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Introduction to Aerosols
Alexey A. Lushnikov

1.1
Introduction

Aerosol science studies the properties of particles suspended in air or other gases,
or even in vacuum, and the behavior of collections of such particles. A collection
of aerosol particles is referred to as an aerosol, although the particles may be
suspended in some other gaseous medium, not just air. The term cosmosol is used
for a collection of particles suspended in vacuum. Although attempts to give a
strict definition of aerosol have appeared from time to time, to date no commonly
acceptable and concise definition of an aerosol exists. In my opinion, it is better not
to make any attempts in this direction, especially because intuitively it is clear what
an aerosol is. For example, it is clear that birds or airplanes are not aerosol particles.
On the other hand, smoke from cigarettes, fumes from chimneys, dust raised by
the wind, and so on, are aerosols. Hence, there are some essential features that
allow us to distinguish between aerosols and other objects suspended in the gas
phase. There are at least two such features: (i) aerosol particles can exist beyond the
aerosol for a sufficiently long time; and (ii) an aerosol can be described in terms
of the concentration of aerosol particles, or, better, the concentration field. From
this point of view, it is clear why birds are not aerosols. Interestingly, clouds are
also not aerosols! Of course, we can introduce the concentration of cloud droplets.
But if we isolate a cloud particle, it will immediately evaporate. The cloud creates
a specially designed environment inside it – the humidity and the temperature
fields – the conditions in which a water droplet does not evaporate during a long
time.

Aerosols are divided into two classes, namely primary aerosols and secondary
aerosols, according to the mechanisms of their origination. Primary aerosol particles
result, for example, from fragmentation processes or combustion, and appear in the
carrier gas as already well-shaped objects. Of course, their shape can change because
of a number of physico-chemical processes such as humidification, gas–particle
reactions, coagulation, and so on. Secondary aerosol particles appear in the carrier
gas from ‘‘nothing’’ as a result of gas-to-particle conversion. For example, such
aerosols regularly form in the Earth’s atmosphere and play a key role in a number
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2 1 Introduction to Aerosols

of global processes such as the formation of clouds. They serve as the centers
for heterogeneous nucleation of water vapor. No aerosols – no clouds! One can
imagine how our planet would look without secondary aerosol particles.

Primary and secondary aerosols are characterized by the size, shape, and chemical
content of the aerosol particles. As for the shape, one normally assumes that the
particles are spheres. Of course, this assumption is an idealization necessary
for simplification of the mathematical problems related to the behavior of aerosol
particles. There are very many aerosols comprising irregularly shaped particles. The
non-sphericity of particles creates many problems. There exist also agglomerates
of particles, which in some cases reveal fractal properties. We shall return to the
methods for their description later on.

There are a number of classifications of particles with respect to their size. For
example, if the particles are much smaller than the molecular mean free path, they
are referred to as ‘‘fine’’ particles. This size range stretches from 1 to 10 nm under
normal conditions. But from the point of view of aerosol optics, these particles are
not small if the wavelength of the incident light is comparable with their size. This
is the reason why such very convenient and commonly accepted classifications
cannot compete with natural classifications based on the comparison of the particle
size with a characteristic size that comes up each time when one solves a concrete
physical problem.

1.2
Aerosol Phenomenology

1.2.1
Basic Dimensionless Criteria

It is convenient to characterize aerosols by dimensionless criteria. The most
commonly used in the area of aerosol science are listed below. Each of these criteria
contains the particle size a. In what follows we consider spherical particles of
radius a.

1.2.1.1 Reynolds Number
The Reynolds number Re is introduced as follows:

Re = ua

ν
(1.1)

Here ν is the kinematic viscosity of the carrier gas and u is the particle velocity with
respect to the carrier gas. Small and large Re correspond to laminar or turbulent
motion of the particle, respectively.

1.2.1.2 Stokes Number
The Stokes number Stk characterizes the role of inertial effects:

Stk = 2a2u

9νL
(1.2)
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Here L is the characteristic length of the flow. The Stokes number Stk is seen to
increase on increasing the particle size.

1.2.1.3 Knudsen Number
The Knudsen number Kn characterizes the discreteness of the carrier gas:

Kn = l

a
(1.3)

Here l is the mean free path of the molecules of the carrier gas,

l = 1√
2 σ 2N

(1.4)

σ is the size of a carrier gas molecule, and N is the molecular number concentration.
If a foreign molecule moves toward the aerosol particle, then Kn can be expressed
in terms of the molecular diffusivity D,

Kn = 2D

vT a
(1.5)

where

vT =
√

8kT

πm
(1.6)

is the molecular thermal velocity, m is the mass of the foreign molecule, k is the
Boltzmann constant, and T is the absolute temperature (K).

1.2.1.4 Peclet Number
The Peclet number Pe defines the regimes of energy transfer from particles to the
carrier gas. It is introduced similarly to Kn (Eq. (1.7)):

Pe = 2�

vTa
(1.7)

Here � is the thermal conductivity of the carrier gas.

1.2.1.5 Mie Number
The Mie number given by the dimensionless group

Mie = 2πλ

a
defines the optical properties of the particle. Here λ is the wavelength of the
incident light.

1.2.1.6 Coulomb Number
The Coulomb number Cu given by

Cu = lC
a

= Ze2

akT
(1.8)

is important in the processes of particle charging. Here e is the elementary charge,
Z is the total particle charge in units of e, and

lC = Ze2

kT
(1.9)
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is the Coulomb length. This is the distance at which the influence of the Coulomb
forces cannot be ignored.

1.2.2
Particle Size Distributions

Particle size distributions play a central role in the physics and chemistry of
aerosols, although direct observation of the distributions are possible only in
principle. Practically, what we really measure is just the response of an instrument
to a given particle size distribution,

P(x) =
∫

R(x, a)f (a) da (1.10)

Here f (a) is the particle size distribution (normally a is the particle radius), P(x) is
the reading of the instrument measuring the property of aerosol x, and R(x, a) is
referred to as the linear response function of the instrument. For example, P(x) can
be the optical signal from an aerosol particle in the sensitive volume of an optical
particle counter, the penetration of the aerosol through the diffusion battery (in
this case x is the length of the battery), or something else. The function f (a) cannot
depend on the dimensional variable a alone. The particle size is measured in some
natural units as. In this case the distribution is a function of a/as and depends on
some other dimensionless parameters or groups. The particle size distribution is
normalized as follows:∫ ∞

0
f (a/as)

da

as
= 1 (1.11)

The length as is a parameter of the distribution. Although the aerosol particle size
distribution is such an elusive characteristic of the aerosol, it is still convenient to
introduce it because it unifies all the properties of aerosols.

In many cases the distribution function can be found theoretically by solving
dynamic equations governing the time evolution of the particle size distribution,
but the methods for analyzing these equations are not yet reliable, not to mention
the information on the coefficients entering them. This is the reason why the
phenomenological distributions are so widely spread.

There is a commonly accepted collection of particle size distributions, which
includes those outlined in the following subsections.

1.2.2.1 The Log-Normal Distribution
The log-normal distribution is given by

fL(a) = 1√
2π (a/as) ln σ

exp
[

− 1

2 ln2
σ

ln2
(

a

as

)]
(1.12)

Here a is the particle radius. This distribution depends on two parameters, as

and σ , where as is the characteristic particle radius and σ (σ > 1) is the width
of the distribution. Equation (1.12) is known as the log-normal distribution. It
is important to emphasize that it is not derived from theoretical considerations.
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Figure 1.1 The log-normal distributions
with σ = 1.5 (curve 1), 2.0 (curve 2), and
2.5 (curve 3). The parameter σ defines the
width of the distribution. The dimension-
less size is defined as a/as.

Rather, it was introduced by hand. The function fL(a) is shown in Figure 1.1 for
different σ .

1.2.2.2 Generalized Gamma Distribution
The generalized gamma distribution is given by

fG(a) =
(

a

as

)k j

�((k + 1)/j)
exp

[
−

(
a

as

)j]
(1.13)

Here �(x) is the Euler gamma function. The distribution fG depends on three
parameters, as, k, and j. Figure 1.2 displays the generalized gamma distribution for
three sets of its parameters.

Once the particle size distributions are known, it is easy to derive the distribution
over the values depending only on the particle size:

f (ψ0) =
∫

δ(ψ0 − ψ(a))f (a)
da

as
(1.14)

Here δ(x) is the Dirac delta function. For example, if we wish to derive the
distribution over the particle masses, then ψ(a) = (4πa3/3)ρ, where ρ is the
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Figure 1.2 The gamma distributions with
three sets of parameters: k = 1, j = 2
(curve 1); k = 2, j = 1 (curve 2); and
k = 5, j = 2 (curve 3). These parameters
define the shape of the distribution. Again,
the dimensionless size is defined as a/as.
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density of the particle material. Of course, the properties of aerosols do not
depend solely on their size distributions. The shape of aerosol particles and their
composition are important factors.

The log-normal distribution often applies in approximate calculations of conden-
sation and coagulation. Two useful identities containing the integrals of a product
of log-normal distributions can be found in, for example, [1, 2]. A regular theory of
the log-normal distribution is expounded in the book [3].

1.3
Drag Force and Diffusivity

If the carrier gas moving with speed v flows past a spherical particle of radius a,
the drag force acting on it is

Fdrag = 1
2 CDπa2ρv2 (1.15)

where CD is the drag coefficient and ρ is the density of the carrier gas. The latter
depends on Re as follows:

CD = 12

Re
Re < 0.1

CD = 12

Re

(
1 + 3

8
Re + 9

40
ln Re

)
0.1 < Re < 2

CD = 12

Re
(1 + 0.15 Re0.687) 2 < Re < 500

CD = 0.44 500 < Re < 2 × 105

The particle mobility B is introduced as

v = BF (1.16)

When a particle of radius a moves in the carrier gas, the latter resists particle
motion. The force acting on the particle is proportional to a in the limit of small
flow velocity Re � 1 and Kn (continuum regime),

F = 6πρνav (1.17)

where ρ is the gas density and ν is the kinematic viscosity. Equation (1.17) is the
Stokes equation.

In the transition regime, Eq. (1.17) should be corrected to

F = 6πνva

Cc
(1.18)

with Cc being the Millikan correction factor,

Cc = 1 + Kn
[

1.257 + 0.4 exp
(

− 1.1
Kn

)]
(1.19)
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The diffusivity D is connected with the mobility B by the Einstein–Smoluchowski
formula

D = kTB (1.20)

The diffusivity is then

D = kT

6πaνρ
C(a) (1.21)

where C(a) is the correction factor. We can use C(a) = Cc or C(a) found [4]
theoretically,

C(a) = 15 + 12c1Kn + 9(c2
1 + 1)Kn2 + 18c2(c2

1 + 2)Kn3

15 − 3c1Kn + c2(8 + πσ )(c2
1 + 2)Kn2 (1.22)

with

c1 = 2 − σ

σ
, c2 = 1

2 − σ

and σ < 1 being a factor entering the slip boundary conditions. The Knudsen
number is Kn = λ/a, with λ being the mean free path of the carrier gas molecules
(λ = 65 nm for air at ambient conditions). The parameter σ changes within the
range 0.79–1.0. Equation (1.22) describes the transition correction for all Knudsen
numbers and gives the correct limiting values (continuum and free-molecule ones).
In what follows we put σ = 1. The correction factors of Eqs. (1.19) and (1.22) are
plotted as functions of Kn in Figure 1.3.

All the above formulas are more thoroughly discussed in aerosol textbooks, except
Eq. (1.22). This formula was derived from a 13-moment approximate solution of the
Boltzmann equation by Phillips in [4]. It is remarkable that the results of Millikan
and Phillips almost coincide.

1.4
Diffusion Charging of Aerosol Particles

At first sight the process of particle charging looks similar to particle condensation:
an ion moving in the carrier gas approaches the particle and sticks to it. However,
the difference between these two processes (condensation and charging) is quite
significant. Even in the case when the ion interacts with a neutral particle, one
cannot ignore the influence of the image forces. As was explained at the very
beginning of this chapter, the motion of the ion is defined by two parameters:
Kn = 2D/vTa (the Knudsen number) and Cu = Ze2/akT (the Coulomb number).
Next, in most practical cases Cu > Kn. For example, at ambient conditions and
Z = 1, the Coulomb length lC = e2/kT = 0.06 µm. This value is comparable with
the mean free path of molecules in air (l = 0.065 µm), which means that the
free-molecule regime of particle charging demands some special conditions and
can be realized, for example, in the ionosphere.
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1.4.1
Flux Matching Exactly

The steady-state ion flux J(a) onto the particle of radius a can be written as

J(a) = α(a)n∞ (1.23)

that is, the flux is proportional to the ion density n∞ far away from the particle. The
proportionality coefficient α(a) is known as the charging efficiency. The problem is
to find α(a).

Once again, a dimensional consideration shows that α(a) is a function of two
dimensionless groups, Kn = l/a and Cu = Ze2/akT ,

α(a) = πa2vTF(l/a, Ze2/akT) (1.24)

We can generalize Eq. (1.23) as follows:

J(a, R, nR) = α(a, R)nR (1.25)

where nR is the ion concentration at a distance R from the particle center. It is
important to emphasize that nR is (still) an arbitrary value introduced as a boundary
condition at the distance R (also arbitrary) to a kinetic equation that is necessary to
solve for defining α(a, R).

The flux defined by Eq. (1.23) is thus

J(a) = J(a, ∞, n∞) and α(a) = α(a, ∞) (1.26)

The value of α(a, R) does not depend on nR because of the linearity of the problem.
Let us assume that we know the exact ion concentration profile nexact(r) corre-

sponding to the flux J(a) from infinity (see Eq. (1.23)). Then, using Eq. (1.25) we
can express J(a) in terms of nexact as follows:

J(a) = J(a, R, nexact(R)) = α(a, R)nexact(R) (1.27)

Now let us choose R sufficiently large for the diffusion approximation to reproduce
the exact ion concentration profile,

nexact(R) = n( J(a))(R) (1.28)

with n( J)(r) being the steady-state ion concentration profile corresponding to a given
total ion flux J. The steady-state density of the ion flux j(r) is the sum of two terms,

j(r) = −D
dn( J)(r)

dr
− B

dU(r)

dr
n( J)(r) (1.29)

where D is the ion diffusivity, U(r) is a potential (here the ion–particle interaction),
and B is the ion mobility. According to the Einstein relation, kTB = D. On the other
hand, the ion flux density is expressed in terms of the total ion flux as follows:
j(r) = −J/4πr2, with J > 0. Equation (1.29) can be now rewritten as

e−βU(r) d

dr
[n( J)(r) eβU(r)] = J

4πDr2
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where β = 1/kT . The solution to this equation is

n( J)(r) = e−βU(r)

(
n∞ − J

4πD

∫ ∞

r
eβU(r′) dr′

r′2

)
(1.30)

On substituting Eqs. (1.28) and (1.30) into Eq. (1.27), one obtains the equation
J(a) = α(a, R)n( J)(R) or

J(a) = α(a, R)e−βU(R)

(
n∞ − J(a)

4πD

∫ ∞

R
eβU(r′) dr′

r′2

)
(1.31)

We can solve this equation with respect to J(a) and find α(a):

α(a) = α(a, R)e−βU(R)

1 + [α(a, R)e−βU(R)/4πD]
∫ ∞

R
eβU(r′)dr′/r′2

(1.32)

Equation (1.32) is exact if R � l. We, however, know neither α(a, R) nor R.

1.4.2
Flux Matching Approximately

Current knowledge does not allow us to find α(a, R) exactly. We thus call upon two
approximations:

1) We approximate α(a, R) by its free-molecule expression,

α(a, R) ≈ αfm(a, R) (1.33)

2) We define R from the condition

drnfm(r)|r=R = drn
( J(a))(r)|r=R (1.34)

where nfm(r) is the ion concentration profile found in the free-molecule regime
for a < r < R. The distance R separates the zones of the free-molecule and the
continuum regimes.

All currently used approximations for α can be derived from Eq. (1.32).

1.4.3
Charging of a Neutral Particle

In this case the ion–particle interaction is described by the potential of image
forces,

U(r) = − e2

2a

a4

r2(r2 − a2)
(1.35)

This expression for U(r) is valid for metallic particles. The case of dielectric spheres
is much more complicated, and we do not analyze it – however, see [5]. As is seen
from Eq. (1.35) the image forces are singular at the particle surface. Nevertheless, it



10 1 Introduction to Aerosols

10

8

6

4

2

0

10

1

2

2

3

C
or

re
ct

io
n 

fa
ct

or

Dimensionless size

Figure 1.3 When an ion approaches a neu-
tral particle, the image forces strongly en-
hance the efficiency of ion capture. The cor-
rection factors for the free-molecule efficiency
versus dimensionless particle size avT/D is

shown here. It is seen that at large sizes the
correction factor approaches unity. Curves
1–3 correspond to Coulomb numbers:
Cu = 1, 3, and 5, respectively.

is possible to find the expression for the charging efficiency following the method
of [6]. The final result has the form

α(a) = 2πa2vTz(a)

1 + √
1 + [avT z(a)/2Dζ 2]2

(1.36)

where

z(a) = 1 +
√

πe2

2akT
(1.37)

and

ζ 2 = 1 +
√

2e2

πakT
(1.38)

Figure 1.3 shows the influence of the Coulomb number (see Eq. (1.8)) on the
particle charging efficiency.

1.4.4
Recombination

Let us consider the situation when an ion carrying Zi elementary charges ap-
proaches a particle of radius a carrying Zp charges of opposite polarity. In this case
Eq. (1.32) allows one to find the expression for the recombination efficiency in the con-
tinuum limit. We restrict our analysis to the case of non-singular Coulomb forces.
Then we can approximate R ≈ a, ignore unity in the denominator of Eq. (1.32),
and come to the well-known Langevin formula,

α(a) = 4πDlC
1 − exp(−lC/a)

(1.39)
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where lC = ZiZpe2/kT . In the limit of very small particles, the recombination
efficiency is independent of particle size.

There are some difficulties in the case of smaller particles and image potential.
This section is based on the work by Lushnikov and Kulmala [6]. There exists

an extensive literature on particle charging. Many authors addressed their efforts
to deriving expressions for the charging efficiencies of an aerosol particle by ions.
There are no problems in resolving this problem for the continuum limit, where
the ion transport is described by the diffusion equation [7–9].

In the free-molecule regime the charging efficiency can be easily found
only when the ion–particle interaction is described by the Coulomb potential
alone. Attempts to take into account the image forces make the analysis much
more difficult. Especially, this concerns the dielectric particles, in which case
the ion–particle interaction is described by an infinite and slowly convergent
series [10].

The first successful attempt to apply the free-molecule approximation for cal-
culating the charging efficiencies of small aerosol particles was undertaken by
Natanson [11, 12]. Since then, this problem has been considered by many
authors [13–19]. None of these works could avoid the difficulty related to
the very inconvenient expression for the ion–dielectric particle potential. The
latter has been replaced by the ion–metal particle potential modified by the
multiplier (ε − 1)/(ε + 1), with ε being the dielectric permeability of the particle
material.

Attempts to consider the transition regime using as the zero approximation
the solution of the collisionless kinetic equation have been made [18–20] and
very recently by us [6, 21]. The analysis of these authors clearly demonstrated
the significance of the ion–carrier gas interaction in calculating the ion–particle
recombination efficiency. The point is that the ion can be captured by the charged
particle from bound states with negative energies. This effect has been considered
in [20] by taking into account a single ion–molecule collision in the Coulomb field
created by the charged particle. A new version of flux matching theory [11, 12,
22] has been applied by us [6] to take this effect into account explicitly. Results of
experiments on particle charging can be found in [23–28].

1.5
Fractal Aggregates

It is now well established that fractal aggregates (FAs) appear in numerous natural
and anthropogenic processes. Their role in the atmosphere may be immense,
for FAs possess anomalous physico-chemical, mechanical, and optical properties,
making them extremely effective atmospheric agents.

The main goal of this section is to overview the mechanisms of FA formation
and their properties, and to discuss the sources and sinks of atmospheric FAs and
their possible contribution to intra-atmospheric processes.
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1.5.1
Introduction

The presence of aggregated structures in the atmosphere was detected very long
ago: forest fires and volcanic eruptions are well known to produce tremendous
amounts of ash and other aggregated particles. Many authors have attempted to
estimate the role of the latter in the formation of the Earth’s climate. Transport and
industrial aerosol exhausts also often contain a considerable amount of aggregated
particulate matter, not to mention such intense anthropogenic sources like oil and
gas fires. Specialists on the ‘‘Nuclear Winter’’ did not push this problem to one side
either.

Irregularly shaped particles have been studied for many years, but until fairly
recently there was no unique and effective key idea for their characterization
that would reflect the common origin of irregular aggregates or would allow the
explanation of their physico-chemical behavior from a unique position.

Therefore, the fractal ideas introduced into physics (and other natural sciences)
by Mandelbrot [29] immediately attracted the attention of aerosol scientists, who ap-
plied them for the characterization of atmospheric and laboratory-made aggregated
aerosol particles.

So the fractal concept quickly found its way into the study of atmospheric
aerosols. The success in its application to aerosols gave rise to a splash of fractal
activity at the end of the 1980s and the beginning of the 1990s. The main
efforts were directed at recording FAs in the atmosphere, attempting to define
their fractal dimension, and returning the physics of FAs to the realm of the
former and habitual ideas such as aerodynamic diameter, mobility, coagulation
efficiency, and so on. Although the successes along this route were doubtless –
even the optical properties of Titan’s hazes were explained by assuming that
they consist of FAs – the slight coolness that came later resulted, perhaps,
from the impression that there is almost nothing to investigate any further. Of
course, this is not so: the newly discovered physical and chemical properties
of aggregated particles are pertinent to bear in mind in considering aerosol
processes.

This section focuses on the properties of self-similar or, better, scaling-invariant
aggregates – so-called fractals or fractal aggregates – whose structure is repeated
within a considerable range of spatial scales (from tens of nanometers up to
fractions of a centimeter or even more). This very kind of order stipulates many
unusual properties of FAs.

The books edited by Avnir [30] and by Pietronero and Tosatti [31] contain
sufficiently full information on the directions of the development of fractal physics
and chemistry. The interested reader can find a regular account of fractal ideas
in the book of Feder [32]. Colbeck et al. [33] reviewed the fractal concept and its
application to environmental aerosols. The fairly recent textbook by Friedlander
[34] also contains a chapter on fractals.
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1.5.2
Phenomenology of Fractals

A typical FA consists of small spherules with diameters of several tens of nanome-
ters united in an aggregate of size on the order of micrometers. It is important to
stress that the sizes of the spherules are much less than the characteristic parame-
ters in the atmosphere, such as the mean free path of molecules or the characteristic
wavelength of solar radiation, whereas the total aggregate sizes are either compa-
rable with these parameters or even exceed them. It is also not surprising that the
main attention in studying the atmospheric FAs has been on soot aggregates.

In this section the main concepts characterizing FA are introduced.

1) Mass of FA. Any FA is characterized by its total mass M, which can also be
measured in units of a spherule mass or, better, by the number g of spherules
comprising the FA.

2) Size of FA. It is natural to introduce the gyration radius of an FA as

R2 = 1
g(g − 1)

∑
i�=j

(ri − rj)2 (1.40)

where ri is the position of the ith spherule. The maximal size of an FA can also
be of use:

dmax = max|ri − rj| (1.41)

1.5.2.1 Fractal Dimension
Not every irregular aggregate is a fractal. The main point of the definition of an FA
is the self-similarity at every scale, which eventually leads to rather odd ramified
structures of FAs whose local mass distribution cannot be so easily measured.

The most straightforward way to measure D is to follow its definition. Let the
FA (or other fractal object) be covered with boxes whose size ε goes to zero. If the
number N of boxes filled with the elements of the FA grows as N −→ ε−D, then D
is identified with the fractal dimension of the FA.

The simplest and yet still non-trivial example of the application of the fractal
concept to real objects is the measurement of the length of a diffusion trajectory.
The diffusion displacement is given by � = √

2Dt�. If we represent � as the
sum of smaller and smaller diffusion displacements ε = √

2Dtε , then we find that
the number N(ε) of the ε displacements necessary to cover the diffusion route is
N(ε) = t�/tε ∝ ε−2. The fractal dimension of the diffusion trajectory is thus D = 2.

FAs are very loose objects. Their fractal dimension D characterizes the part of
space occupied by FA matter. This means that the mass of an FA grows with its
gyration radius R more slowly than R3: M ∝ RD, where D < 3. Such a dependence
assumes that the FA density ρ(r) changes with distance r from its center as

ρ(r) ∝ ρ0

(
r0

r

)3−D

(1.42)
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at r < R and as ρ(r) = 0 otherwise. Here ρ0 is the density of the spherule and r0 is
its radius. Equation (1.42) provides the RD dependence of the FA mass to hold:

g = kD

(
R

r0

)D

(1.43)

where kD is the fractal prefactor

1.5.2.2 Correlation Function
The density–density correlation function also drops as a power of distance r:

C(r) =
〈∑

i

m(ri)m(ri + r)
〉

∝ r−(3−D) (1.44)

where m(r) is the density at the point r, the sum goes over all centers of spherules,
and the angle brackets stand for averaging over all possible spatial configurations
of the spherules.

1.5.2.3 Distribution of Voids
FAs thus mainly consist of ‘‘empty space’’ distributed among voids whose size
spectrum is of great importance for the characterization of FAs. This spectrum
normalized to unity has the form

n(a) = 3 − D

R3−D
a2−D (1.45)

One immediately sees that the total volume occupied by the voids is exactly
4πR3/3 once the shape factor γ defining the dependence of the average volume
V(a) of a void on its characteristic size a is given as γ = 4π (6 − D)/3(3 − D)
(V = γ a3).

1.5.2.4 Phenomenology of Atmospheric FA
Measurements of D of atmospheric FAs have shown the following:

1) Atmospheric FAs (mainly soot aggregates) are not well-developed fractal struc-
tures whose fractal dimensionality varies within the range 1.3–1.9, indicating
that these FAs are of coagulation origin.

2) Such low fractal dimensions are explained by non-isotropy of observed FAs,
which are mostly aligned in one direction. This anisotropy probably arises due
to Coulomb or dipole–dipole interaction of FAs.

3) The fractal prefactor (Eq. (1.43)) for soot particles is kD ≈ 27.46 at D = 1.75.
4) The structure of atmospheric (soot) fractals may change by condensation–evap-

oration cycles: the loose FAs become more dense (D grows by 10–15%).

Katrinak et al. [35] analyzed urban aggregates within the size range 0.21–2.61
µm and found that D varies from 1.35 to 1.38. The maximal value of D found
in [36] for diesel exhausts was D = 1.2, that is, their particles were strongly
aligned. Considerable attention has been given by others [37–41] to the process of
the transformation of FAs in a humid atmosphere. The chemical methods were
applied by Eltekova et al. [42] for determining the D of soot FAs. The value of the
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fractal prefactor was discussed by Nyeki and Colbeck [43], who showed that kf is
close to 1.

1.5.3
Possible Sources of Fractal Particles

The sources of FAs are subdivided into two groups: natural and anthropogenic
ones.

1.5.3.1 Natural Sources

Volcanos Volcanic eruptions produce a lot of volcanic ash, consisting of aggregated
oxide particles of the size from fractions of a micrometer up to millimeters. In
addition, extreme volcanic conditions produce a lot of smaller aggregates.

Forest fires These produce a huge amount of ash flakes whose sizes vary from
fractions of a micrometer up to centimeters. Smaller aggregated particles accom-
pany the combustion process (aggregated carbon plus hydrocarbon particles or,
better, soot). The chemical content of the ash flakes is known: they consist of the
mineral residue of the combustion process, resins, hydrocarbons, and the products
of their chemical interaction with atmospheric air.

Thunderstorms High-energy lightning processes are able to release carbon from
carbon-containing molecules and thus to produce small (nanometer-sized) charged
carbon particles (maybe in the fullerene form), which then aggregate, forming FAs
and even aerogels.

Intra-atmospheric chemical processes Intra-atmospheric chemical and photo-
chemical processes are able to produce substances of low volatility that may
then solidify into nanoparticles. On colliding, these objects form fractal structures.

1.5.3.2 Anthropogenic Sources

Industrial exhausts These produce a lot of smoke particles, FAs among them.
The chemical content of these aggregates corresponds to the average content of
the smoke. Unfortunately, what share of these particles is aggregated is not yet
established.

Transport exhausts Transport produces aggregated aerosol particles consisting
of nanometric soot particles. The sizes of these aggregates rarely exceed a
micrometer.

Gas–oil fires Such fires produce aggregated soot particles (black smokes) consist-
ing of nanometric units that reach sizes on the order of fractions of a centimeter.

There are many other less substantial sources of fractal aggregates.
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1.5.4
Formation of Fractal Aggregates

One of the most important branches of fractal science is the study of the growth
kinetics of fractal objects. There exist two commonly accepted approaches to this
problem.

1) The first is the direct modeling of the growth process. The elements of fractal
construction (spherules or fractal fragments) are assumed to move on a lattice,
collide, stick together, and finally form a fractal structure. The whole process
is modeled by computer from the very beginning up to the end. This approach
allows one to investigate the structure of a single fractal aggregate, and to
define its fractal dimension and other individual characteristics. In particular,
it was shown that the fractal dimension D is totally stipulated by the type of
growth process: namely, coagulation leads to the most loose structure, with
D ≈ 1.8; diffusion-controlled condensation gives more dense particles, with
D ≈ 2; and the collision-limited condensation process (low-efficiency collisions
do not permit the spherule to join to the aggregate immediately after the first
collision) produces the most dense FAs, with D ≈ 2.4.

2) The growth process is considered within a kinetic scheme describing the time
evolution of fractal mass spectra irrespective of the details of the motion of
the fractal fragments, the latter being included via kinetic coefficients whose
mass dependence alone defines the characteristic features of the mass spectra.
In contrast to direct modeling, this approach accounts for the collective
characteristics, first and foremost the mass distribution of growing fractal
aggregates.

Below, the second (kinetic) approach – more traditional for aerosol physics – is
used for studying the time evolution of the mass distribution of a collection of FAs
growing by condensation and coagulation. The collective is assumed to consist of
aggregates whose fractal dimension D does not change during the growth process.
The initial stage of FA formation assumes the formation of monomers (spherules).
We do not discuss this process, since it does not contain anything specific to fractal
physics.

1.5.4.1 Growth by Condensation
The latter includes the joining of monomeric units (spherules or monomers) of
unit mass by one, with the condensation coefficients αg being known functions of
the fractal aggregate mass g.

It is not very difficult to see that the condensation coefficients αg should be
proportional to the total number of spherules in the FA in the free-molecule limit,
and to the FA size in the continuum regime. Indeed, an FA has a loose structure
and the incident spherule readily reaches any point inside the FA where it can
be captured, unless the collisions with the molecules of the carrier gas make the
incident spherule trajectory very long and ‘‘knotty.’’ In this latter case the FA
becomes a ‘‘black absorber,’’ that is, the incident spherule randomly walks inside
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the FA for long enough to be absorbed even if the absorption efficiency is not very
high, and the average density of matter inside the FA is negligibly low. Hence

αg = α0g (1.46)

in the free-molecule regime, and

αg = ADnr0g1/D (1.47)

in the opposite limit (the continuum regime).
The physical meaning of the constants entering Eqs. (1.46) and (1.47) is apparent:

α0 (Eq. (1.46)) is the rate of capture of an incident spherule by a vacancy incorporated
into the FA. The right-hand side of Eq. (1.47) repeats the expression for the rate
of condensational growth of a sphere in the continuum regime, except that the
constant A is replaced by the usual coefficient 4π specific for spherical geometry.
Equation (1.47) thus describes the diffusion growth of an FA whose radius is
proportional to g1/D. The values of α0 and A cannot be found from theoretical
considerations and should be thus considered as fitting parameters.

1.5.4.2 Growth by Coagulation
Coagulation seems to be the most effective mechanism of FA growth. Sufficiently
large fractal aggregates grown by coagulation have rather low fractal dimensionality
D ≈ 1.8. The rate of the coagulation process depends on the form of the coagulation
kernel – the efficiency for two colliding particles to produce a new one whose mass
is equal to the sum of the masses of the particles. The coagulation kernel is the
collision cross-section multiplied by the relative velocity of the colliding fragments.
The easiest way to estimate the coagulation kernels is just to extend well-known
expressions for the coagulation kernels for the free-molecule, continuum or transi-
tion regimes by substituting R ∝ g1/D instead of R ∝ g1/3. So, one may expect that
the following collection of coagulation kernels governs the time evolution of mass
spectra of coagulating FAs:

• free-molecule regime

K(x, y) ∝ (x1/D + y1/D)2
√

x−1 + y−1 (1.48)

• continuum regime

K(x, y) ∝ (x1/D + y1/D)(x−1/D + y−1/D) (1.49)

• turbulent regime

K(x, y) ∝ (x1/D + y1/D)3 (1.50)

• coagulation of magnetic or electric dipoles

K(x, y) ∝ x1/Dy1/D (1.51)

• coagulating FA form linear chains

K(x, y) ∝ xy (1.52)
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Here x and y stand for the masses of the colliding particles. All the above kernels
are homogeneous functions of the variables x and y: K(ax, ay) = aλK(x, y). The
homogeneity exponent λ < 1 for the first two kernels, and may exceed unity
otherwise. The latter fact means that the aerosol–aerogel transition is possible in the
last three cases.

1.5.4.3 Aerosol–Aerogel Transition
This remarkable phenomenon consists of the formation of a macroscopic object
(or objects) from initially microscopic aerosol particles. Everyone has seen the
web-like structures or lengthy filaments suspended in the air or attached to the
walls of cleaning devices. Sometimes such objects spontaneously arise in the carrier
gas as a consequence of the coagulation process in cases when the coagulation
kernel grows sufficiently fast with the colliding particle masses (λ > 1). Aerosols
consisting of fractal aggregates are the most probable candidates to form aerogels
by coagulation.

Atmospheric aerogel objects may play a crucial role in the formation of ball
lightning. According to the model developed by Smirnov [44], ball lightning is a
plasma ball spanned on an aerogel framework. This aerogel framework may form
after a linear lightning strike, which is able to produce fractal aggregates by ablation
or directly from carbon-containing molecules in the air. Although the dynamics of
this process is not yet fully understood, the aerogel model was shown to be a useful
perspective for explanation of many properties of ball lightning.

A huge literature is devoted to computer modeling of FA formation. It is
summarized in the review article by Meakin [45]. The mass spectrum of a growing
FA meets the set of kinetic equations describing FA condensational growth. These
equations were analyzed and solved by Lushnikov and Kulmala [46].

Coagulation of fractals in the free-molecule regime was theoretically investigated
by Wu and Friedlander [47, 48], who found considerable broadening of the particle
mass spectra on decreasing the fractal dimensionality. Similar results were reported
by Vemury and Prastinis [49]. Wu et al. [50] proposed a method for definition of
D from the kinetics of coagulation. The interested reader will find a rather simple
introduction to fractal physics in the review by Smirnov [51], where considerable
attention is given to the kinetics of FA formation.

The coagulation in the system with the kernel K = xy was analyzed by Lushnikov
[52–58], who showed that a gel should form from coagulating sol after a finite
interval of time. Experimentally, this process was observed by Lushnikov et al. [59,
60], who supposed that the dipole–dipole interaction of FAs is responsible for this
phenomenon.

1.5.5
Optics of Fractals

Atmospheric fractals reveal very specific optical properties interacting intensely
with sunlight. This fact is linked closely with their structure: the geometrical
size of the atmospheric FAs lies in the micrometer range, that is, the particle
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sizes are comparable with the wavelength of visible light and infrared radiation.
On the other hand, FAs are composed of tiny nanometer-sized units whose
electrodynamic properties often differ from those of macroscopic objects. This
felicitous combination of micro- and macro-properties together with a kind of spatial
order (scaling invariance) stipulate specific optical properties of fractal aggregates.

Strong spatial correlations of the nanospherules (Eq. (1.44)) lead to the singularity
in the differential elastic cross-section at small angles:

dσe

d�
∝

∫
d3r C(r) eiq·r ∝ 1

qD
(1.53)

where q = 2πλ−1 sin(θ/2) and θ is the scattering angle. This singular behavior
serves in some cases for the experimental determination of the fractal dimension D.

Voids in FAs (Eq. (1.45)) may create the conditions for the capture of light quanta
inside them. Sometimes (under special resonance conditions) FAs consisting of
weakly absorbed spherules are able to absorb light.

In their comparison of a fractal smoke optical model with light extinction
measurements, Dobbins et al. [61] used the following expressions for the absorption
and elastic scattering cross-sections:

σabs = 6πE(m)
λρp

(1.54)

and

σsca = 4πn(2)F(m)

λρpn(1)

(
1 + 4

3D
k2R2

g

)−D/2

(1.55)

with n(1,2) being the first and second moments of the FA size distribution function,
k = 2π/λ, xp = 2πr0/λ, λ being the wavelength of the incident light,

E(m) = Im
(

m2 − 1

m2 + 2

)
and F(m) =

∣∣∣∣m2 − 1

m2 + 2

∣∣∣∣ (1.56)

These rather simple expressions were applied for the analysis of the results on
the light extinction of aggregated soot aerosols with D = 1.75, and a reasonable
agreement of predicted and measured values was found.

The paper by Berry and Persival [62] gave the starting push to the studies of
the optics of FAs. The computational analysis of the Rayleigh–Debye–Gans theory
performed by Farias et al. [63] (see also references therein) showed its applica-
bility for soot FAs. The authors concluded that this theory should replace other
approximations for the description of soot optical properties, such as Rayleigh
scattering and Mie scattering for an equivalent sphere. Lushnikov and Maximenko
[64] investigated the localization effects in FAs and found that FAs with D < 3/2
consisting of weakly absorbing materials may nevertheless be ‘‘black’’ due to the
capture of the incident light quanta by voids inside the FAs. Other optical properties
(hyper-combinational scattering, scattering at small angles, and photoabsorption)
of FAs were also investigated [65]. Cabane and colleagues [66, 67] explained
the contradictions between the results of polarization and photometric measure-
ments of the upper layer of Titan’s atmosphere by assuming that FA clouds are
responsible for the light scattering effects.
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1.5.6
Are Atmospheric Fractals Long-Lived?

The answer to this question depends on the mobility of FAs, which is expected to be
much lower than that of compact particles of the same mass. The experimental and
numerical studies of the mobilities of aggregated particles allow for some useful
semiempirical relations to be established.

In the continuum regime, it was found [68] that the mobility diameter of an
FA is

dmc = 2βRg = βd1

√
D

D + 1
g1/D (1.57)

with β = 0.7–1.0 and d1 being the spherule diameter. In the free-molecule kinetic
regime, dmk ≈ dA, where dA is the radius of the equivalent projected sphere.
The rather ancient ‘‘adjusted sphere’’ interpolation expression for the equivalent
diameter by Dahneke (cited in [68]) has the form

dm

Cc(Knm)
= dmc

Cc(Knck)
(1.58)

where dm is the transition mobility diameter, dmc and dmk are the kinetic
and continuum regime mobility diameters defined above, Knm = 2λ/dm, and
Knck = 2λdmc/d2

mk. The slip correction factor is introduced as

Cc(Kn) = 1 + Kn
[

A + B exp
(−C

Kn

)]
(1.59)

with A = 1.257, B = 0.4, and C = 1.1; λ is the mean free path.
The sinks of FAs in the atmosphere are:

• diffusion deposition, which is smaller by g2/D−2/3 in the free-molecule regime,
and by g1/D−1/3 in the continuum regime;

• sedimentation losses, which are smaller by g1/D−1/3.

Other mechanisms are as follows:

• collapse by humidification, in which water condensation on atmospheric fractals
may effectively enlarge their fractal dimensionality by 10–15%, making them
more and more compact;

• water capture by (even hydrophobic) FAs;
• scavenging by rain- and snowfall.

The latter two mechanisms are likely the most effective.
Colbeck and Wu [69] used the relation dm ∝ d3(D−1)/2D

V linking the mobility
diameter dm with the volume equivalent diameter dV for determination of D of
smoke FAs. They found D to lie within the interval 1.40–1.96. A useful relation
linking the particle mobility with the optical diameter of soot aggregates (dopt ∝ d1/3

m )
has been reported [70]. Expressions for thermal and sedimentation velocities in
terms of a geometric particle diameter have also been given [71]. Huang et al. [38]
performed experiments with diesel engines that emit chain–agglomerate particles
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and found changes in D from 1.56 to 1.76 and from 1.40 to 1.54 depending on the
sulfur content. The ‘‘rigidity’’ of the chains was demonstrated to grow on increasing
the sulfur content.

1.5.7
Concluding Remarks

The fractal concept is undoubtedly fruitful for characterization of the present-day
aerosol situation in the Earth’s atmosphere. At the same time, it should be noted
that the concept itself needs development when applied to atmospheric aerosols.
The still not numerous observations of atmospheric fractal aggregates show that
their sizes (better, the numbers of spherules comprising the aggregates) are not
large enough to expose a well-developed fractal picture. Perhaps, distributions over
D will be of use for their proper characterization.

The fractal aggregates manifest anomalous physico-chemical properties: their
lifetimes are much longer than those of compact particles of the same mass
(by 10–100 times in the case of atmospheric fractals); their light scattering and
absorption cross-sections are higher by orders of magnitude than those of the
equivalent collective non-aggregated spherules; and their chemical and catalytic
activities are also enhanced by the specifics of the fractal aggregate morphology.
This is why even a small admixture of fractal aggregates may seriously change the
existing estimates of aerosol impact on the global radiation and chemical cycles in
the atmosphere.

The condensation of atmospheric moisture on fractal aggregates was shown to
restructure them, making the aggregates more compact. This process reduces their
lifetimes. The recognition of this fact helps to answer the question of where to seek
them. The upper layers of the atmosphere and near-space are the most probable
places for the accumulation of fractal aggregates.

The fractals of the lower troposphere are mainly of anthropogenic origin and
hardly to be thought as very desirable guests. Being good absorbers, they are able
to accumulate harmful substances and radioactivity, and to transport them inside
living organisms. Hence, the environmental aspects of the atmospheric fractal
aggregates are of great importance.

1.6
Coagulation

Coagulation is a collective aerosol process. This means that the equation describing
the kinetics of this process is nonlinear with respect to the particle size distribution
(see Eq. (1.60) below). This section introduces the reader to some fairly new
concepts that appeared not very long ago [54–58, 72, 73]. We begin with a short
description of the coagulation process. More details can be found in the chapter
written by Maisels in this book [74].
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At first sight the coagulation process looks rather offenceless. A system of M
monomeric objects begins to evolve by pair coalescence of g- and l-mers according
to the scheme

(g) + (l) −→ (g + l) (1.60)

It is easy to write down the kinetic equation governing this process as

dcg (t)

dt
= 1

2

g−1∑
l=1

K(g − l, l)cg−l(t)cl(t) dl − cg (t)
∞∑

l=1

K(g, l)cl(t) dl (1.61)

This equation is known as the Smoluchowski equation. Here the coagulation kernel
K(g, l) is the transition rate for the process given by Eq. (1.60). The first term on
the right-hand side of Eq. (1.61) describes the gain in the g-mer concentration cg (t)
due to coalescence of (g − l)- and l-mers, while the second one is responsible for
the losses of g-mers due to their sticking to all other particles. Equation (1.61) can
be rewritten in the integral form (sums on the right-hand side of Eq. (1.61) are
replaced with integrals)

∂c(g, t)
∂t

= 1
2

∫ g

0
K(g − l, l)c(g − l, t)c(l, t) dl − c(g, t)

∫ ∞

0
K(g, l)c(l, t) dl (1.62)

Eqs. (1.61) and (1.62) should be supplemented with the initial conditions,

cg (0) = c0
g or c(g, 0) = c0(g) (1.63)

where c0 are known function of g.
There are a number of coagulation kernels that are commonly used in aerosol

physics, and they look as follows:

1) Coagulation in the free-molecule regime:

K(g, l) = πa2
0

√
8kT

πm0
(g1/3 + l1/3)2

√
g−1 + l−1 (1.64)

The physical meaning of this expression is apparent: it is just the geometrical
cross-section of g- and l-mers times their mutual thermal velocity times their
reduced mass. Here m0 stands for the mass of the monomer. The analogy with
the formula for the condensation efficiency of small particles is clearly seen.

2) Coagulation in the continuum regime:

K(g, l) = 2kT

3ρν
(g1/3 + l1/3)(g−1/3 + l−1/3) (1.65)

3) Coagulation in laminar shear flow:

K(g, l) = 4

3
�m0(g1/3 + l1/3)3 (1.66)

where � is the velocity gradient directed perpendicular to the flow of the carrier
gas.
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4) Coagulation in turbulent flow:

K(g, l) =
√

πε

120ν
8a3

0(g1/3 + l1/3)3 (1.67)

where ε is the rate of dissipation of kinetic energy of the turbulent flow per
unit mass.

It is important to emphasize that the above kernels are homogeneous functions
of g and l, that is,

K(ag, al) = aλK(g, l) (1.68)

where λ is the homogeneity exponent.
Equations (1.61) and (1.62) can be modified by adding a source of fresh particles

(the term If (g) on the right-hand side of these equations), a sink of particles (the
term λgcg), and the particle condensational growth (the term ∂(αg c(g, t)/∂g on the
left-hand side of Eq. (1.62)). Then the full equation (the general dynamic equation
in the terminology of Friedlander [34]) has the form

∂c(g, t)

∂t
+ ∂α(g)c(g, t)

∂g
= I(g) + (Kcc)g − λ(g)c(g, t) (1.69)

where (Kcc)g stands for the right-hand side of Eq. (1.62):

(Kcc)g = 1
2

∫ g

0
K(g − l, l)c(g − l, t)c(l, t) dl − c(g, t)

∫ ∞

0
K(g, l)c(l, t)dl (1.70)

1.6.1
Asymptotic Distributions in Coagulating Systems

In what follows, we will use the dimensionless version of this equation, that is,
all the concentrations are measured in units of the initial monomer concentration
c1(0) and time in units of 1/c1(0)K(1, 1). More details can be found in the review
articles [75, 76].

Let us introduce a family of homogeneous kernels [72, 73, 77]

K(g, l) = 1

2
(gα lβ + lαgβ ) (1.71)

Then

λ = α + β (1.72)

We also introduce the exponent µ, as

µ = |α − β| (1.73)

In addition, we assume that the condensation efficiency may be approximated by
an algebraic function,

αg ∝ gγ (1.74)

The late stages of the time evolution of disperse systems, when either coagulation
alone governs the temporal changes of particle mass spectra or simultaneous
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condensation complicates the evolution process, are studied under the assumption
that the condensation efficiencies and coagulation kernels are homogeneous
functions of the particle masses, with γ and λ, respectively, being their homogeneity
exponents. Three types of coagulating systems are considered: (i) free coagulating
systems, where coagulation alone is responsible for disperse particle growth;
(ii) source-enhanced coagulating systems, where an external spatially uniform
source permanently adds fresh small particles, with the particle productivity being
an algebraic function of time, I(t) ∝ ts; and (iii) coagulating-condensing systems,
in which a condensation process accompanies the coagulation growth of disperse
particles. The particle mass distributions of the form

cA(g, t) = A(t)ψ(gB(t)) (1.75)

are shown to describe the asymptotic regimes of particle growth in all the three
types of coagulating systems (g is the particle mass).

Friedlander [78] was the first to introduce the self-preserving form of the mass
spectra in free coagulating systems. According to the hypothesis of self-preservation
A(t) = N2(t), B(t) = N(t), with N(t) being the total number concentration of the
coagulating particles. However, the family of self-preserving spectra is much wider
(see [72, 73] and references therein).

The functions A(t) and B(t) are normally algebraic functions of time whose power
exponents are found for all possible regimes of coagulation and condensation
as functions of λ and γ . The equations for the universality function ψ(x) are
formulated. It is shown that in many cases ψ(x) ∝ x−σ (σ > 1) at small x, that is,
the particle mass distributions are singular. The power exponent σ is expressed in
terms of λ and γ .

We have given the classification of the singular self-preserving regimes in
coagulating systems and have defined the conditions for their realization. They are
listed below.

1) In the free coagulating systems ψ(x) ∝ 1/x1+λ at x � 1, which corresponds to
the mass distribution of the form:

cA(g, t) ∝ 1
g1+λt

(1.76)

The condition for the realization of this asymptotics is α, β > 0. At β = 0 the
singularity is weaker, ψ(x) ∝ 1/x1+γ , where 0 < γ < λ.
It is not so difficult to understand the physical meaning of this condition: the
rate of interaction of small particles (g ∝ 1) with large ones (g � 1) is on the
order of K(1, g) ∝ gα and K(g, g) ∝ gλ, respectively, that is, the smaller particles
interact with the larger ones much more slowly than the large ones between
themselves (α ≤ λ). Strongly polydisperse mass spectra thus form, in which
the role of larger particles is less than that of smaller ones.
The situation changes drastically at β < 0. In this case K(1, g) � K(g, g), that
is, the larger particles ‘‘eat’’ the smaller ones much faster than each other. A
hump in the distribution at large masses develops, while the concentrations of
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small particles drops with time. A singular and a non-singular distribution are
shown in Figure 1 of [73].

2) The inequality λ, µ ≤ 1 defines the conditions for the singular distributions to
exist in source-enhanced coagulating systems. It is simply the conditions for
the convergence of the integral on the right-hand side of Eq. Eq. (1.62). The
singularity of the mass spectra in the source-enhanced coagulating systems is
ψ(x) ∝ x−(3+λ)/2 or, in terms of the particle masses,

cA(g, t) ∝ g−(3+λ)/2t−(1−s)(1+λ)/2(1−λ) (1.77)

At s = 1 (a source that is constant in time) the time-dependent multiplier turns
to unity. The mass spectrum has a steady-state left wing, that is, the spectrum
of the highly disperse fraction is independent of time, although the source
permanently supplies the system with fresh portions of small particles. These
particles deposit mainly on the larger ones, providing the right wing of the
spectrum to move to the right along the mass axis. The steady-state regimes
of coagulation in source-enhanced systems have been investigated [79, 80]
(see also [73] and references therein).

3) We have considered systems of coagulating particles in which a source that is
constant in time produces a vapor of low volatility condensing onto the particle
surfaces. The particle growth in such systems is similar in many respects to
that in source-enhanced and (sometimes) free systems. Several regimes have
been detected.
a. The disperse phase consumes all the mass of the vapor. In this case

ψ(x) ∝ 1/x2−γ+λ, or

cA(g, t) ∝ 1/t2γ−1−λg2−γ+λ (1.78)

The conditions for realizing these distributions are: γ < 1 and 2γ > 1 + λ.
At λ < γ < (λ + 1)/2 the coagulating–condensing system behaves like
a source-enhanced coagulating system with linearly growing mass
concentration.

b. When the mass of the disperse phase grows more slowly than t, the
asymptotic mass distribution in coagulating–condensing systems is the
same as in source-enhanced systems. The singular asymptotics, however,
is never realized. At γ≤2λ − 1 condensation is so slow that the coagulating
disperse system consumes only a finite part of the vapor and the coagulation
process goes like in free coagulating systems.

Singular asymptotic distributions have been known since 1975 [81]. But what is
especially wonderful is the fact that such distributions had appeared in the exactly
solvable model K(g, l) = g + l) [82], but people (including me) did not want to notice
them. A thorough numerical analysis by Lee [83] showed that the characteristic
time for reaching the singular asymptotics is much longer than in the case of
non-singular distributions. I did not cite here very many of my own papers on
asymptotic distributions (a false modesty), but one can find almost a full list of
these works in Lushnikov and Kulmala [72, 73].
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1.6.2
Gelation in Coagulating Systems

A half a century ago it had become clear that there is something wrong with
Eq. (1.61). An attempt by Melzak [84] to find an exact solution to this equation for
the kernel proportional to the masses of coalescing particles

K(g, l) ∝ gl (1.79)

had led to a strange conclusion that the total mass concentration ceases to conserve
after a finite time t = tc (in what follows tc is referred to as the critical time) and the
second moment of the particle mass distribution φ2 = ∑

g2cg has a singularity,

φ2(t) ∝ 1

tc − t
(1.80)

Even more strange is the fact that at t = tc nothing wrong happens either to the
particle mass spectrum or the particle number concentration. The whole situation
is displayed in Figure 1.4.

Immediately, the problems of the existence of the solution to Eq. (1.61) and of its
uniqueness were posed and resolved [85–88]. But this did not help to answer the
question of what does happen after t = tc.

On the other hand, it is clear that, if we consider a finite coagulating system,
then at any time we see a number of bigger and bigger particles whose total mass
M cannot disappear somewhere. It is worthwhile to characterize such a system
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Figure 1.4 The total number and total mass
concentrations of sol particles as functions
of time (dimensionless units). After the
critical time t = tc the mass concentration
ceases to conserve, because a massive gel
particle forms and begins to consume the
mass of the sol. On the other hand, the

number concentration does not feel the loss
of one (although very big) gel particle. Still
the post-critical behavior of the number con-
centration found from Eq. (1.61) differs from
that predicted by the Smoluchowski equation
(n(t) = 1 − t, dashed line).
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by the set {ng} of occupation numbers of g-mers. Then it becomes possible to
introduce the probability W({ng}, t) for the realization of a given set at time t.
Now the evolution of the coagulating system is fully described in terms of W.
But a truncated description in terms of the average occupation numbers is also
admissible:

ng (t) =
∑
{ng }

W({ng}, t)ng (1.81)

The particle concentrations are introduced as

cg (t) = ng (t)

V
(1.82)

Here V is the total volume of the coagulating system.
Now we are ready to return to the question of what is going on in our system.

The point is that the concentrations appearing in the Smoluchowski equation are
defined as the thermodynamic limits of the ratios ng/V (where V −→ ∞, ng −→ ∞,
and their ratio is finite), that is, if ng are not large enough (for example, some of
them ∝ Vα, α < 1), then these particles are not ‘‘seen’’ in the thermodynamic limit,
even if they exist. Still, these particles can have large masses, comparable to the
mass of the entire system, and thus contribute to the mass balance. In coagulating
systems, such particles can form spontaneously during a finite time (see Figure 1.5).
This is gelation.

Two approaches have been applied for considering the sol–gel transition. The first
approach does not conflict with the Smoluchowski description of gelling systems,
that is, it starts with the Smoluchowski equation (see, for example, [89]). The
mass deficiency appearing after the critical time is attributed to an infinite cluster
(a gel), which is introduced ‘‘by hand’’ (its existence does not follow from the
Smoluchowski equations) and serves only to restore mass conservation. The gel
can be assumed to be either passive or active with respect to the sol fraction (defined
as the collection of particles whose population numbers are macroscopically large).
In the former case the gel grows due to a finite mass flux toward infinite particle
sizes. The active gel grows, in addition, by consuming the sol particles. These two

2

1

0
100 200

D
is

tr
ib

ut
io

n 
of

 p
ar

tic
le

 m
as

se
s

300 400 500

Particle mass

t − tc = 0
t − tc = 0.05
t − tc = 0.10

Figure 1.5 The particle mass spectrum at
t − tc = 0, 0.05, and 0.1. It is seen how the
gel appears from nothing.
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mechanisms are thoroughly discussed in [90], where the reader will find references
to earlier works.

More accurately (but, again, within the Smoluchowski scheme) this process had
been considered in [91], where an instantaneous sink of particles with masses
exceeding a large one, G, was introduced. Then the kinetics of coagulation can be
described by a truncated Smoluchowski equation, and no paradox with the total
mass concentration comes up, for the mass excess is attributed to the deposit: the
particles with masses g > G consumed by the sink. Nevertheless, the difference
between gelling and non-gelling systems manifests itself in the fact that during the
whole pregelation period the mass is almost conserved, and only immediately after
the critical time does a noticeable mass loss appear. The description of this model
can be found in [58, 92].

The second, alternative, approach applying the Marcus [93] scheme to the gelation
problem appeared earlier in [54–57, 94, 95]. The idea of this approach relies upon
the consideration of finite coagulating systems. As mentioned above, this approach
operates with the occupation numbers and the probability for the realization of a
given set of occupation numbers. Within this scheme, the gel manifests itself as a
narrow hump in the distribution of the average particle numbers over their masses.
This hump appears after the critical time at macroscopically large mass g ∝ M
and behaves like the active gel, that is, it influences the particle mass spectrum of
the sol.

The master equation governing the time evolution of the probability is extremely
complicated, but on replacing it by another one, for the generating functional of the
probability W, it acquires a similarity with the Schrödinger equation for interacting
quantum Bose fields. Although many features of the solution to the evolution
equation for the generating functional were clear almost three decades ago, only
very recently was I able to find the exact solution to this equation in a closed form
and to analyze the behavior of the particle mass spectrum in the thermodynamic
limit [54–58].

The description of the coagulation process in terms of occupation num-
bers (numbers of g-mers considered as random variables) was first introduced
by [93]. This approach was then reformulated by me [52–58, 94, 95] in a
form strongly reminiscent of the second quantization. Below I outline this
approach.

The idea of this approach is very simple. Let us consider a process in which
a pair of identical particles A, on colliding, produce one A particle (the process
A + A −→ A). Let there be M such particles moving chaotically in the volume V .
They collide and coalesce. Two particles produce one. This is exactly like in a
coagulation process. The collision rate (the probability per unit time for a pair of
particles to collide) is introduced as κ/V , where κ is the rate constant of the binary
reaction A + A −→ A. The rate equation for the particle number concentration c(t)
describes the kinetics of the process:

dc

dt
= −κc2 (1.83)
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However, we can choose an alternative route and introduce the probability W(N, t)
to find exactly N particles at time t in our system. It is also easy to guess that

dW(N, t)
dt

= κ

2V
[(N + 1)NW(N + 1, t) − N(N − 1)W(N, t)] (1.84)

The first term on the right-hand side of this equation gives the positive contribution
to the rate dtW because of the coalescence of two particles ((N + 1)N/2 is the
number of ways to choose a pair of coalescing particles from N + 1 particles).
The second term describes the negative contribution to dtW, because the particles
continue to coalesce and transfer the system from the state with N particles to the
state with N − 1 particles.

Hence, a simple nonlinear equation (1.83) is replaced by a set of linear equations
(1.84). However, we do not stop at this point and will make a step forward. We
introduce the generating function for our probability,

�(z, t) =
∑

N

W(N, t)zN (1.85)

From Eq. (1.84) we can derive the equation for � as

V
∂�

∂t
= κ

2
(z − z2)

∂2�

∂z2
(1.86)

This equation should be supplemented with the initial condition

�(z, 0) = ψ0(z) (1.87)

where ψ0(z) is a reasonable function (it should be analytical at z = 0). For example,
if we fix the number of particles N0 at the beginning of the process, then
ψ0(z) = zN0 . Alternatively, the function ψ0(z) = eN0(z−1) corresponds to an initial
Poisson distribution.

Two questions immediately come up: (i) Why should we introduce such a complex
scheme for describing the kinetics of the reaction – why not use Eq. (1.83)? (ii) If
the second scheme describes the same process as Eq. (1.83), then how do we derive
Eq. (1.83) from Eq. (1.86)?

First, I answer the second question. Let us expand the right-hand side of Eq. (1.86)
near z = 1, that is, we replace z − z2 ≈ −2ξ , where ξ = z − 1 � 1. We find from
Eq. (1.86) that

V
∂�

∂t
= −κξ

∂2�

∂ξ 2
(1.88)

Now it is easy to solve this equation to obtain

�(z, t) = ec(t)V(z−1) (1.89)

On substituting this into Eq. (1.88) we come to the conclusion that the concentration
c(t) satisfies Eq. (1.83). Thus the probability has Poisson form. This approximation
works well at very large N.

Now let us return to the first question. If we want to describe a finite system, then
eventually we should use Eq. (1.84) or, better, Eq. (1.86). Because the description of
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a gel demands a step beyond the scope of the thermodynamic limit, I will use this
very approach, although it requires much more serious efforts for operating and
understanding the final results.

Here the ‘‘pathological’’ coagulating systems have been considered, that is,
systems whose development in time leads to the formation of an object that is not
provided for by the initial theoretical assumptions. In our case it is the gel whose
appearance breaks the hypothesis that the kinetics of coagulation can be described
in terms of the particle number concentrations defined as the thermodynamic limit
of the ratio (occupation numbers)/volume.

The coagulating system with kernel proportional to the product of the masses
of two colliding particles is the central object of the present study. Although the
main decisive step in understanding the nature of the sol–gel transition in finite
systems with K ∝ gl had been done long ago, only recently was I able to find
the exact solution of this salient problem [54–58, 92, 96]. The central goal of this
section was to introduce the reader to the main ideas of the approach that I so
adore. Here I have demonstrated that this approach is eminently applicable to the
solution of other problems, like the time evolution of random graphs or gelation in
coagulating mixtures.

At first sight, the coagulation process cannot lead to something wrong. Indeed, let
us consider a finite system of M monomers in the volume V . If the monomers move,
collide, and coalesce on colliding, the coagulation process, after all, forms one giant
particle of mass M. The concentration of this M-mer is small, cM ∝ 1/M. It is better
to say that it is zero in the thermodynamic limit V , M −→ ∞, M/V = m < ∞. In
other words, no particles exist in coagulating systems after a sufficiently long time.
But still something unexpected goes on in gelling systems after a finite interval of
time. The gel forms.

Two scenarios of gelation in coagulating systems have been considered in [54–58,
92]. The first one considers the coagulation process in a system of a finite number
M of monomers enclosed in a finite volume V . In this case any losses of mass
are excluded ‘‘by definition.’’ The gel appears as a single giant particle of mass g
comparable to the total mass M of the whole system.

What happens then in the system with K(g, l) ∝ gl in the thermodynamic limit?
The answer is simple, although in no way apparent. In contrast to ‘‘normal’’
systems, where the time of formation of a large object grows with M, a giant
object with a mass on the order of M forms during a finite (independent of V
and M) time tc. After t = tc this giant particle (gel) actively begins to absorb the
smaller particles. Although the probability for any two particles to meet is generally
small (∝ K(g, l)/V), in the case of g ∝ M this smallness is compensated by the
large value of the coagulation kernel proportional to the particle mass M, which
is, in turn, proportional to V . Hence, the gel whose concentration is zero in the
thermodynamic limit can play a considerable role in the evolution of the whole
system. The structure of the kernel is also the reason why only one gel particle
can form. The point is that the time for the process (l) + (m) −→ (l + m) is short
for l, m ∝ M: τ ∝ V/K(l, m) ∝ V/M2 ∝ 1/V −→ 0 in the thermodynamic limit.
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Of course, the Smoluchowski equation is not able to detect particles with zero
concentration.

As mentioned above, the total mass concentration of the spectrum n(s)
g (t) is

not conserved at t > tc. It is easy to show [54–57] that the deficit of the mass
concentration after the critical time tc is

2t = 1

µc(t)
ln

(
1

1 − µc(t)

)
or µc = 1 − e−2µct (1.90)

This equation has only one root µc(t) = 0 at t < tc and two roots at t > tc. It is clear
why we should choose the positive non-zero root after the critical time.

The mass distribution in the variables g, ε has the form (see also [54])

ng (t) = C(g, ε) exp
(

− g3

8M2
+ ε

g2

M
− 2gε2

)
(1.91)

Unfortunately, our asymptotic analysis does not allow for restoring the normaliza-
tion factor C(g, ε). Still, some conclusions on its form can be retrieved from the
mass conservation,

C(g, ε) = M√
2πg5

+
√

ε θ (ε)√
2πM

(1.92)

with θ (ε) being the Heaviside step function. Indeed, below the transition point
the total mass is conserved and the asymptotic mass spectrum is known.
Equations (1.91) and (1.92) reproduce the latter at g � M. Above the transition
point the second term normalizes the peak appearing at g = µ−M to unity.

Now it becomes possible to describe what is going on. Below the transition
point (at ε < 0) the mass spectrum drops exponentially with increasing g. The
terms containing M in the denominators (see Eq. (1.91)) play a role only at g ∝ M.
At these masses, the particle concentrations are exponentially small. In short, in
the thermodynamic limit and at ε < 0 the first two terms in the exponent on
the right-hand side of Eq. (1.91) can be ignored. The spectrum is thus given by
the equation

ng (t) = M√
2πg5

e−2gε2
(1.93)

At the critical point (t = tc or ε = 0) the spectrum acquires the form

ng (t) = M√
2πg5

e−g3/8M2
(1.94)

Although the expression in the exponent contains M in the denominator, we have
no right to ignore it, for this exponential factor provides the convergence of the
integral for the second moment φ2 = M−1∑g2ng in the limit M −→ ∞. We thus
have

φ2(tc) = 1√
2π

∫ M

0

e−g3/8M2
dg√

g
≈ 1

3
√

π
�

(
1

6

)
M1/3 (1.95)

Here �(x) is the Euler gamma function.



32 1 Introduction to Aerosols

The second (and the most widespread) scenario assumes that after the critical
time the coagulation process instantly transfers large particles to a gel state, the
latter being defined as an infinite cluster. This gel can be either passive (it does not
interact with the coagulating particles) or active (coagulating particles can stick to
the gel). In the latter case, the gel should be taken into account in the mass balance
and no paradox with the loss of total mass comes up (see [52, 53, 94, 95]). Still,
neither this definition nor the post-gel solutions to the Smoluchowski equation
give a clear answer to the question of what the gel is.

The situation becomes more clear on considering a class of so-called truncated
models (Section 1.5). In these models a cutoff particle mass G is introduced.
The truncation is treated as an instant sink removing very heavy particles with
masses g > G from the system. So we sacrifice mass conservation from the very
beginning. The particles whose mass exceeds G form a deposit (gel) and do not
contribute to the mass balance. Of course, the total mass of the active particles
plus deposit is conserved. The time evolution of the spectrum of active particles
(with masses g < G) is described by the Smoluchowski equation as before, with
the limit ∞ in the loss term being replaced with the cutoff mass G. The set of
kinetic equations then becomes finite and no catastrophe is expected to come up.
We have shown that, indeed, nothing wrong happens even for the coagulation
kernel K ∝ gl. The total mass concentration of active particles drops with time, as
it should, because the largest particles settle out to deposit. But as G −→ ∞ the
total mass concentration of active particles is almost conserved at t < tc and only
after the critical time (tc − t ∝ G−1/2) does the deposit begin to form and the mass
to drop down with time.

The question immediately comes up: What kernels are pathological? In 1973
I tried to answer this question. A primitive analysis of [97] (see also [73]) shows
that for homogeneous kernels K(ag, al) = aλK(g, l) the self-preserving asymptotic
solution to the Smoluchowski equation should have the form:

cg (t) ≈ t−2/(1−λ)ψ(gt−1/(1−λ)) (1.96)

This asymptotic formula shows that something wrong should happen at λ > 1.
So the kernels with λ > 1 occurred under suspicion. This opinion has survived
until now. People continue to attack this problem, but the problem remains too
hard. What is known up to now? For the kernels Kα(g, l) = gα lα it has been
proved that the sol–gel transition exists [76]. At α > 1 a gel appears already
from the very beginning of the coagulation process (tc = 0). So we know very
little.

The model K ∝ gl considered in detail here admits an exact solution. As has been
shown, this solution is not so simple, especially if one tries to consider a finite
system. More general models are less pleasant in this respect. Still, the approaches
described above can help to answer quantitatively what is going on in more general
systems. For example, the truncated models can be analyzed numerically. We
can find the time behavior of particle mass concentration, to detect the gelation
point (there is a chance that the mass ceases to be conserved very near the critical
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point), and to try to look for a solution that decreases as t−1 (post-critical behavior).
Moreover, such attempts have been reported (see [76]).

1.7
Laser-Induced Aerosols

The idea to use powerful lasers for aerosol particle production appeared rather long
ago (see [59] and references therein). Although the laser technologies are typically
expensive and not very productive, their advantages are apparent: in irradiating the
targets (solid, liquid or even gaseous), it is easy to reach the necessary regimes for
particle formation by changing the parameters of the incident laser beam and the
carrier gas inside the vessel containing the target.

The laser beam interacting with a solid target creates a heated spot erupting
plasma consisting of ionized vapor molecules and molecules of the carrier gas.
This plasma cloud screens partially (or even totally in the case of breakdown)
the incident light, heating itself by photoabsorption. Simultaneously it begins to
expand. On cooling enough, the vapor of the target material begins to form aerosol
particles, that then grow by condensing vapor molecules and coagulation. The
balance of the characteristic times of all these processes defines the characteristics
of the produced aerosol particles: number concentration, the shape of the particle
size distribution, degree of agglomeration, and so on.

The chain of events leading to aerosol formation looks as follows:

incident beam −→ plasma eruption −→ expansion of plasma cloud

−→ nucleation −→ condensational growth plus expansion of cloud

−→ coagulation −→ fractals −→ aggregation −→ gelation.

The latter stage goes only in specially chosen conditions. Below, all the stages of
the laser-induced aerosols are considered step by step.

1.7.1
Formation of Plasma Cloud

Focused laser irradiation heats the spot on the target surface up to temperatures
above the boiling point. At the characteristic pulse energies of our experiment,
the time for heat propagation inside the target body is much longer than the
evaporation time, that is, all absorbed energy is spent on evaporating the atoms
of the target material. The pressure of the vapor in the plasma cloud formed in
this way is typically a little below the saturation pressure. The erupted vapor forms
a one-dimensional plasma beam, the front of which propagates with the sound
speed, has a temperature of Tf ≈ 0.7T0 (T0 is the spot temperature), and has a
density of ρf = 0.25ρs. The flux of evaporated atoms is J ∝ vTN0. The vapor plasma
is strongly non-equilibrium and the density of ions exceeds its equilibrium value
by several decimal orders and reaches the value Ni ∝ 1018 –1020 cm−3.



34 1 Introduction to Aerosols

1.7.1.1 Nucleation plus Condensational Growth
The front temperature of the plasma cloud is sufficiently low for aerosol particles
to form. The characteristic times for particle formation are typically on the order
of 10−9 s, that is, much shorter than the cloud formation times (10−7 s). This
fact means that all erupted vapor is spent for particle formation and allows one to
evaluate the total particle number per pulse. Most likely, the number concentration
of the aerosol particles is on the order of the ion number concentration, that
is, heterogeneous nucleation on ions plays the central role. In this case the
nucleation–condensation process should produce the particles containing 102 –103

atoms or 1 nm in diameter. Experimentally observed particles are typically several
times bigger, which likely means that not all ions are effective condensation nuclei.
There is another explanation of this fact: not all particles are formed simultaneously.
The earlier particles may then deplete the vapor and not permit the other smaller
embryos to grow up to the particle size.

1.7.1.2 Coagulation
The concentration of forming particles is extremely high, so the characteristic
coagulation times should be of the order of 10−5 s (this is the upper estimate).
The coagulation process is thus longer than the lifetime of the plasma cloud,
which means that already cooled (solid) particles enter the coagulation process,
thereby forming rather loose fractal aggregates with fractal dimensionality close
to the D = 1.8 characteristic for the coagulation process. It is not easy to treat
respective experimental data, for measurements of the aggregate mass spectra are
still impossible. Nor are the mechanisms of aggregate–aggregate interaction well
recognized.

The resulting particle mass spectra depend strongly on the form of the coagulation
kernels. Wu and Friedlander [47, 48] assumed that the extension of free-molecule
coagulation is enough in order to describe the coagulation of fractal aggregates. They
replaced the colliding particle radii by r ∝ M1/D in the expression for the coagulation
kernel and investigated the dependence of the asymptotic mass spectra on D. The
latter was shown to become broader with decreasing D. Another assumption was
made by Lushnikov et al. [59]; the coagulation kernel is proportional to (r1 + r2)α

with α = 2 or 3. In this case the homogeneity exponent of the coagulation kernel
exceeds 1, and a gelation process should occur [59].

1.7.2
Laser-Induced Gelation

A strong laser beam hitting a solid target produces an eruption of vapor. Subsequent
condensation of the cooling vapor gives nanometric particles that are able to form
very crumbly fractal aggregates of micrometer size. In turn, aerosols consisting of
such aggregates continue to coagulate. The most enigmatic is the final stage of
the ageing process: the fractal aggregates form a web-like structure of macroscopic
size. The experimental observation of this effect was reported by Lushnikov, Negin
and Pakhomov [59] (hereafter LNP). Later, similar experiments were performed by
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Friedlander’s group, which investigated in addition some properties of the fractal
filaments [98]. A theoretical explanation of this effect appeared much earlier [52, 53,
94, 95], who gave an exact analysis of the Flory–Stockmeyer model of polymerization
(coagulation kernel K ∝ gl with g and l being the masses of colliding particles) and
showed that one giant object (superparticle) should appear after a finite interval
of time. This effect was then studied theoretically by a number of authors (for
citations see the book Fractals in Physics [31]) who gave some evidence in favor of
the fact that such a phenomenon is not a rarity and is of great significance for
understanding the processes of fractal structure growth.

Let us consider the coagulation of particles placed in a uniform electric field of
strength E. This field induces the dipole moment d = αE, with α being the particle
polarizability. The interaction energy of two particles is proportional to d1d2 and
maximal for two aligned dipoles. The latter fact means that the coagulating particle
should form a needle-like structure as observed in LNP. Below, we assume that
the mutual particle motion is due to their dipole–dipole interaction. The kinetics
of needle-like particle formation is thus described by the Smoluchowski equation,
with the coagulation kernel proportional to the scalar product of the field-induced
dipole moments: K(g, l) ∝ d1d2. The polarizability of each needle is proportional to
its maximal size, which, in turn, is proportional to the total mass of the needle g.
This means that the coagulation kernel has the form

K = k0E2gl (1.97)

with k0 being a proportionality coefficient.
The equation for the second moment of the particle mass spectrum,

φ2(t) = ∑
g2cg(t), describes the kinetics of the pre-gelation period t < tc:

φ2(t) = [Kc0(tc − t)]−1 (1.98)

where the critical time

tc = [k0E2φ2(0)]−1 (1.99)

depends on the strength of the external electric field. Equations (1.98) and (1.99)
were checked experimentally. To this end Fe, Ti, Ag, and Al targets placed in a
specially designed vessel filled with inert carrier gas at different pressures were
irradiated by pulsed ruby and CO2 lasers. The time dependence of the scattered
light signal was recorded and the dependence of tc on E was found.

The comparison of the theoretical and experimental results clearly favors the
coagulation mechanism of gelation. The coagulation kernel is proportional to
the product of the dipole moments of the coagulating particles. Such a mecha-
nism evidently produces needle-like structures. The specifics of the coagulation
interaction eventually lead to the phase transition: during a finite period of
time, a macroscopic object forms (in this particular case, it is a set of fractal
filaments).

Fractal filaments that result from the aerosol–aerogel transition are of interest
for those who develop the technology of nanomaterials. Although the laser method
has many disadvantages (it is expensive and complicated), it does allow the
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production of aerogels made out of any thermostable material. There are many
other processes giving fractal filaments: plasma discharge (for example, electric
sparks), and thermal or chemical decomposition (for example, it is no problem to
produce aerogels by thermal decomposition of Fe(CO)5). The application of fractal
filaments is a matter for the future.

1.8
Conclusion

Aerosol science does not belong to the group of sciences that are based on one
equation or principle, like, for example, classical mechanics (Newton’s equation),
quantum mechanics (Schrödinger’s equation), classical electrodynamics (Maxwell’s
equations), and so on. Rather, aerosol science applies the results and methods
adopted from all other sciences. In particular, Newton’s equation applies in aerosol
mechanics, Maxwell’s equations are used in the theory of light scattering by
aerosols, quantum-mechanical approaches are needed for studying the structure
of small clusters, and even quantum field ideas have been used in aerosol science
– the theory of gelation, the derivation of Mie theory from quantum principles
[99], and the study of inelastic electromagnetic processes on aerosol particles [100].
This rather speckled structure of aerosol science makes it difficult to write a review
enveloping all branches of aerosol science. Here I have restricted myself to the
problems of kinetics of aerosols.

Coagulation Aerosol particles are not simply suspended in a carrier gas. They
always move due to their collisions with the carrier gas molecules. On colliding, the
moving particles coalesce, forming a new daughter particle with mass equal to the
total mass of the parent particles. This process continues until very few particles
remain in the system.

There are two problems in the theory of coagulation: (i) how to find the efficiency
of particle collisions; and (ii) how to describe the time evolution of coagulating
aerosols, once the collision rates are known functions of the particle sizes. Both
problems have been considered. Sometimes coagulation leads to gelation. I have
explained in short the conditions under which the gel can form (without entering
into the heavy mathematical details).

Charging of particles Charging of aerosol particles is of undoubted importance.
An aerosol particle can carry from one to thousands of elementary charges. I have
discussed the kinetics of particle charging. My starting point was the flux matching
theory of charge transport in the carrier gas. The Coulomb and image forces
make the problem extremely complicated, especially because the image forces are
singular at the particle surface. Without derivation, I exposed the final results for
the charging efficiency of aerosol particles.
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Drag on aerosol particle In this section I discussed the drag force on an aerosol
particle of a given radius. The central result is the formula proposed by Mil-
likan and derived by Phillips from the numerical analysis of the Boltzmann
equation. Mobility, electromobility, and diffusivity are discussed in the light of this
formula.

Condensation, evaporation, nucleation These problems are discussed in a separate
chapter in this book [101]. The situation with nucleation remains unsatisfactory.
As for condensation, I showed that semiempirical formulas by Fuchs and Sutugin
and by Dahneke give results very close to the expression derived theoretically by
Lushnikov and Kulmala. The advantage of the latter approach is the possibility to
extend it to more complicated situation when a single particle–molecule interaction
is switched on.
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