 95
germanium-on-insulator wafer (GOI) see germanium-coated wafer
glass crystallization 9
glass frit
– deposition of the 4
– material 4 f
– paste 5
– wetting temperature 11
glass frit bond characterization 14
glass frit wafer bonding 3 ff
– advantages of 14, 17
– application of 14 ff
– basic principles of 3
– fusing effect of surface layers 13
– influence of structure with on printed glass frit thickness 7
– multiple-temperatur glass-conditioning process 9
– parameter field evaluation of bonding process 12
– steps of wafer bond process 11 ff
– thermal transformation of printed paste into glass for bonding 8 ff
– using screen printing technology 5 ff

glass material for anodic bonding 68
glass polarization 64
glass pre-melting 10
glass transition 37
glass transition temperature 37
glass-frit-bonded gyroscope 4

GOI see germanium-on-insulator wafer
gold/silicon dioxide DBT™ hybrid bonding 270 f
gold/tin SLID process see also solid-liquid interdiffusion bonding 185
– application of 204
– bond formation 199
– properties of bonding material 199 f
– thermomechanical properties of gold-tin phases 200
– wafer-level bonding using 206
gold/tin solder bump 121 ff, 127
gold/tin solder deposition 293 f
gold/tin phase diagram 120, 188

hermetic sealing at wafer level 203
hermeticity 110
– of anodic wafer bonds 69
hermeticity test see leak test
heterogeneous MEMS 306
high-density indium/gold microbump 152
hot-melt see also thermoplastic polymer 37
hybrid bonding 237 ff, 261 ff
– comparison of heterogeneous and homogeneous bonds 261
hybrid copper/BCB bonding 217 ff
– bonding experiments using structured silicon wafers 228
– copper/BCB surface profile 223, 229
– electrical characterization of 231
– evaluation of processing issues 222
– topography accommodation in 227 ff
– topography of bonding interfaces in 225 ff
– using partially coppered BCB 222, 228
– wafer bonding steps 220
hybrid copper/BCB bonding platform see also three-dimensional integration platform 220
hybrid metal/dielectric bonding 215 ff
hybrid metal/polymer bonding 216, 218, 220
hybrid polymer 36, 38
hybrid surface 267 f
hydrogen bonding 83
hydrophilic surface 66, 84, 86, 90, 108, 288
hydrophobic surface 66, 84, 86 ff, 288

ICP-RIE plasma see inductively coupled plasma RIE
IMC see intermetallic compound
indium/gold microbump 139, 143
– bonding principle of 144
– current-voltage characteristic of 148 ff, 155
Index

– EPMA mapping of 146 ff
– formation by planarized liftoff method 144 f, 153
– high-density technology 152
– resistance of 154 f
indium/gold phase diagram 143
inductively coupled plasma (ICP) RIE 104 f, 115
integration of heterogeneous materials 102 ff
interchip via (ICV)-SLID technology 201 f, 342
interconnect 201 f, 210, 237, 266, 268 f
interconnect via solid-liquid interdiffusion (ICV-SLID) soldering technology 342
interdiffusion 181
interface defect 23, 91, 225 ff
interface sealing mechanism 250
interlocking structure 53
intermediate bonding layer
– effect of layer thickness 47, 67
– for low-temperature wafer bonding 88
– glass as 3 ff
– glass film as 63
– polymers as 32 ff
– SOG-based 21 ff
intermetallic compound (IMC) 181
– formation of, in copper/tin SLID bonding 185, 189 ff
– formation of, in gold/tin SLID bonding 187, 199
interstrata interconnection 215, 219, 306
– approaches to 216
– interstrata via-chain structure using hybrid copper-BCB bonding 226 f
– ionic bond 34
– ion-implanted wafer 93

j
Johnsen-Rahbek effect 370 f, 378

k
Keesom force 83
Kelvin structure 251 f
keyed alignment structure 53
known good die (KGD) 345 f

l
lamine 285, 292
large-scale integration (LSI) 139
laser Doppler velocimeter sensor 112
layer fusing see also glass frit bonding 13
layer-transfer by hydrogen-induced splitting 93
leak test 14, 110, 113, 203
leakage current 13, 72, 74, 371, 376 ff
liquid crystal polymer 41
liquid lens 286
London force 83
low-melting point glass 4
low-pressure plasma 105 f, 112, 114
low-temperature processing of wafer bonds 19, 30
low-temperature wafer bonding 101, 112, 168, 178, 237
LSI see large-scale integration

m
MC test see micro-chevron test
mechanical interlocking 36
memory device 313
memory on logic 321, 322, 323
memory stacking 321
MEMS capping 4
MEMS see microelectromechanical systems
metal bonding 119 ff, 237, 303
metal microbump 140 ff
metal oxide patterned surface bonding 238 f
metal/adhesive hybrid bonding see hybrid copper/BCB bonding 262
metal/direct hybrid bonding 261 f, 303
metal/non-adhesive hybrid bonding see metal/direct hybrid bonding 262
metal/silicon nitride DBITM hybrid bonding 261, 271 f
metal/silicon oxide DBITM
– alignment 265 f
– application of 273 f
– bond components 266 f
– influence of metal polishing rate 269
– influence of the CTE 269
– influence of the stability of the native metal oxide 269
– influence of the yield strength of the metal 269 f
– metals for 270 f
– surface activation 265
– surface contact 267
– surface fabrication for 263
– surface patterning 264
– surface roughness 264
– surface termination 265
– surface topography 264
metal/silicon oxide hybrid bonding see metal/silicon oxide DBITM
metallic lead-through 15
metal-oxide-semiconductor (MOS) 72
metal-oxide-semiconductor field-effect-transistor (MOSFET) 93, 151, 178
microactuator 286
microbump bonding 308
microbump daisy chain 148 f
microbump pitch 153
micro-chevron test (MC test) 109
microelectromechanical systems (MEMS) 3, 34, 63, 81, 95, 112, 203, 220, 281 ff
 – electrical degradation of, during anodic bonding 71 ff
 – encapsulation of 282
 – fabrication of, using anodic bonding 290 ff
 – fabrication of, using eutectic gold/tin bonding 293 ff
 – fabrication of, using fusion bonding 287 ff
 – post-processing of bonded wafers 285
 – protection during wafer dicing 282
 – requirements of, for the bonding process 286
 – routing of electrical signal lines 282
 – short circuiting 291
 – stacking of several wafers 284
 – wafer bonding techniques for the fabrication of 281
microelectronics, surface planarization in 20
microfluidic chip 286
microfluidics packaging 113 f
micromechanical device 70, 112 f, 286
micromirror 286
microphone 286, 292
microrvoid 286, 292
mobile electrostatic carrier (e-carrier) 371, 375
 – electrical and thermal properties of 376
 – for processing of thin and flexible substrates 379
 – in plasma processing 380
 – in wet-chemical environments 381
 – leakage currents of 376
Moore’s law 307
MOS see metal-oxide-semiconductor
MOSFET see metal-oxide-semiconductor field-effect-transistor
multicore processor 321
multilayer stacking based on copper bonding 172 ff
nanoimprint lithographic process 49
nanoimprint resist 40, 54
negative-bias temperature instability (NBTI) 75
NEMS see nanoelectromechanical system
nickel DBITM 271
nickel/silicon oxide DBITM hybrid bonding 271 ff
nonplanar metal/silicon oxide DBITM process flow 263
o
 – optical alignment 120
 – optical microsystem 112 f
 – organic/indium-gold hybrid bonding 142
 – organic/metal hybrid bonding 140 f
outsourced assembly and test (OSAT) 321
oxide bonding 216, 238 f, 263, 303
 – direct 140
 – post-oxide bonding anneal 177
oxide layer 290
oxide layer formation 66, 90
oxide-to-oxide bonding 216
p
 – PAB see plasma-activated bonding
 – packaged device stacking see also three-dimensional integration 301 ff
 – package-on-package (PoP) technology 305
 – parylene 41
 – passivation layer 197 f
 – patterned bonding 161, 231, 239
 – PEEK see polyetheretherketone
 – phase diagram of a binary metal system 182
 – phase transformation of gold/tin solder 121 ff
 – photoresist 40
 – pixelated three-dimensional integrated circuit 273 ff
 – planarization 144, 239
 – planarized liftoff method 144 f, 153
 – planarized stud metal/silicon oxide DBITM process flow 263
 – plasma 104
 – plasma activation 104, 106 f
 – plasma printing 107
 – plasma processing 380
 – plasma reactor for low-pressure activation 106
 – plasma torch 107
 – plasma treatment of silicon surfaces 103
plasma-activated bonding (PAB) 101 ff
 – application of 111 ff
 – atmospheric pressure 106
 – classification of 105
 – compatibility to CMOS process 115
 – low-pressure 105
 – of a pressure sensor 112
 – of patterned wafers for MEMS 290
 – process flow 108
 – requirements on surface quality for 101
 plate capacitor
 – bipolar configuration 369
 – electric fields in a 368
 – unipolar configuration 369
 polyetheretherketone (PEEK) 41
 polyimide 41, 56, 144, 153
 polymer adhesion mechanism 34 ff
 polymer adhesive 34
 – for wafer bonding 38 f
 – patterned 51
 – physical drying 36
 – properties of 36 ff, 46
 – UV-curable 50
 polymer adhesive wafer bonding, see also adhesive bonding 33 ff
 – advantages of 33, 58, 217
 – application of 34, 217
 – based on BCB for three-dimensional integration 217 f
 – equipment 43 f
 – influencing parameters on 46 ff
 – localized 50 ff
 – process steps of 45, 55, 57
 – program for 56, 58
 – wafer-to-wafer alignment 52 f
 PoP technology, see package-on-package technology
 post-bonding annealing 165, 168, 177, 216, 241 f, 246 ff, 255, 303
 post-bonding process 340
 post-CMP cleaning 221, 227, 231 f
 post-processing of bonded wafers 285, 292
 power amplifier 310
 pressure in anodically bonded cavities 70
 pressure sensor 70, 112, 284, 286
 pre-thinned carrier wafer 338
 production of SOI wafers 93

reactive ion etching (RIE) plasma 104 f
 reconfiguration of known good dies 347 ff
 reconfiguration with ultrathin chips 351
 redistribution layer 219
 reflow soldering 127 ff
 release layer 356
 release layer processing 357
 remote plasma 105
 repartitioning logic 322 f
 repartitioning memory 314
 RIE plasma, see reactive ion etching plasma
 routing of electrical signal lines 282 ff

s
screen printing
 – for glass frit bonding 5 f
 – influence of structure with on printed glass frit thickness 7
 – self-aligned 6 f
 sealing capacity 287
 sealing pressure 14
 self-alignment 128 f
 semiconductor wafer direct bonding (SWDB) 81, 93 f
 sequential plasma mode 105, 113
 shielding of microelectronic systems 73
 side-pin, contact by 291
 silde-off debonding 332
 silent discharge, see dielectric barrier discharge
 silicate SOG layer 23 ff
 silicon lid for MEMS application 134 f
 silicon surface 83
 – hydrophilic 85
 – hydrophobic 86
 silicon wafer 348
 – SOG-coated 22
 silicon/Pyrex glass wafer pair 63
 silicon-glass anodic bonding 64, 75 f
 silicon-on-insulator (SOI) substrate 81, 90, 285
 siloxane SOG film 20
 silver/tin fluxless SLID system 185, 187
 SLID, see solid-liquid interdiffusion bonding
 slip line 289
 sodium contamination caused by anodic bonding 72
 SOG, see spin-on glass
 SOI substrate, see silicon-on-insulator substrate
 solder alloy 119 f
 solder reaction 121 ff, 128
 sol-gel process 19
 solid bridging caused by impurities 83
 SOLID technology 308
 solid-liquid interdiffusion bonding (SLID) 177, 181 f, 347
 – advantages of 181, 211
 – bonding process 189, 191 f
– bond profile 168
– bonding temperature 167
– chip seal design 168
– fabrication of copper bond pads 166 f
– image analysis of the copper bonded interface 170
– microstructure evolution during 164 f
– nitrogen annealing 168
– orientation evolution during 165
– pattern density 169
– size of copper bond pad 169
– structure of copper bond pad 168
– surface preparation of copper bond pads 166 f

thermode soldering 130 ff
thermoplastic adhesive for temporary wafer bonding 332
thermoplastic glue 351
thermoplastic polymer 36, 38, 42, 56
thermosetting polymer 36, 38, 42, 54
thin capping by wafer bonding 15
thin film of glass for anodic bonding 75
thin wafer handling 33, 329, 353 f, 379 f
– support system 355 ff, 367 f
– use of e-carriers for bumping thin wafers 380 f

three-dimensional bonding 139 ff
three-dimensional chip stacking 101
three-dimensional heterogeneous integration 275 f
three-dimensional integration, see also three-dimensional integration 215 ff
three-dimensional IC integration based on copper bonding 174 ff
three-dimensional IC/MEMS stack 324
three-dimensional integrated system assembly 348
three-dimensional integration 132 f, 161, 172, 261
– advantages of 305
– classification of 301
– comparison with PoP technology 305
– heterogeneous 324
– key unit processes 301
– of CMOS with other devices 322 f
– processing steps with hybrid copper/BCB wafer bonding 221
– requirements on bonding quality 216
– schematic of wafer bonding technologies for 302
– strategies for 215 ff
– using temporary wafer bonding 329 ff, 347 ff

– utilizing a thermomechanical debonding approach 338 f
three-dimensional integration platform 216
– using hybrid copper/BCB redistribution layer bonding 217 f
three-dimensional interconnects 220, 237, 264, 266 f, 273 f, 277
three-dimensional LSI 139 f
– test chip fabrication by eutectic indium-gold bonding 149
– wafer-to-wafer bonding techniques for 139
three-dimensional microprocessor chip 151
three-dimensional packaging 329
three-dimensional shared memory chip 151
three-dimensional stacked image sensor 152
through-silicon via (TSV) 140, 145, 151, 201, 215, 238, 282
through-strata via (TSV) 215
through-substrate via (TSV) 33, 301 f, 330
– fabrication of, in electrostatic temporary wafer bonding 374 f
tire pressure monitoring system (TPMS) 324
tool plate for glass frit bonding 13
topography accommodation 227 ff
total thickness variation (TTV) 330, 358, 361
– effect of uniformity on 337
TPMS, see tire pressure monitoring system transient liquid-phase bonding 133, 135 f
TSV formation without stacking 310 f
TSV memory stack 312
TSV processing 301, 364
TSV stacked BGA 321

u
ultrafine leak test 70
ultrahigh vacuum (UHV) 89, 92
ultra thin buried oxide (UT-BOX) layer 94
ultrathin chip handling 352 f
ultrathin dye packaging 363
ultrathin wafer 3555
under-bump metallization (UBM) 130 ff, 182
unipolar chucking 367
UV-curable adhesive 333

v
vacuum chuck 356, 360
van der Waals force 83
van der Waals interaction 34
via etching 339 f
via insulation 339 f
via metallization 339 f
via-first process 301, 319, 330 f, 337, 342
via-last process 301, 310, 330 f
– flow of a 338 ff
– using high-temperature TEOS process 341 f
– with aspect ration of 2:1 341
viscoelastic effect 37
viscous flow of surface layer 103
void 243
– bonding void 225 ff
– crosslink-percentage-controlled 229
– formation of 209, 225 ff, 289
– in bonded wafer pairs 285
– in temporary wafer bonding processes 337
– Kirkendall 124, 128, 132, 209 f
– nanovoid 225 ff
– progression of voiding types 230

\(w \)

wafer alignment, see also wafer-to-wafer alignment 141, 146, 265
wafer bond characterization 108
wafer bonding process integration 287 ff
wafer bonding programm 56
wafer bonding, see also wafer-to-wafer bonding
– bonding of SiC chips to substrates 205
– copper/copper direct bonding 140
– copper-tin/copper-tin direct bonding 140
– direct metal bonding for three-dimensional integration 140
– mechanical stress caused by microbumps 156
– of CMOS wafers to compound semiconductor wafers 31
– of thermally mismatched wafers 21, 25 f
– organic/metal hybrid bonding 140
– oxide/metal hybrid bonding for three-dimensional integration 140
– requirements on materials for 38 f
– surface planarization in 20
– with planarization SOG 28 f
– with polymers 39
– with silicate SOG layers, see also adhesive wafer bonding 21 ff
wafer support system 333 f
wafer thinning 215, 242, 301, 329, 359, 380
– protection of wafer edges during 337 ff
wafer-level assembly 133
wafer-level bonding 181 ff, 282
wafer-level integration 161
– using eutectic gold/tin soldering 132 f
wafer-level packaging (WLP) 310
wafer-level solid-liquid interdiffusion bonding 181 ff
wafer-to-wafer alignment
– in copper/silicon dioxide hybrid bonding 244 f
– in glass frit bonding 11, 13
– in polymer adhesive wafer bonding 52 f
– in temporary bonding processes 357 f
wafer-to-wafer assembly using SLID bonding 350 ff
wafer-to-wafer bonding 135, 140, 148
wafer-to-wafer shifting
– prevention of 13, 52
wax 41, 330
weak boundary layer theory 36
wetting temperature 11, 13
wide I/O memory 315, 318
wire bond memory stack 312
WLP, see wafer-level packaging

\(y \)
yield strength 269 f