
Chapter 1

Crystal Lattices

1.1 The Solid State

X-ray crystallography deals with materials in the solid state, and it is there that we
must begin. In principle, depending on the temperature, any material can exist as
a solid, a liquid, or a gas — provided that it does not decompose before it attains
a given state. Materials are comprised of either atoms, neutral molecules, or ions,
which, in the gas phase, behave more or less independently, despite attractive forces
between them. This is because these entities have sufficient kinetic energy that the
attractive forces between them are comparatively very weak. While they may tug
a bit on one another in passing, they readily escape from one another to continue
their motion indefinitely.

As the material is cooled — as kinetic energy is removed from the atoms,
molecules, or ions in the gas phase — a point is reached at which they no longer
have sufficient kinetic energy to move freely, and the attractive forces begin to
dominate, keeping the entities in close proximity to one another. While they have
enough kinetic energy to move around, over, and under one another, they are now
constrained to stay in the vicinity of one another, and the material is said to have
condensed into the liquid state.

Finally, when the material has cooled sufficiently, the attractive forces become
so dominant that the components hold onto one another tenaciously, tending to
arrange themselves so that they can gain as much interaction as possible, resulting
in a minimum energy configuration. In the process they lose their translational
motion, and the material becomes rigid. We now consider the manner in which the
components of these rigid materials arrange themselves in order to maximize the
attractive forces between them.

Since the attractive forces increase as the distances between entities decrease it is
probably not surprising that simple materials, consisting of spherical ions or atoms,
will tend to pack the spheres together in an orderly arrangement in order to get
as many spheres as possible touching one another. Fig. 1.1 shows the arrangement
of the spherical atoms in metallic copper and the spherical ions in a typical salt,
sodium chloride. Both provide an excellent illustration of the old idiom, “Nature
abhors a vacuum.” In both structures the organization is clearly evident – spheres
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2 The Solid State

Figure 1.1 Arrangements of the atoms in copper and the ions in sodium chloride.

tend to arrange themselves into ordered three-dimensional arrays. The internal or-
ganization of such materials is reflected in their external appearance; both materials
appear to the naked eye as cubes — or other polyhedra related to the cube — as
shown in Fig. 1.2. In contrast to atoms and atomic ions, molecules and polyatomic
ions are not spherical. Indeed, many molecules have virtually no symmetry of their
own. Nevertheless, they generally form solid crystals with a symmetric appearance,
suggesting that they also have ordered internal arrangements. In Fig. 1.3, a space-
filling model of a sucrose molecule (table sugar) is compared to the macroscopic
appearance of solid sucrose.

Figure 1.2 Naturally occurring crystals of metallic copper coated with tenorite and
ionic sodium chloride (halite). Copper crystal specimen and photo courtesy of Rob
Lavinsky; halite crystal photo courtesy of the Smithsonian Institution.



Crystal Lattices 3

Figure 1.3 Space-filling model of a sucrose molecule and crystals of sucrose. Photo
courtesy of Nicolas von Geijn and the Andrew van Hook Association.

The molecule has no observable symmetry, yet the solid material consists of sym-
metric crystals. A simpler molecule, 2-mercaptopyridine, illustrates how most
molecules “fill the space,” and pack next to one another in symmetric arrays. The
space-filling representation of the molecule is shown on the left in Fig. 1.4. The
arrangement of the molecules as they occur in the solid state indicates clearly that
they arrange themselves in a periodically repeating sequence, which can be visual-
ized as extending indefinitely throughout the three dimensions of the crystal. This
periodicity is much easier to visualize if the space-filling representation of the mol-
ecule is replaced by a “ball and stick” model, indicating the locations of the atomic
centers and their intramolecular connectivities (bonds), as illustrated in Fig. 1.5.
Note that it is possible to construct a series of identical parallelepiped “cages” in

Figure 1.4 Space-filling model of 2-mercaptopyridine and the arrangement of the
molecules in the solid state. The yellow atom is sulfur, the dark gray atoms are car-
bon, the light gray atoms are hydrogen, and the blue atom is nitrogen.
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Figure 1.5 Crystallographic packing of 2-mercaptopyridine showing three unit cells
translated along the a axis.

the structure, such that the contents and appearance of these cages are identical,
again throughout the crystal.

We will come to know these parallelepipeds as the unit cells of the crystal and
the framework that results from the entire array of these unit cells as the crystal
lattice. Not all materials condense into these regular structures. Ideally, when
a solid material is allowed to form slowly its component molecules or ions have
sufficient opportunity to rearrange into a symmetric structure. However, if they lose
kinetic energy too rapidly they will be trapped in less symmetric arrangements, and
the rigid material will not exhibit the crystallinity of more ordered solids. These
disordered materials are known as glasses. A common example is window glass,
which is identical in chemical composition to quartz, except that window glass
is formed from the rapid cooling of molten silicon dioxide, while quartz crystals
are formed in nature from the same elements — slowly over millions of years.
Fortunately for the crystallographer most substances, given the opportunity, tend
to form crystalline solids.
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1.2 The Crystal Lattice

1.2.1 Two-dimensional Lattices

It is often useful to begin a discussion in two dimensions, then extrapolate what
we have learned to three dimensions. Consider a two-dimensional analog of the
periodic arrangement of molecules described in Section 1.1 (Fig. 1.6), which we
will call the beta-structure. The periodicity of this array, as in the previous three-

Figure 1.6 Two-dimensional periodic array.

dimensional case, can be represented by a two-dimensional lattice resulting from
a series of parallelogram cells with identical contents (Fig. 1.7). The framework is
created from two sets of equidistant parallel lines. The lattice is uniquely defined
as the set of points at the intersections of these two sets of lines. The line segments

Figure 1.7 Lattice and contents of unit cells in a two-dimensional periodic array.
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which make up the unit cell are called axes , since they will become the coordinate
axes for locating points within the unit cell, much like the x and y axes in Cartesian
coordinates. The unit cell is a parallelogram characterized by the lengths of its axes,
a and b, and the angle between them, γ (Fig. 1.8). While the set of points defining

Figure 1.8 Unit cell for the beta-structure illustrating the crystallographic axes and
the inter-axial angle.

the lattice is unique for a given structure, the sets of lines which define the unit cell,
the repeating unit in the lattice, are the not the only sets of equidistant parallel
lines which contain all of the points in the lattice, as illustrated in Fig. 1.9. Indeed,
there are infinitely many sets of parallel lines in a given structure, each of which
contains all of the points in the lattice. Since a given set of lines contains every
point in the lattice and consists of equally spaced parallel lines, each set will divide
a given unit cell axis into an integral number of equally spaced line segments.

In the example shown in Fig. 1.9, the red lines divide the a axis into 2 segments,
and the b axis into 3 segments. The blue lines divide the a axis into 1 segment, and
the b axis into 2 segments. Since each set of lines divides the axes differently, the
two integers representing the number of divisions for both axes will be unique for a
given set (subject to the caveat discussed below). It follows that each set of lines can
be identified by these two integers, and that they can be used as indices to classify
each set, provided that they are kept in “a, b” order. This scheme was devised by
the Welsh crystallographer William Miller19 (1801–1880), and the ordered integers
are known as the Miller indices of the lines to which they correspond. They are
generally placed between parentheses. In the example given in Fig. 1.9 the Miller
indices of the red lines are (2 3), and(1 2) for the blue lines. By convention,
the indices for a given set of lines are denoted (h k). This assignment is not
unambiguous, since for every set of lines with a negative slope, there is another set
of lines with indices of the same magnitude but with a positive slope, as indicated
by the green lines in Fig 1.9. (which also divide a into one segment and b into two
segments). We will find a convenient and formal way to deal with this ambiguity
later on in the chapter by taking axial directions into account using vectors. For
now we can deal with this informally by assigning positive directions along a and b
to be to the right and up, and negative directions to be to the left and down. We
select any lattice point as an origin and look for the next line away from the origin
which crosses the axes. We note whether the crossing points are in positive or
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Figure 1.9 Three of the infinitely many sets of equidistant parallel lines that inter-
sect every point in the beta-structure lattice.

negative directions along a and b, then assign the signs of those directions to the
indices. Negative indices are indicated by placing a bar over the index. The lines
in Fig. 1.9 serve as examples to clarify this. We find a blue line which intersects
the axes one axial length to the right along a and, for the same unit cell, half of
an axial length up along b. Indices (h k) = (1 2) are therefore assigned to the blue
lines. Note that there is also a blue line which crosses the a axis to the left and
down along b, so that indices (1̄ 2̄) can also be assigned to the blue lines. While
these represent the same lines, there are special cases in diffraction where direction
is important, and we therefore keep them separate to account for this. Similarly, if
we proceed in a positive direction along a to a green line (h = +1), we find that the
line intersects the b axis halfway down — in a negative direction, and indices (1 2̄)
are assigned to the green lines. Alternatively, if we proceed along a in a negative
direction, we find a green line which intersects b in a positive direction, and we
can equally assign indices (1̄ 2) to the green lines — again retaining both sets of
indices for the special cases that we will encounter later on. It is left to the reader
to verify that the red lines have indices (2 3) – and (2̄ 3̄). The original set of lines
collinear with the a axis divide the b axis into 1 segment, and do not divide the
a axis at all; thus they are assigned indices (0 1) – and (0 1̄). Similarly, the lines
collinear with the b axis are assigned indices(1 0) – and (1̄ 0). Note that the larger
the magnitude of an index, the more times the lines cross the axis corresponding to
that index, and the shorter the resulting line segments become. It follows that as the
magnitudes of the Miller indices increase, the spacings between the correspondingly
indexed parallel lines must decrease. We will encounter this reciprocal relationship
again in the next section (in three dimensions) and throughout the text — it lies
at the heart of the diffraction experiment!

1.2.2 Three-dimensional Lattices

Two-dimensional lattices are created by the intersection of two sets of equidistant
parallel lines; three-dimensional lattices are the result of the intersection of three
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sets of intersecting parallel planes (Fig. 1.10). The unit cell thus becomes a paral-
lelepiped, characterized by the length of its three axes, a, b, and c and the three
corresponding inter-axial angles, α, β, and γ. By convention, α is the angle be-
tween the b and c axes, β is the angle between the a and c axes, and γ is the
angle between the a and b axes, as illustrated for the 2-mercaptopyridine unit cell
in Fig. 1.11(a).

Figure 1.10 Three sets of intersecting equidistant parallel planes defining the lattice
of the 2-mercaptopyridine structure. The lattice consists of the points indicated with
small black spheres. Four a-b planes are shown in red, an a-c plane is shown in green,
and a b-c plane is shown in blue.

The analogy with the two-dimensional lattice also holds for the Miller indices.
Just as there are infinitely many sets of equidistant parallel lines intersecting every
point in the two-dimensional lattice, there are an infinite number of sets of equidis-
tant parallel planes which intersect every point in the three-dimensional lattice.
Fig. 1.11(b) shows a set of planes that divides the a axis into two segments, the
b axis into 2 segments and the c axis into 3 segments. As with each set of lines
in two dimensions, this set of planes can be assigned Miller indices, (h k l) — in
this example, (2 2 3). There are seven other sets of planes with indices (2̄ 2̄ 3̄),
(2 2 3̄), (2̄ 2̄ 3), (2 2̄ 3), (2̄ 2 3̄), (2̄ 2 3), and (2 2 3̄), determined by assigning
directions along a, b, and c, just as we did in Sec. 1.2.1. Each set of planes is
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Figure 1.11 Unit cell for the 2-mercaptopyridine structure illustrating (a) conven-
tional unit cell parameters and (b) intersection of the (h k l) = (2 2 3) planes with
the unit cell axes.

oriented differently in the lattice and is uniquely characterized by its indices.∗ As
with the two-dimensional lattice, each set of planes with indices (h k l) can also be
indexed with (h̄ k̄ l̄), so that there are actually four unique sets of planes; we retain
the eight sets of indices to keep track of direction. The planes containing the b and
c axes divide the a axis into one segment — and since they do not divide the b or
c axes, they are assigned indices (1 0 0) – and (1̄ 0 0). Similarly, the a-c planes are
assigned (0 1 0)— and (0 1̄ 0) indices, and the a-b planes are assigned (0 0 1) —
and (0 0 1̄) indices. As in the two-dimensional case, the larger a given index, the
more the corresponding axis is divided, and the smaller the distance between the
planes. Again, there is a reciprocal relationship between the magnitude of the plane
indices and the distances between the planes corresponding to those indices.

∗In the early days of crystallography, planes were indexed to describe crystal faces. For every
set of planes with indices (h k l), there is another set with indices (2h 2k 2l), and another with
indices (3h 3k 3l), etc. All of these planes are parallel to one another, and macroscopically
indistinguishable. For that reason Miller indices formally have no common factors, thus excluding
the (nh nk nl) planes for n > 1. Since we must include these planes, from this point on we will
refer to the indices of all of the planes in the lattice as general indices, or more concisely, simply
as indices.
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1.3 Vectors in Crystallography

The discussion of indices in the previous section required us to consider both the
magnitudes and directions of line segments in order to assign the indices unambigu-
ously. Directed line segments are often referred to as vectors, although formally they
are geometric representations of vectors. In order to develop the mathematics of
crystallography and diffraction we will rely heavily on the use of vectors.

A vector is an ordered array of elements known as components. The number of
components is referred to as the dimension of the vector. We will describe a vector
by placing its components in square brackets: [v1 v2 v3 . . . vn], where vi is the ith
component of an n-dimensional vector. A boldface lower case letter will be used to
indicate the vector (e.g., v = [v1 v2 v3]) and its geometric representation; the term
vector will be used for both as well.

The sum of two vectors of the same dimension produces a third vector of that
dimension,

vi + vj = [vi,1 vi,2 vi,3 . . . vi,n] + [vj,1 vj,2 vj,3 . . . vj,n]
= [(vi,1 + vj,1) (vi,2 + vj,2) (vi,3 + vj,3 . . . (vi,n + vj,n)]. (1.1)

A one-dimensional vector is known as a scalar. It is generally a single number which
represents the magnitude of something, and is ordinarily not placed in brackets.
The product of a vector of dimension n and a scalar results in a vector of the same
dimension in which each component is multiplied by the scalar:

sv = s[v1 v2 v3 . . . vn] = [sv1 sv2 sv3 . . . svn]. (1.2)

We have already encountered examples of two and three-dimensional vectors —
the indices of sets of lines in two dimensions and sets of planes in three dimensions.
The indices are descriptors, in the sense of identifying specific sets of planes. Indices
are also vectors which occur commonly in the mathematics of diffraction. We will
adopt the convention of placing indices in parentheses when referring specifically
to sets of lattice planes, and in square brackets when they are to be employed as
vectors.

Crystallography is chiefly concerned with directed line segments in two or three
dimensions, and the discussion here will largely be confined to those vectors. A
directed line segment can be described by specifying its length (magnitude) and
direction, usually expressed as an angle or angles with respect to some standard
direction, and indicated by an arrowhead at the leading end of the line segment.
The leading end of the line segment is called its head, the trailing end is called its
tail. A vector with its tail at point o and its head at point p will be indicated by
placing an arrow over the symbols for the points, e.g., v = −→op. Unfortunately, there
is no standard convention for indicating the magnitude of a vector. For example,
the magnitude of the vector v can be found in various texts as |v|, ‖v‖, or simply v.
With the exception of cases where it might be confusing, a lower case script letter
will be employed to indicate any scalar quantity, including the magnitude of a
vector. When the vector is represented by the points which define it, its magnitude
will be indicated by placing the symbol for the vector between vertical lines, e.g.,
v = |−→op|.
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1.3.1 Geometric Vector Addition and Multiplication

Geometric vectors are added and multiplied by an established set of rules, and we
must consider those rules in order to link ordered pairs and triples of numbers with
geometric vectors in two and three dimensions. Geometric vectors, v1 and v2, are
added to one another by placing the tail of v2 at the head of v1, and creating a
third resultant vector by connecting the tail of v1 to the head of v2 (Fig. 1.12).
Note that this resultant vector is also obtained if we reverse the order in which we
combine the vectors. For “regular” numbers (scalars) the order in which we add
things does not alter the results, and we say that scalar addition is commutative.
Vector addition behaves just like regular addition in this respect – vector addition
is commutative.

Figure 1.12 The addition of geometric vectors: v3 = v1 + v2 = v2 + v1. Note that
merging the two representations creates a parallelogram with the resultant vector
along the diagonal — providing a convenient method for vector addition.

Adding vectors in this manner makes intuitive sense if we consider our intent to
make use of them in order to locate points inside the crystal lattice. Locating the
point p relative to point o can be effected by traversing directly along v3, or by
taking the path along v1, followed by v2. The combined effects of v1 and v2 are
clearly additive in this respect, and equivalent to v3.

Vectors can be multiplied∗ in a number of ways. The simplest is multiplication
by a scalar. Multiplication by a positive scalar produces a new vector in the same
direction as the original with its magnitude multiplied by the scalar; multiplying
by a negative scalar produces a new vector in the opposite direction. Fig. 1.13
illustrates a vector multiplied by the scalars 0.5 and -2.0, producing a new vector
parallel to the original with half the length (v2 = 0.5v1) and an antiparallel vector
with twice the length (v3 = −2.0v1).

Multiplying a vector by −1 produces the negative of that vector — a vector
of equal magnitude but opposite direction. In order to subtract v2 from v1, we

∗Multiplication is used here in a more abstract context to indicate a combination of entities
in accordance with a specific set of rules. In this sense addition is also considered a form of
multiplication.
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Figure 1.13 Geometric vector v1 multiplied by scalars: v2 = 0.5v1; v3 = −2.0v1

multiply v2 by −1 to negate it, then add it to v1. Note that vector subtraction
is not commutative. As illustrated in Fig. 1.14, reversing the order of subtraction
changes the sign of the resultant vector, but leaves the magnitude unchanged. As
with addition, the subtraction of vectors parallels the non-commutative subtraction
of ordinary numbers.

Vectors can also be multiplied together to produce a scalar. The scalar product
of two vectors (also known as the inner product or dot product) is defined as the
product of the magnitudes of the two vectors and the cosine of the angle between
them:

v1 · v2 = v1v2 cos θ. (1.3)

Since the magnitude of the original vectors and the angle between them does not
change, v1 · v2 = v2 · v1; the scalar product is commutative. The scalar product
has three important properties which are very useful in vector analysis. First, the
scalar product of a vector with itself gives us the square of the magnitude (length)
of the vector:

v1 · v1 = v1v1 cos(0) = v2
1 . (1.4)

Second, the scalar product of two orthogonal (perpendicular) vectors is zero (θ =
π/2 = 90◦) :

v1 · v2 = v1v2 cos(π/2) = 0,v1⊥v2. (1.5)

Figure 1.14 The subtraction of geometric vectors: v3 = v1 − v2; v′
3 = −v3 =

v2 − v1.
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The third property involves the projection of one vector onto another. This
entails the construction of a perpendicular from one vector to the head of another,
as illustrated in Fig. 1.15. v1 is said to have been projected onto v2. p1 is the
magnitude of the projection of v1 onto v2. p1 can be determined from the scalar
product v1 · v2 and the magnitude of v2:

cos θ =
v1

p1

p1 = v1 cos θ

v1 · v2 = v1v2 cos θ

v1 · v2 = v2p1

p1 =
v1 · v2

v2
. (1.6)

We will find all three of these properties very useful as we analyze the vectors in
both the crystal lattice and the X-ray diffraction pattern.

Figure 1.15 The projection of vector v1 onto the vector v2.

Finally, two vectors can be multiplied to produce a vector product (also known
as an outer product or cross product) — a new vector created from the originals.
The magnitude of the new vector is determined as the product of the magnitudes
of the original two vectors and the sine of the angle between them:

v3 = v1 × v2, (1.7)
v3 = v1v2 sin θ. (1.8)

This new vector is perpendicular to both of the original vectors, and is therefore
perpendicular to the plane in which both vectors lie (Fig. 1.16). Since v3 can point
in either of two directions, both perpendicular to the {v1,v2} plane, we adopt the
convention that it if we align the index finger of the right hand along v1, and the
middle finger of the right hand along v2, then v3 will point in the direction of the
right thumb. This is referred to as the right hand rule. Note that v2×v1 produces
a vector of the same magnitude pointing in the opposite direction to v1×v2. Thus
v2 × v1 = −(v1 × v2); vector products are not commutative.

1.3.2 Basis Vectors and Coordinates

As the reader might suspect at this point, unit cell axes can be represented as
vectors with tails sharing a common lattice point, which we will designate as the



14 Vectors in Crystallography

Figure 1.16 Right hand rule for the vector product: v3 = v1 × v2, −v3 = v2 ×
v1, v3 = v1v2 sin θ.

origin of the unit cell, illustrated in Fig. 1.17 for a two-dimensional unit cell. X-ray
crystallography involves specification of locations inside the lattice, and the unit
cell axes provide a convenient set of reference vectors for determining the location
of a point anywhere in the lattice — as the end of a vector with its tail at the origin
and its head coincident with the point. We can imagine taking a path to the point
p along a vector x coincident with the a axis, then following a vector y parallel to
the b axis to get to p — or alternatively taking the direct path along −→op — which
is clearly the vector sum of x and y:

−→op = x + y

Because x is parallel to a it can be expressed as the vector a multiplied by a scalar,
x = sxa; similarly, y = syb:

−→op = sxa + syb

Note that any vector in two-dimensions can be described as a vector sum of reference
vectors multiplied by appropriate scalars. Since the sum contains only linear terms
(no exponents), it is called a linear combination; the reference vectors are known
as basis vectors, and the set of two reference vectors (in two-dimensions) is called a
basis set, denoted {v1,v2} — in our case {a,b}. In the general case, the selection
of the initial basis set is arbitrary, provided that the two vectors are not parallel.
We can express two parallel vectors as a linear combination of one another (by
multiplying one of the vectors by a scalar and the other by zero). Such vectors are
said to be linearly dependent. Basis vectors which are not parallel to one another
cannot be expressed as linear combinations of one another, and are termed linearly
independent vectors. We can now state these observations more formally — any
vector in two-dimensional space can be expressed as a linear combination of two
linearly independent basis vectors.
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Figure 1.17 Two-dimensional unit cells illustrating the axes a and b as basis vectors
for two-dimensional space and the vectors locating points p and q as linear combina-
tions of the axial basis vectors.

A logical way to determine sx and sy is to express them as fractions of the
lengths of the basis vectors:

sx =
x

a
= xf

sy =
y

b
= yf

−→op = xfa + yfb

Once we have selected our basis vectors, {a,b}, we can locate any point in the
lattice by determining the ordered pair of numbers, [xf yf ], defining a vector from
the origin of the unit cell to that point. The determination of a basis set and the
expression of vectors as linear combinations of the basis vectors provides the link
between vectors and their geometric representations in two dimensions:

−→op = [xf yf ]. (1.9)

The components of the vector, xf and yf , are called the coordinates of the
vector, and when expressed as fractions of the magnitudes of the basis vectors are
known as fractional coordinates. For example, in Fig. 1.17,

−→op = 1
2 a + 1

2 b = [12
1
2 ]

−→oq = 1 3
4 a + 3

4 b = [1 3
4

3
4 ]

x = 1
2 a + 0 b = [12 0]

y = 0 a + 1
2 b = [0 1

2 ]
a = 1 a + 0 b = [1 0] (1.10)
b = 0 a + 1 b = [0 1]. (1.11)
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The product of a vector and a scalar can now be expressed in terms of the
components of the vector. Fig. 1.18 illustrates the formation of v2 = [v2x v2y] as
the product of v1 = [v1x v1y] and a scalar, s. The triangles with sides (v1, v1x, v1y)
and (v2, v2x, v2y) are similar triangles, which means that the ratios of the lengths
of similar sides are a constant. Since v2 = sv1,

v2 = sv1
v1x

v1
=

v2x

v2
=

v2x

sv1

v1y

v1
=

v2y

v2
=

v2y

sv1
v2x = sv1x v2y = sv1y

v2 = sv1 = [v2x v2y] = s[v1x v1y] = [sv1x sv1y].

Multiplying a vector by a scalar produces a new vector formed by multiplying each
component of the original vector by the scalar.

Figure 1.18 The components of the product of a vector and a scalar: v2 = sv1.

Vector addition can also be expressed in terms of vector components. Fig. 1.19
illustrates the formation of v3 = [v3x v3y] as the sum of v1 = [v1x v1y] and v2 =
[v2x v2y]. In order to move the tail of v2 to the head of v1, v2 must be translated
by adding v1x to its a component and v1y to its b component:

v1 = v1xa + v1yb = [v1x v1y]
v2 = v2xa + v2yb = [v2x v2y]
v3 = v3xa + v3yb = [v3x v3y]
v3x = v1x + v2x

v3y = v1y + v2y

v3 = (v1x + v2x)a + (v1y + v2y)b = [(v1x + v2x) (v1y + v2y)] (1.12)
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Figure 1.19 The components of the sum of two vectors: v3 = v1 + v2.

Finally, the subtraction of vectors can be accomplished using the vector compo-
nents by combining scalar multiplication and vector addition:

−v1 = −1(v1xa + v1yb) = [−v1x − v1y]
v2 − v1 = v2 + (−v1) = (v2x − v1x)a + (v2y − v1y)b

= [(v2x − v1x) (v2y − v1y)] (1.13)

Adding or subtracting the components of two vectors produces a new vector which
is the vector sum or difference of the original vectors.

Extrapolation of these concepts to a three-dimensional lattice is straightforward.
Any vector in three-dimensional space can be expressed as a linear combination of
three linearly independent basis vectors. The c axis becomes a third linearly inde-
pendent basis vector, creating a three-dimensional basis set, {a,b, c}, as illustrated
in Fig. 1.20. A point p in the lattice is now found by traversing along vector x,
coincident with the a axis, then along a vector y parallel to the b axis, and finally
along z parallel to the c axis, such that

−→op = x + y + z
−→op = sxa + syb + szc

sx =
x

a
= xf (1.14)

sy =
y

b
= yf (1.15)

sz =
z

c
= zf (1.16)

−→op = xfa + yfb + zfc = [xf yf zf ]. (1.17)

In Fig. 1.21(a) the vector −→op = [12
1
2

1
2 ] defines the point at the center of the unit

cell.
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Figure 1.20 Three-dimensional unit cell illustrating the axes a, b, and c as basis
vectors for three-dimensional space and the vector locating point p as a linear combi-
nation of the axial basis vectors.

The indices of a given set of lattice planes are conveniently determined from the
fractional coordinates of the three vectors from the origin of the unit cell to the
initial points of intersection of the planes along each coordinate axis. Recall that
the indices were defined by the number of equal segments into which each axis was
divided (Fig. 1.11). This led to an ambiguity in the assignment of the indices, since
there were eight sets of planes which divided the axes into the same increments.
These planes were differentiated by taking into account directions in the lattice,
and the use of vectors provides a natural way to accomplish this. For a given set of
planes, the a, b, and c axes are divided into h, k and l segments, respectively. The
fractional coordinates to the first point of intersection along each axis are therefore
[(1/h 0 0], [0 1/k 0], and [0 0 1/l], as illustrated in Fig. 1.21(b). The signs of the
indices are now taken as the signs of the vectors, determined from their directions
in the right-handed unit cell coordinate system.

As we observed in two dimensions, multiplying a vector by a scalar in three
dimensions produces a new vector formed by multiplying each component of the
original vector by the scalar; adding or subtracting the components of two vectors
produces the sum or difference of of the two vectors. For v1 = [v1x v1y v1z] and
v2 = [v2x v2y v2z ],

v2 = sv1 = [v2x v2y v2z ] = s[v1x v1y v1z] = [sv1x sv1y v1z] (1.18)
v3 = v1 + v2 = (v1x + v2x)a + (v1y + v2y)b + (v1z + v2z)c

= [(v1x + v2x) (v1y + v2y) (v1z + v2z)] (1.19)
v′

3 = v2 − v1 = (v2x − v1x)a + (v2y − v1y)b + (v2z − v1z)c
= [(v2x − v1x) (v2y − v1y) (v2z − v1z)]. (1.20)
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Figure 1.21 2-mercaptopyridine unit cell showing (a) p in the center of the cell at
[xf yf zf ] = [ 1

2
1
2

1
2
] and (b) the fractional coordinates of the axial intersection vec-

tors for the (2 2 3) planes (violet) and the (2 2̄ 3) planes (red).

The multiplication of a vector by a scalar and the addition of vectors, both
effected by operating on the vector components, is general for any basis set. This is
not the case for the scalar and vector products. The formation of these two products
from the components is transparent only in specific coordinate systems in which
the basis vectors are vectors of unit length (normalized) which are perpendicular
to one another(orthogonal). Such basis sets are known as orthonormal bases.

1.3.3 Orthonormal Bases

The unit cell axes are a natural choice for basis vectors when describing locations
in the lattice — every coordinate consists of an integer (to define the specific unit
cell) plus a fraction (to specify the position within that unit cell). Furthermore,
since every unit cell is identical, the fractional coordinates alone uniquely define
the internal structure of the crystal; the integers serve only to define the specific
cell in which a targeted location exists. For example, the fractional coordinates
[10.5 232.5 19.5] tell us that the point of interest lies in the center of a unit cell 10
a unit cell lengths along the a axial direction, 232 b units in the b direction, and
19 c units in the c direction. The periodic nature of the crystal lattice is reflected
in this basis set, and we will see that its use greatly simplifies the mathematics of
diffraction.

However, we will also need to perform numerical calculations, specifically con-
cerned with molecular parameters such as bond lengths and angles. In addition,
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we will find the need to transform the natural coordinates of the crystal lattice into
a laboratory reference frame in the form of a Cartesian coordinate system in order
to collect diffraction data. This will require us to describe the vectors in the lattice
with a basis set which will allow us to use the coordinates to compute scalar and
vector products. As alluded to above, this necessitates the use of a unique basis set
consisting of orthonormal vectors – vectors of unit length which are perpendicular
to one another.

An orthonormal basis set is shown in Fig. 1.22. We will also refer to a basis
set as a coordinate system. An orthonormal coordinate system is a special case
of a Cartesian coordinate system in which the basis vectors are of unit length
(i = j = k = 1), referred to as unit vectors. The i, j, and k vectors are mutually
perpendicular and are chosen so that k points in the direction of i× j . A point p is
located in this coordinate system by traversing a distance xc along i, then yc along
a vector parallel to j, and zc along a vector parallel to k, exactly as was done in the
general coordinate system; its location is determined by the vector −→op = [xc yc zc].
We will use the subscript “c” to refer to a Cartesian coordinate throughout the
text. A vector in this coordinate system is a linear combination of orthonormal
basis vectors:

−→op = xci + ycj + zck = [xc yc zc] (1.21)

The multiplicative properties of vectors in an orthonormal coordinate system are
unique, allowing for the determination of scalar and vector products from vector
components, thus providing a powerful tool for determining distances and angles

Figure 1.22 Orthonormal basis set — the point p is located at the end of the vector
defined by [xc yc zc].
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within the crystal lattice. This uniqueness arises from the multiplicative properties
of the basis vectors themselves. The scalar products of i, j, and k are summarized
below:

i · i = ii cos(0) = 1
j · j = jj cos(0) = 1 (1.22)

k · k = kk cos(0) = 1
i · j = ij cos(π

2 ) = 0
i · k = ik cos(π

2 ) = 0 (1.23)
j · k = jk cos(π

2 ) = 0.

The vector product of i, j, or k with itself produces a vector of zero length (a point)
known as the null vector:

|i × i| = ii sin(0) = 0 =⇒ i × i = 0

|j × j| = jj sin(0) = 0 =⇒ j × j = 0 (1.24)
|k× k| = kk sin(0) = 0 =⇒ k × k = 0

The remaining vector products depend on the order in which the basis vectors are
multiplied. We have defined the coordinate system such that the vector product i×j
points in the direction of k. A coordinate system defined in this manner is termed
a right-handed coordinate system. Since |i × j| = ij sin(π

2 ) = 1, the vector product
of i and j is exactly k. Recalling that reversing the order of multiplication changes
the sign of the vector product, the remaining vector products are determined in the
same manner:

i × j = k j × i = −k

j × k = i k × j = −i (1.25)
k × i = j i× k = −j

Figure 1.23 Mnemonic device for recalling the vector products of orthonormal basis
vectors. Clockwise rotations are positive; counterclockwise rotations are negative. For
example, k × i = j and j × i = −k.
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Although these vector products can always be generated by referring to the right-
handed coordinate system illustrated in Fig. 1.22, a convenient mnemonic device
for remembering them is shown in Fig. 1.23. Using this scheme, clockwise rotations
produce positive vector products, counter-clockwise rotations produce negative vec-
tor products.

1.3.4 The Scalar Product in an Orthonormal Coordinate
System

The right angles of the orthogonal coordinate system make it possible to use the
Pythagorean theorem to determine the length of a vector with its tail at the origin
from the components of the vector. Referring to Fig. 1.22, the diagonal d is the
hypotenuse of a right triangle, as is the vector −→op:

d2 = x2
c + y2

c

|−→op|2 = d2 + z2
c = x2

c + y2
c + z2

c

|−→op| = (x2
c + y2

c + z2
c )

1
2 . (1.26)

Now, consider the arbitrary vector, v1 in Fig. 1.24. In order to determine its
length we construct two vectors emanating from the origin, v2 with its head at
the tail of v1, and v3 with its head at the head of v1. Clearly v3 = v2 + v1 and
v1 = v3 − v2. The process of negating v2 and adding it to v3 translates v1 it to
the origin. Indeed, this is just the reverse of the process of vector addition, where
v1 is translated from the origin to the head of the vector v2 to which it is added.
The components of the translated vector v1 = [v1x v1y v1z] can therefore provide
us with the length of the vector. Let v2 = [v2x v2y v2z] and v3 = [v3x v3y v3z].
Then, v1 = [v1x v1y v1z] = [(v3x − v2x) (v3y − v2y) (v3z − v2z)]. The subtraction
of the coordinates of v2 from those of v3 translates v1 back to the origin, allowing
for the determination of the squares of the lengths of all three vectors:

v2
3 = v2

3x + v2
3y + v2

3z

v2
2 = v2

2x + v2
2y + v2

2z

v2
1 = (v3x − v2x)2 + (v3y − v2y)2 + (v3z − v2z)2. (1.27)

The third equation allows us to compute distances between any two points in the
lattice, provided that we have the coordinates for the two points in an orthonormal
basis. We could, for example, imagine an atom with coordinates [v3x v3y v3z] and
another at [v2x v2y v2z]. The distance between the two atoms can be determined
by subtracting the coordinates of the two points, squaring the differences, summing
the squares, and taking the square root of the sum to give

v1 = ((v3x − v2x)2 + (v3y − v2y)2 + (v3z − v2z)2)
1
2 . (1.28)

Finally, expanding Eqn. 1.27 provides an expression for the scalar product in terms
of the coordinates in an orthonormal basis:

v2
1 = v2

3x − 2v3xv2x + v2
2x + v2

3y − 2v3yv2y + v2
2y + v2

3z − 2v3zv2z + v2
2z

v2
1 = (v2

2x + v2
2y + v2

2z) + (v2
3x + v2

3y + v2
3z) − 2(v2xv3x + v2yv3y + v2zv3z)

v2
1 = v2

2 + v2
3 − 2(v2xv3x + v2yv3y + v2zv3z). (1.29)
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Figure 1.24 Vectors used to determine the length of a general vector in an or-
thonormal coordinate system. The Law of Cosines determines the length of v1,
v2
1 = v2

2 + v2
3 − 2v2v3 cos θ.

Referring to the triangle to the right in Fig. 1.24, θ is the angle between v2 and
v3. The Law of Cosines produces the square of the length of the third side of a
triangle from the lengths of the other two sides and the angle between them. In this
case we are interested in the square of the length of v1: v2

1 = v2
2 + v2

3 − 2v2v3 cos θ.
Equating these two expressions for v2

1 gives

v2
2 + v2

3 − 2v2v3 cos θ = v2
2 + v2

3 − 2(v2xv3x + v2yv3y + v2zv3z)
v2v3 cos θ = v2xv3x + v2yv3y + v2zv3z. (1.30)

We have arrived at a very useful result — v2v3 cos θ is the scalar product of v2

and v3:

v2 · v3 = v2xv3x + v2yv3y + v2zv3z. (1.31)

In an orthonormal coordinate system the scalar product of two vectors is given by
the sum of the products of the components of each vector. The length of a vector
with its tail at the origin is now readily determined by taking the scalar product of
a vector with itself:

v1 = v1xi + v1yj + v1zk = [v1x v1y v1z ]
v1 · v1 = v1xv1x + v1yv1y + v1zv1z

v1v1 cos(0) = v2
1 = v2

1x + v2
1y + v2

1z

v1 = (v2
1x + v2

1y + v2
1z)

1
2

v1 = (v1 · v1)
1
2 . (1.32)
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Figure 1.25 Vector in orthonormal coordinates illustrating the changes in the com-
ponents obtained from subtracting the coordinates of the head of the vector from
those of the tail. Translating the vector to the origin places the tail at [0 0 0] and
the head at [Δx Δy Δz].

The scalar product also yields the angle between two vectors emanating from the
origin in an orthonormal system:

v1 = v1xi + v1yj + v1zk = [v1x v1y v1z]
v2 = v2xi + v2yj + v2zk = [v2x v2y v2z]

v1 = (v1 · v1)
1
2 = (v2

1x + v2
1y + v2

1z)
1
2

v2 = (v2 · v2)
1
2 = (v2

2x + v2
2y + v2

2z)
1
2

v1 · v2 = v1v2 cos θ = v1xv2x + v1yv2y + v1zv2z

cos θ =
v1 · v2

v1v2
=

v1xv2x + v1yv2y + v1zv2z

(v2
1x + v2

1y + v2
1z)

1
2 (v2

2x + v2
2y + v2

2z)
1
2
. (1.33)

The origin constraint is not as restrictive as it first appears, since we can translate
a vector to the origin by subtracting the coordinates of its head and tail, as we did
earlier to determine the length of a general vector. Fig. 1.25 provides an alternative
way to envision this. Consider the head of the vector to have coordinates [xhyhzh],
and the tail to have coordinates [xt yt zt] (These would be the components of
v2 and v3 in the previous examples). Subtracting the components of the tail
from those of the head gives the change in the coordinates along each of the axes:
[(xh−xt) (yh−yt) (zh−zt)] = [Δx Δy Δz]. If we translate the vector by maintaining
its magnitude and direction and moving its tail to the origin, the components of the
vector will then be [Δx Δy Δz], and the magnitude of the vector will be ((Δx)2 +
(Δy)2 + (Δz)2)

1
2 . For two vectors, v1 and v2, the scalar product will be obtained

by translating both vectors to the origin: v1 ·v2 = Δx1Δx2 +Δy1Δy2 +Δz1Δz2.
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The parallel between the scalar product of vectors and the multiplication of
ordinary numbers has already been established for the commutative property of
multiplication, i.e., the product remains unchanged when the order of multiplica-
tion is changed. The associate property of multiplication also applies to ordinary
numbers. In this case multiplications are always binary operations between pairs
of numbers, and the property tells us that we can create any pairs that we wish
to obtain their product: abc = (ab)c = a(bc), etc. The analogous scalar product
makes no sense, since the scalar product of any pair of vectors will result in a scalar,
making a second scalar product impossible. However there is a close analogy in the
multiplication of a scalar and a scalar product:

v1 · (sv2) = v1(sv2) cos θ

= s(v1v2) cos θ = s(v1 · v2) (1.34)

The scalar product is associative with respect to multiplication by a scalar. The
multiplication of ordinary numbers is also distributive: a(b + c) = ab + ac. The
scalar product analogy is v1 · (v2 + v3). In orthonormal coordinates,

v1 · (v2 + v3) = [v1x v1y v1z] · [(v2x + v3x) (v2y + v3y) (v2z + v3z)]
= v1x(v2x + v3x) + v1y(v2y + v3y) + v1z(v2z + v3z)
= v1xv2x + v1xv3x + v1yv2y + v1yv3y + v1zv2z + v1zv3z

= (v1xv2x + v1yv2y + v1zv2z) + (v1xv3x + v1yv3y + v1zv3z)
= (v1 · v2) + (v1 · v3). (1.35)

The scalar product is distributive with respect to vector addition. We will find the
use of scalar products invaluable in the calculation of interatomic distances and
angles inside the crystal lattice.

A Note on Terminology: Scalar/Dot/Inner Product. The terms scalar
product, dot product, and inner product are commonly used interchangeably. As
demonstrated above, the scalar resulting from v1 · v2 = v1v2 cos θ is equal to the
scalar resulting from v1 ·v2 = v1xv2x + v1yv2y + v1zv2z, only if the components are
defined in an orthonormal basis.

In most cases the use of various terms to describe both of these scalars is unam-
biguous, either because the coordinate system is orthonormal, or because there is
no confusion in the context of their use. However, in crystallography, the transfor-
mation of vectors between orthonormal and non-orthonormal coordinate systems
occurs regularly, and it is important to have a descriptive term for a scalar that does
not vary when these transformations occur. We initially referred to this invariant
term as the scalar product, and we will continue to do so (expanding the concept a
bit when discussing reciprocal lattices).

On the other hand, the value of the sum of the products of the components
of two vectors does vary with the coordinate system, but we will find this scalar
useful in representing the sums of products of the components of vectors in the
basis of the crystal lattice with the components of vectors defined in the basis of
the lattice of the diffraction pattern. In addition, the scalar provides a convenient
generalization of the matrix product of a vector and its transpose, encountered later
on in this chapter. In order to differentiate this scalar from the other, we will adopt
the convention that the sum of the products of the components is the inner product
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of the vectors. Whenever there is no need to distinguish between the two entities,
the term dot product will apply.

1.3.5 The Vector Product in an Orthonormal Coordinate
System

The vector product can also be expressed in terms of the coordinates in an or-
thonormal basis. Fig. 1.26 illustrates the vector product v1 = v2 × v3 for two
vectors with tails at the origin (translated as discussed previously, if necessary).

Figure 1.26 Vector product in orthonormal coordinates: v1 = v2 × v3. v1 =
v2v3 sin θ with v1⊥v2 and v1⊥v3.

From the definition of the vector product,

v1 = v2v3 sin θ

v2
1 = v2

2v2
3 sin2 θ = v2

2v
2
3(1 − cos2 θ)

= v2
2v2

3 − v2
2v2

3 cos2 θ = v2
2v2

3 − (v2v3 cos θ)2 = v2
2v2

3 − (v2 · v3)2

= (v2
2x + v2

2y + v2
2z)(v

2
3x + v2

3y + v2
3z) − (v2xv3x + v2yv3y + v2zv3z)2

Expansion and collection of the terms on the right gives

v2
1 = (v2

2yv2
3z − 2v2yv3yv2zv3z + v2

2zv
2
3y)

+ (v2
2zv

2
3x − 2v2zv3zv2xv3x + v2

2xv2
3z)

+ (v2
2xv2

3y − 2v2xv3xv2yv3y + v2
2yv2

3x)

v2
1 = (v2yv3z − v2zv3y)2 + (v2zv3x − v2xv3z)2 + (v2xv3y − v2yv3x)2. (1.36)

Since the square of the magnitude of v1 is the sum of the squares of its components,
the square roots of the three terms in Eqn. 1.36 are clearly the components of the
vector product of v2 and v3. Unfortunately, the equation does not tell us which
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coordinate axis each component corresponds to. To determine which is which we
apply the added constraint that v1⊥v2 and v1⊥v3 =⇒ v1 ·v2 = 0 and v1 ·v3 = 0.
In order for the terms in the scalar products to cancel to zero, every number triple in
the scalar product sum must contain an x, y, and z contribution. Of the six possible
ways of permuting the components, only when (v2yv3z − v2zv3y) is multiplied by
v2x or v3x, (v2zv3x − v2xv3z) is multiplied by v2y or v3y, and (v2xv3y − v2yv3x) is
multiplied by v2z or v3z will this be the case. We have thus arrived at an expression
for the vector product of two vectors in terms of their orthonormal components:

v2 × v3 = (v2yv3z − v2zv3y) i + (v2zv3x − v2xv3z)j + (v2xv3y − v2yv3x)k
= [(v2yv3z − v2zv3y) (v2zv3x − v2xv3z) (v2xv3y − v2yv3x)]. (1.37)

In an orthonormal coordinate system the vector product of two vectors is a vector
with components comprised of all the possible pairs of cross terms of the components
of the original vectors; the vector product is often called the cross product.

It has already been established that the vector product is not commutative. It
is instructive to revisit this in terms of the orthonormal components of the vector.

v3 × v2 = (v3yv2z − v3zv2y) i + (v3zv2x − v3xv2z)j + (v3xv2y − v3yv2x)k
= −(v2yv3z − v2zv3y) i− (v2zv3x − v2xv3z)j− (v2xv3y − v2yv3x)k
= −(v2 × v3). (1.38)

As demonstrated for the general coordinate system previously, the sign of the vector
has changed, but the magnitude, v2v3 sin θ, remains the same. In addition to being
commutative, the scalar product is also associative with respect to multiplication
by a scalar, and distributive with respect to vector addition. Despite its non-
commutative nature, does the vector product share any analogous properties with
ordinary numbers? Consider the vector product v2 × sv3:

v2 × sv3 = (v2ysv3z − v2zsv3y) i + (v2zsv3x − v2xsv3z)j + (v2xsv3y − v2ysv3x)k
= s(v2yv3z − v2zv3y) i + s(v2zv3x − v2xv3z)j + s(v2xv3y − v2yv3x)k
= s((v2yv3z − v2zv3y) i + (v2zv3x − v2xv3z)j + (v2xv3y − v2yv3x))k
= s(v2 × v3). (1.39)

The vector product is associative with respect to scalar multiplication.
The scalar product provides for a convenient test for perpendicular vectors. If

v1⊥v2 then v1 · v2 = v1v2 cos(π/2) = 0. The associative property of the vector
product allows for a convenient test for parallel vectors. Suppose v1‖v2 =⇒ v2 =
sv1. Thus v1 ×v2 = v1 × sv1 = s(v1 ×v1) = 0, the null vector, with components
[0 0 0]. If the scalar product is zero then the vectors are perpendicular. If the vector
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product is 0 then the vectors are parallel. Finally, consider the vector product of a
vector with the sum of two vectors:

v1 × (v2 + v3) = (v1y(v2z + v3z)) − v1z(v2y + v3y)) i
+ (v1z(v2x + v3x)) − v1x(v2z + v3z))j
+ (v1x(v2y + v3y)) − v1y(v2y + v3x))k

v1 × (v2 + v3) = (v1yv2z + v1yv3z − v1zv2y − v1zv3y) i
+ (v1zv2x + v1zv3x − v1xv2z − v1xv3z)j
+ (v1xv2y + v1xv3y − v1yv2y − v1yv3x)k

v1 × (v2 + v3) =
(v1yv2z − v1zv2y) i + (v1zv2x − v1xv2z)j + (v1xv2y − v1yv2y)k

+ (v1yv3z − v1zv3y) i + (v1zv3x − v1xv3z)j + (v1xv3y − v1yv3x)k
= (v1 × v2) + (v1 × v3). (1.40)

The vector product is distributive with respect to vector addition.

1.4 Matrices in Crystallography

As emphasized in the previous section, a basis set consisting of the unit cell axes is
the natural coordinate system for the treatment of lattice symmetry, the topic of
the next chapter, as well as for the mathematics of diffraction, treated in Chapter 3.
On the other hand, computing distances and angles requires an orthonormal basis
set. It follows that we will need a means to transform vectors expressed in one
coordinate system to the other. It is also necessary to transform vectors in order
to relocate coordinates when considering lattice symmetry. In general, these vector
transformations are accomplished using matrices.

1.4.1 Matrix Definitions

A matrix is a rectangular array of numeric or algebraic elements arranged in m
rows and n columns:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d11 d12 d13 · · · d1n

d21 d22 d23 · · · d2n

d31 d32 d33 · · · d3n

d41 d42 d43 · · · d4n

...
...

...
...

...
dm1 dm2 dm3 · · · dmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.41)

We describe the array as an m × n matrix, where the matrix element dij is the
element at the intersection of the ith row and the jth column; m and n are called
the row dimension and column dimension, respectively, of the matrix. In general, a
boldface capital letter will be used to indicate a matrix, except in the special cases
when m = 1 or n = 1.
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When m = 1 or n = 1 the resulting matrices are vectors. When m = 1 the
vector takes the form of a single row which we refer to as a row vector ; when n = 1
the matrix takes the form of a single column referred to as a column vector :

row vector v =
[

v1 v2 v3 · · · vn

]
column vector v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

v3

v4

...
vm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

It is often useful to express an m× n matrix as a matrix of n column vectors, each
with m components:

D =
[
d1 d2 d3 · · · dn

]
, di =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1i

d2i

d3i

d4i

...
dmi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.42)

The column rank of the matrix is defined as the number of these vectors which are
linearly independent (i.e., cannot be written as linear combinations of other column
vectors in the matrix). The row rank of the matrix is defined as the number of row
vectors in the matrix which are linearly independent. We will generally find that
the rank of the matrices in crystallography will be n = m = 3. When n = m the
matrix is refereed to as a square matrix.

The transpose of an m×n matrix is generated by switching its rows and columns,
creating an n × m matrix:

DT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d11 d21 d31 · · · dm1

d12 d22 d32 · · · dm2

d13 d23 d33 · · · dm3

d14 d24 d34 · · · dm4

...
...

...
...

...
d1n d2n d3n · · · dmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

d1
T

d2
T

d3
T

d4
T

· · ·
dn

T

⎤
⎥⎥⎥⎥⎥⎥⎦

,di
T =

[
d1i d2i d3i d4i · · · dmi

]

(1.43)

Note that the column vectors in Eqn. 1.42 and the row vectors in Eqn. 1.43 are
transposes of one another. Transposing a matrix switches dij and dji. A square
matrix which remains unchanged when it is transposed (i.e. dij = dji and D = DT )
appears identical above and below the diagonal elements of the matrix and is termed
a symmetric matrix.
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1.4.2 Matrix Operations

The product of a scalar and a matrix multiplies every element in the matrix by the
scalar:

sD = s

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d11 d12 d13 · · · d1n

d21 d22 d23 · · · d2n

d31 d32 d33 · · · d3n

d41 d42 d43 · · · d4n

...
...

...
...

...
dm1 dm2 dm3 · · · dmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sd11 sd12 sd13 · · · sd1n

sd21 sd22 sd23 · · · sd2n

sd31 sd32 sd33 · · · sd3n

sd41 sd42 sd43 · · · sd4n

...
...

...
...

...
sdm1 sdm2 sdm3 · · · sdmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.44)

The multiplication of a matrix and a scalar is a commutative process, since sdij =
dijs.

The sum of two matrices is obtained by adding corresponding matrix elements:

D + E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d11 d12 · · · d1n

d21 d22 · · · d2n

d31 d32 · · · d3n

d41 d42 · · · d4n

...
...

...
...

dm1 dm2 · · · dmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e11 e12 · · · e1n

e21 e22 · · · e2n

e31 e32 · · · e3n

e41 e42 · · · e4n

...
...

...
...

em1 em2 · · · emn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d11 + e11 d12 + e12 · · · d1n + e1n

d21 + e21 d22 + e22 · · · d2n + e2n

d31 + e31 d32 + e32 · · · d3n + e3n

d41 + e41 d42 + e42 · · · d4n + e4n

...
...

...
...

dm1 + em1 dm2 + em2 · · · dmn + emn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.45)

Because corresponding matrix elements are added the matrices must have identical
row and column dimensions. Matrix addition is also commutative, since dij +eij =
eij + dij .

Unlike matrix-scalar multiplication and matrix addition, multiplying matrices
with one another has no simple numerical analogy, and is a bit more complicated
and abstract. However, vectors are transformed by matrix multiplication and we
will find the ability to create matrix products to be critical to the development of
the mathematics of crystallography. As we shall soon observe, matrix products are
not commutative, and we must keep track of the matrix “on the left” and the one
“on the right”. For the product DE, we say that D premultiplies E and that E
postmultiplies D. In order to form the matrix product F = DE the number of
columns in D must equal the number of rows in E. For D m × q and E q × n, the
resulting product matrix F will be an m × n matrix with its elements defined by
fij =

∑q
k=1 dikekj . The ijth element in the product matrix is formed from the ith

row of the matrix on the left and the jth column on the right by multiplying the
first element in row i of D by the first element in column j of E, then multiplying
the second elements, then the third . . . and so forth until there are q such products.
These products are then added together to form the ijth element in F. While this
may seem a bit confusing, this is precisely the process that was undertaken in the
formation of the scalar product, which, for a general coordinate system becomes
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the inner product (see the previous section for a discussion of this terminology).
The ijth element of the product matrix is just the inner product of the ith row
vector of the matrix on the left and the jth column vector of the matrix on the
right, both of which contain q components. Thus,

DE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d11 d12 · · · d1q

d21 d22 · · · d2q

d31 d32 · · · d3q

d41 d42 · · · d4q

...
...

...
...

dm1 dm2 · · · dmq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e11 e12 · · · e1n

e21 e22 · · · e2n

e31 e32 · · · e3n

e41 e42 · · · e4n

...
...

...
...

eq1 eq2 · · · eqn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.46)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
∑q

k=1 d1kek1) (
∑q

k=1 d1kek2) · · · (
∑q

k=1 d1kekn)
(
∑q

k=1 d2kek1) (
∑q

k=1 d2kek2) · · · (
∑q

k=1 d2kekn)
(
∑q

k=1 d3kek1) (
∑q

k=1 d3kek2) · · · (
∑q

k=1 d3kekn)
(
∑q

k=1 d4kek1) (
∑q

k=1 d4kek2) · · · (
∑q

k=1 d4kekn)
...

...
...

...
(
∑q

k=1 dmkek1) (
∑q

k=1 dmkek2) · · · (
∑q

k=1 dmkekn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

A simpler 3 × 3 example should serve to clarify this:

DE =

⎡
⎣

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦
⎡
⎣

e11 e12 e13

e21 e22 e23

e31 e32 e33

⎤
⎦ =

⎡
⎣

(d11e11 + d12e21 + d13e31) (d11e12 + d12e22 + d13e32) (d11e13 + d12e23 + d13e33)
(d21e11 + d22e21 + d23e31) (d21e12 + d22e22 + d23e32) (d21e13 + d22e23 + d23e33)
(d31e11 + d32e21 + d33e31) (d31e12 + d32e22 + d33e32) (d31e13 + d32e23 + d33e33)

⎤
⎦ .

For example,

DE =

⎡
⎣
−1 −2 3

2 −1 2
0 1 −2

⎤
⎦
⎡
⎣

1 1 2
3 2 0
2 1 2

⎤
⎦

=

⎡
⎣

(−1 · 1 − 2 · 3 + 3 · 2) (−1 · 1 − 2 · 2 + 3 · 1) (−1 · 2 − 2 · 0 + 3 · 2)
(2 · 1 − 1 · 3 + 2 · 2) (2 · 1 − 1 · 2 + 2 · 1) (2 · 2 − 1 · 0 + 2 · 2)
(0 · 1 + 1 · 3 − 2 · 2) (0 · 1 + 1 · 2 − 2 · 1) (0 · 2 + 1 · 0 − 2 · 2)

⎤
⎦

=

⎡
⎣
−1 −2 4

3 2 8
−1 0 −4

⎤
⎦ .

Finally, consider two column vectors with the same dimension, va and vb.
Transposing va and premultiplying vb (n × 1) by va

T (1 × n) results in a 1 × 1
matrix — a scalar. Thus the inner product, va ·vb, can be represented as a matrix
product, va

T vb:

va
T vb =

[
va1 va2 · · · van

]
⎡
⎢⎢⎢⎣

vb1

vb2

...
vbn

⎤
⎥⎥⎥⎦ = (va1vb1 + va2vb2 + · · ·+ vanvbn). (1.47)
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This provides a very convenient description of matrix multiplication. Expressing
D as a column vector consisting of m row vectors of dimension q, and E as a row
vector consisting of n column vectors of dimension q,

DE =

⎡
⎢⎢⎢⎢⎢⎣

d1
T

d2
T

d3
T

...
dm

T

⎤
⎥⎥⎥⎥⎥⎦
[
e1 e2 e3 · · · en

]
=

⎡
⎢⎢⎢⎢⎢⎣

d1
T e1 d1

T e2 d1
T e3 · · · d1

T en

d2
T e1 d2

T e2 d2
T e3 · · · d2

T en

d3
T e1 d3

T e2 d3
T e3 · · · d3

T en

...
...

...
...

...
dm

T e1 dm
T e2 dm

T e3 · · · dm
T en

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

d1 · e1 d1 · e2 d1 · e3 · · · d1 · en

d2 · e1 d2 · e2 d2 · e3 · · · d2 · en

d3 · e1 d3 · e2 d3 · e3 · · · d3 · en

...
...

...
...

...
dm · e1 dm · e2 dm · e3 · · · dm · en

⎤
⎥⎥⎥⎥⎥⎦

. (1.48)

1.4.3 Matrix Transformations

Premultipling an n × 1 column vector by an m × n matrix produces a new m × 1
column vector:

Dv =

⎡
⎢⎢⎢⎣

d11 d12 · · · d1n

d21 d22 · · · d2n

...
...

...
...

dm1 dm2 · · · dmn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

v1

v2

...
vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

(d11v1 + d12v2 + · · · + d1nvn)
(d21v1 + d22v2 + · · · + d2nvn)

...
(dm1v1 + dm2v2 + · · · + dmnvn)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

d1
T

d2
T

...
dm

T

⎤
⎥⎥⎥⎦v =

⎡
⎢⎢⎢⎣

d1
T v

d2
T v
...

dm
T v

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

d1 · v
d2 · v

...
dm · v

⎤
⎥⎥⎥⎦ . (1.49)

Whenever the matrix is a square matrix, the dimension of the vector does not
change and we say that we have transformed the original vector into a new one. In
crystallography the square transformation matrix is nearly always a 3×3 matrix. By
selecting appropriate elements for the transformation matrix we can perform specific
operations on the vector to transform it in a specific manner. Transformation
matrices are often called matrix operators. For example, consider the vector at
point (xc yc zc) in an orthonormal basis in Fig. 1.27(a). Suppose that we wish to
determine the coordinates of the point after it has been reflected across the xy (ij)
plane. To accomplish this geometrically we project the head of the vector onto the
plane, then extend it by the length of the perpendicular to the other side of the
plane. The matrix equation that will accomplish the same task has the following
form:

⎡
⎣

t11 t12 t13
t21 t22 t23
t31 t32 t33

⎤
⎦
⎡
⎣

xc

yc

zc

⎤
⎦ =

⎡
⎣

xc

yc

−zc

⎤
⎦ .

The x component in the new vector remains unchanged: t11xc + t12yc + t13zc = xc.
Thus t11 = 1, t12 = 0, and t13 = 0. The y coordinate also does not change. It
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Figure 1.27 (a) Reflection of a vector at point (xc yc zc) across the xy plane. (b) In-
version of the vector [xc yc zc] through the origin.

follows that t21 = 0, t22 = 1, and t23 = 0. The z component changes in sign with
no contributions from the original x and y components. Hence t31 = 0, t32 = 0,
and t33 = −1:

⎡
⎣

1 0 0
0 1 0
0 0 −1

⎤
⎦
⎡
⎣

xc

yc

zc

⎤
⎦ =

⎡
⎣

xc

yc

−zc

⎤
⎦ . (1.50)

The transformation matrices for reflections across the xz and yz planes are, respec-
tively,

⎡
⎣

1 0 0
0 −1 0
0 0 1

⎤
⎦ and

⎡
⎣
−1 0 0

0 1 0
0 0 1

⎤
⎦ . (1.51)

Operations such as reflections are necessary to describe lattice symmetry.
Fig. 1.27(b) illustrates another important symmetry operation — the inversion
of a vector through the origin. This transformation changes the sign of all three
components, and therefore results in the following matrix equation:

⎡
⎣
−1 0 0

0 −1 0
0 0 −1

⎤
⎦
⎡
⎣

xc

yc

zc

⎤
⎦ =

⎡
⎣
−xc

−yc

−zc

⎤
⎦ . (1.52)

In addition to reflections and inversions, a vector can be rotated by fixing its tail
at the origin, maintaining its length, and moving its head to another position by
rotating the vector around an axis. The rotation operation often takes place around
one of the coordinate axes. Fig. 1.28(a) illustrates the rotation of a vector at point
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Figure 1.28 (a) Rotation of a vector at point (xc yc zc) through angle ϕ around the
z axis. (b) Projection of the vector rotation onto the xy plane “looking down” the z
axis. p is the length of the projected vector.

(xc yc zc) rotated around the z axis through an angle ϕ. The z coordinate remains
constant in the rotation. Fig. 1.28(b) is the projection of the vector before and
after rotation onto the xy plane, viewing down the z axis in the negative direction.
Because we are operating in a right-handed coordinate system, pointing the thumb
in the direction of the rotation axis, k in this case, assigns a positive rotation in
the direction of the curl of the right hand fingers, counterclockwise when “looking
down” the axis. The vector p is the rotated vector projected onto the plane, with
magnitude p. The projected vector is rotated in the xy plane through the angle ϕ.
If ν is the original angle of the projected vector with respect to the x axis, and η is
the final angle, then

xc = p cos ν

yc = p sin ν

x′
c = p cos η = p cos(ν + ϕ)

y′
c = p sin η = p sin(ν + ϕ).

z′c = zc

From the trigonometric identities for angle sums,

x′
c = p cos ν cos ϕ − p sin ν sin ϕ = xc cos ϕ − yc sin ϕ

y′
c = p cos ν sin ϕ + p sin ν cos ϕ = xc sin ϕ + yc cos ϕ.
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The matrix equation to rotate a vector at (xc yc zc) through angle ϕ around the z
axis is then

⎡
⎣

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

⎤
⎦
⎡
⎣

xc

yc

zc

⎤
⎦ =

⎡
⎣

x′
c

y′
c

zc

⎤
⎦ . (1.53)

Rotation around the x axis produces essentially the same equations, this time trans-
forming the y and z coordinates in exactly the same manner. Rotation about y,
however, is positive when the x coordinates are reversed (see Fig. 1.29). In order
to keep the signs of the trigonometric functions consistent in each of the quadrants
the rotation must occur in the opposite direction; ϕ must be replaced by −ϕ in the
derivation. The resulting transformation matrices for x-rotation and y-rotation are
therefore, respectively,

⎡
⎣

1 0 0
0 cos ϕ − sin ϕ
0 sin ϕ cos ϕ

⎤
⎦ and

⎡
⎣

cos ϕ 0 sin ϕ
0 1 0

− sin ϕ 0 cos ϕ

⎤
⎦ . (1.54)

Figure 1.29 Views down the axes showing the signs of the rotational angle: (a)z
axis, (b)x axis, and (c) y axis. (d) Inverted axes for the y-rotation showing the effect
on the sign of the rotational angle.

It is important to note that each of the matrix operations described in this sec-
tion maintained the magnitude of the vector transformed by them. If the columns
of these matrices are treated as vectors, it can readily be shown that these vectors
are orthogonal to one another. They also have unit magnitudes, and are there-
fore orthonormal vectors. A matrix with orthonormal columns is known as an
orthonormal matrix. For example, consider the z-rotation matrix:

v1 =

⎡
⎣

cos ϕ
sin ϕ

0

⎤
⎦ v2 =

⎡
⎣
− sin ϕ
cos ϕ

0

⎤
⎦ v3 =

⎡
⎣

0
0
1

⎤
⎦ . (1.55)
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v1 = (cos2 ϕ + sin2 ϕ + 02)
1
2 = 1

v2 = (sin2 ϕ + cos2 ϕ + 02)
1
2 = 1

v3 = (02 + 02 + 12)
1
2 = 1

v1 · v2 = (− cosϕ sin ϕ + cos ϕ sin ϕ + 0) = 0
v1 · v3 = (0 + 0 + 0) = 0
v2 · v3 = (0 + 0 + 0) = 0

Now, consider the transformation of a vector v by a general orthonormal transfor-
mation matrix, T = [t1 t2 t3]:

Tv = v′ =

⎡
⎣

t11 t12 t13
t21 t22 t23
t31 t32 t33

⎤
⎦
⎡
⎣

xc

yc

zc

⎤
⎦ =

⎡
⎣

x′
c

y′
c

z′c

⎤
⎦ =

⎡
⎣

t11xc + t12yc + t13zc

t21xc + t22yc + t23zc

t31xc + t32yc + t33zc

⎤
⎦

v2 = x2
c + y2

c + z2
c

v
′2 = (t11xc + t12yc + t13zc)2 + (t21xc + t22yc + t23zc)2 + (t31xc + t32yc + t33zc)2

= (t211 + t221 + t231)x
2
c + (t212 + t222 + t232)y

2
c + (t213 + t223 + t233)z

2
c

+ 2(t11t12 + t21t22 + t31t32)xcyc

+ 2(t11t13 + t21t23 + t31t33)xczc

+ 2(t12t13 + t22t23 + t32t33)yczc

= (t1 · t1)x2
c + (t2 · t2)y2

c + (t3 · t3)z2
c

+ (t1 · t2)xcyc + (t1 · t3)xczc + (t2 · t3)yczc

= (1)x2
c + (1)y2

c + (1)z2
c + 0 + 0 + 0 = x2

c + y2
c + z2

c = v2. (1.56)

When an orthonormal matrix operates on a vector it changes the direction of the
vector but leaves its magnitude unchanged.

1.4.4 The Determinant of a Matrix

The determinant is a scalar that results from the signed products of the permuta-
tions of all the matrix elements in a matrix. Adding these products together pro-
duces a number with properties which tell us something about the matrix (hence
the name). The determinant of a matrix is represented by placing the symbol of
the matrix between vertical bars. For an n × n square matrix, D,

|D| =

∣∣∣∣∣∣∣∣∣

d11 d12 · · · d1n

d21 d22 · · · d2n

...
...

...
...

dn1 dn2 · · · dnn

∣∣∣∣∣∣∣∣∣
=
∑

(−1)kd1i1d2i2d3i3 · · · dnin
. (1.57)

The sum is over all products of n-fold permutations of the indices. i1, i2, · · · in, is
a permutation of the indices 1,2,· · ·n; k is the number of inversions (“switches”) of
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indices necessary to achieve the permutation, e.g., 123 1→ 132 2→ 312 3→ 321, k = 3.
While this seems abstract, the example for n = 3 illustrates that it is only tedious:

|D| =

∣∣∣∣∣∣
d11 d12 d13

d21 d22 d23

d31 d32 d33

∣∣∣∣∣∣
= (−1)0d11d22d33 + (−1)1d11d23d32 + (−1)1d12d21d33 (1.58)

+(−1)2d12d23d31 + (−1)2d13d21d32 + (−1)3d13d22d31.

Four important properties of the determinant arise directly from the definition.
Rather than cover the relatively abstract general proofs, the discussion here will be
limited to the n = 3 case, although in most instances the extrapolation to larger
matrices is a logical one.

Determinant Property 1. Switching two columns or rows in a matrix changes
the sign of its determinant.

|D′| =

∣∣∣∣∣∣
d11 d13 d12

d21 d23 d22

d31 d33 d32

∣∣∣∣∣∣
= (−1)0d11d23d32 + (−1)1d11d22d33 + (−1)1d13d21d32 (1.59)

+(−1)2d13d22d31 + (−1)2d12d21d33 + (−1)3d12d23d31

= −|D|.
The permutations are the same, but the number of inversions for each has changed.
In every case (−1)k has changed sign; the magnitude of the determinant has not
changed, but the sign of the determinant has. The sign of the determinant changes
if a row or column in the matrix is switched with another.

Determinant Property 2. The determinant of a matrix that contains column
or row vectors that are linearly dependent (not linearly independent) is exactly zero.
Consider the case where two columns (or rows) of the matrix are linearly dependent,
that is, one column is a scalar multiple of the other (If the columns are treated as
geometric vectors, the vectors would be parallel to one another):

|D′′| =

∣∣∣∣∣∣
d11 d12 sd12

d21 d22 sd22

d31 d32 sd32

∣∣∣∣∣∣
= (−1)0d11d22sd32 + (−1)1d11sd22d32 + (−1)1d12d21sd32 (1.60)

+(−1)2d12sd22d31 + (−1)2sd12d21d32 + (−1)3sd12d22d31

= s{(−1)0d11d22d32 + (−1)1d11d22d32 + (−1)1d12d21d32

+(−1)2d12d22d31 + (−1)2d12d21d32 + (−1)3d12d22d31}

= s

∣∣∣∣∣∣
d11 d12 d12

d21 d22 d22

d31 d32 d32

∣∣∣∣∣∣
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If we switch the second and thirds columns of the matrix the determinant clearly
remains unchanged, yet, according to Eqn. 1.59 it must change sign. This is only
possible if the determinant is zero:

|D′′| = −|D′′| = 0 (1.61)

A matrix with a zero determinant is called a singular matrix. Eqn. 1.60 also
illustrates another property of the determinant: Multiplying a column or row of a
determinant by a scalar multiplies the determinant by the scalar.

Determinant Property 3. The determinant of a matrix and its transpose are
equal. While this might appear intuitive, it is not obvious if one considers the
definition of the determinant as a sum of permutations. The proof of this in the
general case is based on arguments of the equivalency of various permutations, and
would take us far afield. Fortunately, since we will only deal with 3×3 determinants,
this can be demonstrated explicitly. Let E = DT and eij = dji. Then

|D| =

∣∣∣∣∣∣
d11 d12 d13

d21 d22 d23

d31 dn2 d33

∣∣∣∣∣∣
=
∑

(−1)kd1i1d2i2d3i3

|E| =

∣∣∣∣∣∣
e11 e12 e13

e21 e22 e23

e31 e32 e33

∣∣∣∣∣∣
=
∑

(−1)ke1i1e2i2e3i3

=
∑

(−1)kdi11di22di33

Since each term in the sum has one index for each row and column there will be
a permutation in |E| matching every permutation in |D|. Thus the only possible
difference is in the signs of the matching permutations. The following table demon-
strates that the signs do not change:

k |D| |E| |DT |
0 d11d22d33

�� e11e22e33�� d11d22d33
��

1 d11d23d32
�� e11e23e32�� d11d32d23

��

1 d12d21d33
�� e12e21e33�� d21d12d33

��

2 d12d23d31
�� e12e23e31 d21d32d13

���������������������

2 d13d21d32
�� e13e21e32 d31d12d23

���������������������

2 d13d22d31
�� e13e22e31�� d31d22d13

��

Since every permutation in |DT | has the same sign as the corresponding per-
mutation in |D|,

|DT | = |D| (1.62)

Determinant Property 4. The determinant of the product of two matrices is the
product of the determinants of the matrices. This is another determinant property



Crystal Lattices 39

that appears deceptively intuitive on first glance. The proof demonstrates that it
is not! Let P = DE.

|P| = |DE| =
∑

(−1)kp1i1p2i2p3i3 , where

p1i1 =
3∑
j1

d1j1ej11, p2i2 =
3∑
j2

d2j2ej22, and p3i3 =
3∑
j3

d3j3ej33.

|P| =
∑

(−1)k
3∑
j1

d1j1ej11

3∑
j1

d2j2ej22

3∑
j3

d3j3ej33

=
3∑
j1

3∑
j2

3∑
j3

d1j1d2j2d3j3

∑
(−1)kej11ej22ej33︸ ︷︷ ︸

E j1j2j3

.

For every set of indices j1j2j3, E j1j2j3 is a signed sum of permutations — a deter-
minant :

E j1j2j3 =
∑

(−1)kej11ej22ej33 =

∣∣∣∣∣∣
ej11 ej12 ej13

ej21 ej22 ej33

ej31 ej32 ej33

∣∣∣∣∣∣
.

There will be a term in the complete sum for every set of indices j1j2j3. However
if j1 = j2 or j1 = j3 or j2 = j3 then two rows of the determinant for that term
in the sum will be identical – and E j1j2j3 = 0. It follows that the only terms
that survive in the complete sum are terms in which j1 �= j2 �= j3, that is (j1j2j3)
= (1,2,3), (2,3,1), etc. — all of the permutations of the indices (j1j2j3). Thus∑3

j1

∑3
j2

∑3
j3

d1j1d2j2d3j3 is a sum which includes all the permutations of the indices
— it would be a determinant if the permutations were multiplied by the appropriate
signs :

|P| =
∑

d1j1d2j2d3j3E j1j2j3 (1.63)

If (j1j2j3) = (1,2,3) then

E123 =

∣∣∣∣∣∣
e11 e12 e13

e21 e22 e23

e31 e32 e33

∣∣∣∣∣∣
= |E|.

Another permutation of (j1j2j3) generates the same matrix with one or more rows
switched. For example, if (j1j2j3) = (1,3,2),

E132 =

∣∣∣∣∣∣
e11 e12 e13

e31 e32 e33

e21 e22 e23

∣∣∣∣∣∣
= −|E|.

For any permutation we must switch the rows to get back to (1,2,3) order. The sign
changes for each switch. In general, where k′ is the number of switches to restore
the matrix to (1,2,3) order, E j1j2j3 = (−1)k′ |E|. The number of row switches
necessary to get E j1j2j3 into (123) order is exactly the same as the number of
switches necessary to get d1j1d2j2d3j3 into (123) order, and that is the number of
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switches necessary to create the signed permutation of D from (123) order. (−1)k′

is the sign of the permutation:

|P| =
∑

d1j1d2j2d3j3(−1)k′ |E|
=
∑

(−1)k′
d1j1d2j2d3j3 |E|

= |D||E|
|DE| = |D||E| (1.64)

The formal method for evaluating a determinant, which guarantees that all of the
permutations with appropriate signs are obtained, is called cofactor expansion. It is
undertaken in two steps. First, a row of the matrix is selected (or a column) — then
a set of sub-matrices is formed by selecting each element in the row, “crossing out”
the row and column that the element intersects, and evaluating the determinant
of the remaining sub-matrix (called the minor of the element). In the second step
each determinant is multiplied by (−1)(i+j), where i and j are the indices of the
element which generates the minor. This new signed determinant,Dij , is called
the cofactor of the matrix element, dij . Again, this apparently complex notion is
clarified by an example. We select the first row of the determinant in Eqn. 1.58,
determine the minors of each element in the row, and determine the cofactors. The
cofactor of d11 is

∣∣∣∣∣∣
d11 d12 d13

d21 d22 d23

d31 d32 d33

∣∣∣∣∣∣
=⇒ D11 = −1(1+1)

∣∣∣∣
d22 d23

d32 d33

∣∣∣∣ =
∣∣∣∣
d22 d23

d32 d33

∣∣∣∣ . (1.65)

Similarly,

D12 = −1(1+2)

∣∣∣∣
d21 d23

d31 d33

∣∣∣∣ = −
∣∣∣∣
d21 d23

d31 d33

∣∣∣∣ (1.66)

and

D13 = −1(1+3)

∣∣∣∣
d21 d22

d31 d32

∣∣∣∣ =
∣∣∣∣
d21 d22

d31 d32

∣∣∣∣ . (1.67)

The determinant is evaluated as the sum of the products of the matrix elements
and their cofactors:

|D| = d11D11 + d12D12 + d13D13

= d11

∣∣∣∣
d22 d23

d32 d33

∣∣∣∣− d12

∣∣∣∣
d21 d23

d31 d33

∣∣∣∣+ d13

∣∣∣∣
d21 d22

d31 d32

∣∣∣∣ . (1.68)

The cofactor determinants must now be evaluated in the same manner. For a large
matrix this process is cumbersome, but for a 3×3 matrix we are left with only 2×2
determinants. The cofactors for these determinants contain only 1×1 determinants,
which are obviously scalars. For a general 2 × 2 determinant:

|E| =
∣∣∣∣
e11 e12

e21 e22

∣∣∣∣ = e11(−1)(1+1)|e22| + e12(−1)(1+2)|e21|
= e11e22 − e12e21, (1.69)

the difference of the products of the diagonal elements.
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Evaluating each of the 2× 2 determinants results in the evaluation of the determi-
nant of the original matrix, which is identical to Eqn. 1.58:

|D| = d11(d22d33 − d23d32) − d12(d21d33 − d23d31)
+d13(d21d32 − d22d31)

= d11d22d33 − d11d23d32 − d12d21d33 + d12d23d31

+d13d21d32 − d13d22d31. (1.70)

The determinant in the form of Eqn. 1.68 contains all of the possible permu-
tations of the elements of the second and third rows of the matrix in the form of
2× 2 determinants. Recall that the vector product contained all of these permuta-
tions as well. Writing the determinant as three row vectors gives us a convenient
representation of the vector product in an orthonormal coordinate system:

v2 × v3 =

∣∣∣∣∣∣
i j k

v2x v2y v2z

v3x v3y v3z

∣∣∣∣∣∣
= i
∣∣∣∣
v2y v2z

v3y v3z

∣∣∣∣− j
∣∣∣∣
v2x v2z

v3x v3z

∣∣∣∣+ k
∣∣∣∣
v2x v2y

v3x v3y

∣∣∣∣ . (1.71)

Expansion of Eqn. 1.71 results in the previously determined expression for the
vector product (Eqn. 1.37). Note that v3 × v2 reverses the row vectors in the
determinant, thus changing its sign! The representation of the vector product as
a determinant provides a useful way to handle vector products – and will lead
us to a simple method for computing the unit cell volume from the orthonormal
coordinates of the unit cell axes.

1.4.5 The Inverse of a Matrix

In the previous section the cofactor expansion of a 3 × 3 matrix was shown to
produce the determinant of the matrix. The first row of the matrix was selected
to generate the expansion. It is left to the reader to verify that selection of the
second or third row produces the same result. Formal proofs for general square
matrices often turn out to be cumbersome. Proofs involving determinants and
other properties of general matrices can be found in any number of linear algebra
books (for example see Campbell, 197120). For the remainder of the chapter we
will take the simpler path of exhibiting properties for 3 × 3 matrices wherever the
extrapolation to larger matrices appears logical.

In ordinary algebra, there is an inverse operation to multiplication which reverses
the effect of the multiplication – the reciprocal. Multiplying a number by x, then
by x−1 leaves the number unchanged: x−1 · (x · s) = (x−1 · x) · s = (1)s = s.
The reciprocal inverts the original multiplication x, and is therefore also called
the inverse of x. In number theory the number “1” is a multiplier which leaves
the number that it multiplies unchanged, and is referred to as an identity element.
Since we have discovered that matrices transform vectors, is there a matrix that will
be analogous to the reciprocal in number theory which will undo a transformation?
We begin to answer this question be determining the matrix that is analogous to
the identity element in number theory, that is, a matrix that will multiply a vector
and leave the vector unchanged. The only matrix that fulfills this function has
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diagonal elements of one, and off-diagonal elements of zero. The matrix is called
the identity matrix, and is referred to by the symbol I:

Iv =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣

v1

v2

v3

⎤
⎦ =

⎡
⎣

v1

v2

v3

⎤
⎦ (1.72)

Consider the transformation Dv = v′. To reverse this transformation, we seek a
matrix D′ such that D′v′ = v, leaving v unchanged:

D′v′ = Iv = v

D′(Dv) = (D′D)v = Iv

=⇒ D′D = I. (1.73)

Thus, presuming that matrix multiplication is associative (which we will demon-
strate in the next section), the analog of the inverse in number theory is clearly
the matrix which reverses the transform, D′, which we will denote as the inverse
matrix (or alternatively, just the inverse) of D, D−1. Unfortunately, determining
the inverse of a matrix is much less straightforward than determining the reciprocal
from ordinary numbers. We begin the task by returning to the cofactors discussed
in the last section. Every matrix element has a cofactor (Eqns. 1.65–1.67). It fol-
lows that we can generate the cofactor for each matrix element and create a new
matrix which we call the cofactor matrix of the original matrix. For the matrix D,
we denote the cofactor matrix of D as Dc:

D =

⎡
⎣

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦ Dc =

⎡
⎣
D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎦ (1.74)

We now evaluate the matrix product,

P = DDT
c =

⎡
⎣

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦
⎡
⎣
D11 D21 D31

D12 D22 D32

D13 D23 D33

⎤
⎦ =

⎡
⎣

p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎦ .

p11 = d11D11 + d12D12 + d13D13 = |D| (1.75)
p22 = d21D21 + d22D22 + d23D23 = |D|
p33 = d31D31 + d32D32 + d33D33 = |D|.

p11 is the cofactor expansion of the determinant using the first row of the matrix,
p22 is the cofactor expansion using the second row, and p33 is the cofactor expansion
using the third row. The off-diagonal elements are sums of products of the elements
of one row and the cofactors of another row. This creates a determinant with two
identical rows, which must equal zero. Using p21 as an example,

p21 = d21D11 + d22D12 + d23D13

= d21

∣∣∣∣
d22 d23

d32 d33

∣∣∣∣− d22

∣∣∣∣
d21 d23

d31 d33

∣∣∣∣+ d23

∣∣∣∣
d21 d22

d31 d32

∣∣∣∣

=

∣∣∣∣∣∣
d21 d22 d23

d21 d22 d23

d31 d32 d33

∣∣∣∣∣∣
= 0.
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The remaining off-diagonal elements suffer the same fate. It follows that the product
matrix consists of identical scalars, |D|, along the diagonal, and zeros everywhere
else:

P = DDT
c =

⎡
⎣
|D| 0 0
0 |D| 0
0 0 |D|

⎤
⎦ = |D|

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ = |D|I. (1.76)

Since |D| is a scalar, provided that it is not zero,

D
DT

c

|D| = I =⇒ D−1 =
DT

c

|D| . (1.77)

In order to determine the inverse of a matrix we generate a cofactor matrix and
transpose it (the transpose of the cofactor matrix is called the adjoint matrix),
then divide each element of the resulting matrix by the determinant of the original
matrix. It follows that the inverse of a matrix can exist only if the determinant of
the matrix is non-zero. Thus, if a matrix is singular, it does not have an inverse.
The inverse of a 3×3 matrix will be especially important throughout the remainder
of the book. Given the determinant, |D|, from Eqn. 1.70,

D−1 =
1
|D|

⎡
⎣

(d22d33 − d32d23) (d32d13 − d12d33) (d12d23 − d22d13)
(d31d23 − d21d33) (d11d33 − d31d13) (d21d13 − d11d23)
(d21d32 − d31d22) (d31d12 − d11d32) (d11d22 − d21d12)

⎤
⎦ . (1.78)

The inverse of the transformation matrices described earlier will be especially
important in the discussion of symmetry at the end of this chapter. Recall that
these matrices were orthonormal matrices. Consider the product of an orthonormal
matrix T = [t1 t2 t3] and its transpose:

TT T =

⎡
⎣

t11 t21 t31
t12 t22 t32
t13 t23 t33

⎤
⎦
⎡
⎣

t11 t12 t13
t21 t22 t23
t31 t32 t33

⎤
⎦

=

⎡
⎣

(t1 · t1) (t1 · t2) (t1 · t3)
(t2 · t1) (t2 · t2) (t2 · t3)
(t3 · t1) (t3 · t2) (t3 · t3)

⎤
⎦ =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ = I. (1.79)

The transpose of an orthonormal matrix is its inverse. Note also that the identity
matrix is its own inverse:

II = I =⇒ I−1 = I. (1.80)

If a matrix is symmetric (T = TT ), its inverse will also be symmetric:

TT−1 = I

(T−1)T TT = I

(T−1)T T = I =⇒
(T−1)T = T−1. (1.81)
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1.4.6 The Rules of Matrix Algebra

Matrix transformations are linear operations since they change the vectors upon
which they operate linearly, i.e., they do not modify vectors with exponents or
other functions. The matrix operations defined previously provide the basis for
formulating the algebraic rules for combining and manipulating matrices. The
rules of this linear algebra that are important to crystallography are summarized
and rationalized in this section.

Rule 1. Matrix additions are associative. For G = (D + E) + F, the ijth matrix
element of G is gij = (dij + eij) + fij . For H = D + (E + F), the ijth matrix
element of H is hij = dij + (eij + fij). Clearly, gij = hij and

(D + E) + F = D + (E + F) (1.82)

Rule 2. Matrix additions are commutative. For F = D + E, the ijth matrix
element of F is fij = dij + eij . For G = E + D, the ijth matrix element of G is
gij = eij + dij . Again, it is obvious that fij = gij and

D + E = E + D (1.83)

Rule 3. Matrix additions are distributive with respect to scalar multiplication. Let
F = s(D + E). Then fij = s(dij + eij) = sdij + seij . It follows that

s(D + E) = sD + sE. (1.84)

Also, if G = (s1 + s2)D, then gij = (s1 + s2)dij = s1dij + s2dij and

(s1 + s2)D = s1D + s2D. (1.85)

Rule 4. Matrix multiplications are associative. For G = (DE)F and H = D(EF),
Let (DE)F = PF and D(EF) = DQ. For simplicity, assume that D and E are
3 × 3 matrices and F is either a 3 × 3 matrix or a 3 × 1 column vector. Then

gij =
3∑

k=1

pikfkj

pik =
3∑

m=1

dimemk

gij =
3∑

k=1

(
3∑

m=1

dimemk

)
fkj

gij =
3∑

m=1

dim

(
3∑

m=1

emkfkj

)

gij =
3∑

m=1

dimqmj = hij =⇒ G = H. Thus,

(DE)F = D(EF). (1.86)
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Rule 5. Matrix multiplications are, in general, not commutative. Consider, for
example, rotation of the vector v around the z axis by 90◦ with RZ, followed by a
rotation around the x axis of 90◦ with RX, RX(RZv) = (RXRZ)v (Rule 4). The
matrix product creates a new transformation matrix, R1 = RZRX:

R1 =

⎡
⎣

cos(π/2) − sin(π/2) 0
sin(π/2) cos(π/2) 0

0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 cos(π/2) − sin(π/2)
0 sin(π/2) cos(π/2)

⎤
⎦

=

⎡
⎣

0 −1 0
1 0 0
0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦ =

⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦

R1v = R1

⎡
⎣

xc

yc

zc

⎤
⎦ =

⎡
⎣

zc

xc

yc

⎤
⎦

If we reverse the order of the operations, rotating around the x axis followed by ro-
tation around the z axis we have RZ(RXv) = (RZRX)v. The new transformation
matrix is now R2 = RXRZ:

R2 =

⎡
⎣

1 0 0
0 cos(π/2) − sin(π/2)
0 sin(π/2) cos(π/2)

⎤
⎦
⎡
⎣

cos(π/2) − sin(π/2) 0
sin(π/2) cos(π/2) 0

0 0 1

⎤
⎦

=

⎡
⎣

1 0 0
0 0 −1
0 1 0

⎤
⎦
⎡
⎣

0 −1 0
1 0 0
0 0 1

⎤
⎦ =

⎡
⎣

0 −1 0
0 0 1
1 0 0

⎤
⎦

R2v = R2

⎡
⎣

xc

yc

zc

⎤
⎦ =

⎡
⎣
−yc

zc

xc

⎤
⎦

Thus RZRX �= RXRZ. In general, for matrices DE and ED,

DE �= ED. (1.87)

The order in which we multiply matrices matters! It follows that for the equality
D = E, pre-multiplying or post-multiplying both sides of the matrix equation by
another matrix retains the equality : FD = FE and DF = EF, but only in special
cases does DF = FE = FD = EF. When the order of multiplication of two
matrices does not alter the product we say that the matrices commute.

Rule 6. A matrix commutes with the identity matrix and its own inverse. The
identity matrix commutes with all matrices:

DI =

⎡
⎣

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ =

⎡
⎣

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦ = D

ID =

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦
⎡
⎣

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦ =

⎡
⎣

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦ = D

DI = ID = D. (1.88)
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A matrix also commutes with its inverse:

D−1D = I

D−1D−1D = D−1I = D−1

D−1DD−1 = ID−1 = D−1

D−1D−1D = D−1DD−1

D−1D = DD−1 = I. (1.89)

Rule 7. Matrix multiplications are distributive. Let S = E + F, T = D(E + F) =
DS, V = DE, and W = DF. Then

tij =
3∑

k=1

dikskj =
3∑

k=1

dik(ekj + fkj)

=
3∑

k=1

dikekj + dikfkj =
3∑

k=1

dikekj +
3∑

k=1

dikfkj

= vij + wij =⇒ T = V + W

D(E + F) = DE + DF. (1.90)

In this case the matrix sum is pre-multiplied by a matrix, and this is formally
called the left distributive property of matrix multiplication. By a similar argument,
it is easy to demonstrate the right distributive property of matrix multiplication, in
which the matrix sum is post-multiplied by a matrix: (E + F)D = ED + FD.

Rule 8. The inverse of the product of an ordered array of matrices is the product
of the inverses of the individual matrices in reverse order.

D−1D = D−1ID = D−1(E−1E)D
= (D−1E−1)(ED) = I

=⇒ (ED)−1 = D−1E−1

(D−1E−1)(ED) = (D−1E−1)I(ED)
= (D−1E−1)(F−1F)(ED)
= (D−1E−1F−1)(FED) = I

=⇒ (FED)−1 = D−1E−1F−1.

By induction,

(QR . . .FED)−1 = D−1E−1F−1 . . .Q−1R−1. (1.91)

Rule 9. The transpose of the product of an ordered array of matrices is the product
of the transposes of the individual matrices in reverse order. Let U = DE,
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V = (DE)T , S = ET ,T = DT , and W = ET DT = ST. Again, for simplicity,
assume that all matrices are 3 × 3.

uij =
3∑

k=1

dikekj

vij = uT
ij = uji =

3∑
k=1

djkeki

wij =
3∑

i=1

siktkj , sik = eki and tkj = djk

wij =
3∑

i=1

ekidjk =
3∑

i=1

djkeki = vij =⇒ V = W

ET DT = (DE)T

FT ET DT = FT (DE)T = (DEF)T

By induction,

(QR . . .FED)T = DTETFT . . .QTRT. (1.92)

Rule 10. The transpose of the sum of two matrices is the sum of the transposes
of the individual matrices. Let D = A + B.

⎡
⎣

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦ =

⎡
⎣

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦+

⎡
⎣

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎦

=

⎡
⎣

a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

a31 + b31 a32 + b32 a33 + b33

⎤
⎦

(1.93)

DT =

⎡
⎣

d11 d21 d31

d12 d22 d32

d13 d23 d33

⎤
⎦ =

⎡
⎣

a11 + b11 a21 + b21 a31 + b31

a12 + b12 a22 + b22 a32 + b32

a13 + b13 a23 + b23 a33 + b33

⎤
⎦

=

⎡
⎣

a11 a21 a31

a12 a22 a32

a13 a23 a33

⎤
⎦+

⎡
⎣

b11 b21 b31

b12 b22 b32

b13 b23 b33

⎤
⎦

= AT + BT . (1.94)



48 Matrices in Crystallography

Rule 11. The transpose of the inverse of a matrix is the inverse of the transpose
of the matrix.

G−1G = I

GT (G−1)T = IT = I

GT (GT )−1 = I

GT (GT )−1 = GT (G−1)T

(GT )−1 = (G−1)T . (1.95)

1.4.7 The Eigenvectors and Eigenvalues of a Matrix

In general, when a matrix operates on a vector, the vector changes in both direction
and magnitude:

Dv = v′. (1.96)

Among the infinitely many vectors that a matrix can transform, there is a subset
of those vectors, characteristic of the matrix, that may change in magnitude, but
either remain parallel or become antiparallel to the original vectors when operated
on by the matrix. These characteristic vectors, {e}, are known as eigenvectors
(eigen in German roughly translates as characteristic or innate). When a matrix
operates on its eigenvectors, the vector is stretched, shrunk, or unmodified by a
scalar, but otherwise it either retains its direction or reverses it:

Dei = λiei, ß = 1, 2, . . . , n. (1.97)

The scalar multiplier of each eigenvector, λ, is also characteristic of the matrix, and
is known as the eigenvalue of the eigenvector.

Note that if an eigenvector is multiplied or divided by a constant the resulting
vector is still an eigenvector of the matrix with the same eigenvalue:

D(qei) = λi(qei). (1.98)

Thus the “eigenvector” for a given eigenvalue is actually an infinite set of vectors
with all possible magnitudes, all pointing in the same direction. The most useful
eigenvector is the one of unit length, obtained by dividing any one of the set of
eigenvectors by its length:

D
ei

ei
= λi

ei

ei

Deui = λieui, eui = 1. (1.99)

For an n×n matrix there are n unit eigenvectors and n corresponding eigenvalues.
For convenience we will focus on the three-dimensional case. The three resulting
equations (Eqn. 1.99) can be represented by a single matrix equation:

DEu = D

⎡
⎣

e11 e12 e13

e21 e22 e23

e31 e32 e33

⎤
⎦ =

⎡
⎣

e11 e12 e13

e21 e22 e23

e31 e32 e33

⎤
⎦
⎡
⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦

DEu = Eu [λ]. (1.100)
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The column vectors of Eu are the unit eigenvectors of D, and the diagonal elements
of [λ] are the eigenvalues. The matrix consisting of the eigenvectors of D, E,
is referred to as the modal matrix of D. Eqn. 1.100 is equally valid for general
eigenvectors, i.e., DE = E [λ]. Note that the equation must be written in this
manner; E and [λ] do not commute.

The treatment of atom displacements in Chapter 5 will involve the eigenvectors
and eigenvalues of symmetric matrices. In preparation for this, we derive an im-
portant property for symmetric matrices: If the matrix, D, is symmetric, then its
modal matrix is orthogonal. To prove this we show that any pair of the eigenvectors
that compose a modal matrix of D, ei and ej , with distinct eigenvalues λi �= λj ,
have a scalar product of zero, given that D = DT :

Dei = λi ei

eT
j Dei = λi eT

j ei (1.101)
Dej = λj ej

(Dej)T = eT
j DT = eT

j D = λj eT
j

eT
j Dei = λj eT

j ei (1.102)

Subtracting Eqn. 1.101 from Eqn. 1.102 results in (λj − λi)(eT
j ei) = 0. Since

λj − λi �= 0, eT
j ei = 0; the eigenvectors of the modal matrix of D are orthogonal.

The eigenvectors and eigenvalues of matrix D (for n = 3) are determined by
solving Eqn. 1.97:

⎡
⎣

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎤
⎦
⎡
⎣

e1

e2

e3

⎤
⎦ = λ

⎡
⎣

e1

e2

e3

⎤
⎦

d11 e1 + d12 e2 + d13 e3 = λ e1

d21 e1 + d22 e2 + d23 e3 = λ e2

d31 e1 + d32 e2 + d33 e3 = λ e3

The result is three homogenous (all equal to zero) linear equations:

(d11 − λ) e1 + d12 e2 + d13 e3 = 0 (1.103)
d21 e1 + (d22 − λ) e2 + d23 e3 = 0 (1.104)
d31 e1 + d32 e2 + (d33 − λ) e3 = 0 (1.105)

⎡
⎣

d11 − λ d12 d13

d21 d22 − λ d23

d31 d32 d33 − λ

⎤
⎦
⎡
⎣

e1

e2

e3

⎤
⎦ =

⎡
⎣

0
0
0

⎤
⎦

Dλe = 0. (1.106)

If Dλ has an inverse then e = D−1
λ 0 = 0, a trivial solution (correct, but useless).

Thus for there to be a non-trivial solution, Dλ cannot have an inverse. Recall that in
Sec. 1.4.5 it was shown that a matrix has an inverse if and only if its determinant
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is not singular (equal to 0). Thus the criterion for a nontrivial solution is that
|Dλ| = 0:

|Dλ| = (d11 − λ)(d22 − λ)(d33 − λ) − (d11 − λ)d23d32 − d12d21(d33 − λ)
−d13(d22 − λ)d31 + d12d23d31 + d13d21d32 = 0.

Expanding and collecting the terms produces a third order polynomial (cubic) equa-
tion:

λ3 − (d11 + d22 + d33)λ2

+(d22d33 − d32d23 + d11d33 − d31d13 + d11d22 − d21d12)λ
−(d11d22d33 − d11d23d32 − d12d21d33

+d12d23d31 + d13d21d32 − d13d22d31) = 0, (1.107)

conveniently written in terms of the trace, the cofactors of the diagonal elements,
and the determinant of D:

λ3 − (d11 + d22 + d33)λ2 + (D11 + D22 + D33)λ − |D| = 0. (1.108)

The cubic equation, of the form f(λ) = a λ3 + b λ2 + c λ + d = 0, has three roots,
λ1, λ2, and λ3, which are the eigenvalues of D.∗ Inserting each eigenvalue into
Eqns. 1.103–1.105 allows us to solve for the corresponding eigenvector. The so-
lutions are not unique — there are an infinite number of eigenvectors for each
eigenvalue, differing by their magnitudes (Eqn. 1.99). Because of this each eigen-
vector solution will have one arbitrary component (there will be one vector in the
infinite set that has this component). For example, setting e3 = 1 and inserting λ1

into Eqns. 1.103–1.105 finds e2 in terms of e1 from Eqn. 1.103. Substituting the
expression for e2 into Eqn. 1.104 then provides a value for e1, and subsequently, e2.
The eigenvector has magnitude e =

√
(e2

1 + e2
2 + 12), and eu = [e1/e e2/e 1/e]T .∗

The remaining two unit eigenvectors are determined by substituting λ2 and λ3,
respectively.

If a matrix is orthogonal, it does not change the magnitude of any vector that
it transforms, including it eigenvectors. It follows that the real† eigenvalues of an
orthogonal matrix must be ±1:

Dei = ±ei, i = 1, 2, . . . , n. (1.109)
∗There are analytical formulas for the three roots of a cubic equation,21 just as there are for

the two roots of a quadratic equation. The formulae are quite complex, involving a number of
operations. The solutions for cubic and higher order equations are generally obtained numerically,
by searching for values of the independent variable that set the function very close to zero (within
some preselected tolerance limit).

∗The representation of a vector in a text line requires it to be written as a row vector. Most
of the vector operations throughout the book will be undertaken with column vectors, formally
requiring the row vector in the text line to be written as its transpose. To avoid having to repeat
this notation continually throughout the book, unless specifically indicated, a row vector in a text
line will be assumed to be a column vector.

†An orthogonal rotation matrix can also have one real eigenvalue of +1 and two complex
eigenvalues, eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ; the eigenvectors in these cases have
imaginary components and do not change direction in “complex space.”
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1.5 Coordinate Systems in Crystallography

As discussed earlier, the ability to treat vectors in either the unit cell basis {a b c}
or an orthonormal basis {i j k} requires a method for transforming the vector be-
tween the two bases. The matrix algebra described in the last section provides us
with just that! We begin with the components of a vector defined in one coordinate
system and set out to determine a transformation matrix that will generate the
coordinates of the vector in a new coordinate system — a change of basis.

1.5.1 Change of Basis

Fig. 1.30 illustrates a vector v described in two different coordinate systems, one
defined by the basis set {R} = {rx ry rz} and the other defined by the basis set
{S} = {sx sy sz}. In the {R} basis v = [x y z] — in fractional coordinates
v = [xr yr zr] where xr = x/rx, yr = y/ry, and zr = z/rz. In the {S} basis v =
[x′ y′ z′] — in fractional coordinates v = [xs ys zs] where xs = x′/sx, ys = y′/sy,
and zs = z′/sz.

Figure 1.30 Vector v in two different coordinate systems, {R} = {rx ry rz} and
{S} = {sx sy sz}. [x y z] are the displacement distances along each of the axes in
{R}, [x′ y′ z′] are the displacements along each of the axes in {S}.

Suppose that we have described the vector in {R}, and wish to determine its
coordinates in {S}. Thus we know [xr yr zr] and can express the vector in terms
of the coordinates:

v = xrrx + yrry + zrrz. (1.110)

We wish to determine [xs ys zs] such that

v = xssx + yssy + zssz. (1.111)
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In {R} the components of the basis vectors are

rx = 1rx + 0ry + 0rz = [1 0 0]
ry = 0rx + 1ry + 0rz = [0 1 0]
rz = 0rx + 0ry + 1rz = [0 0 1].

Since the basis vectors in {R} are vectors in 3-space, each of them can also be
described as a linear combination of the basis vectors in {S}:

rx = r11sx + r12sy + r13sz
ry = r21sx + r22sy + r23sz
rz = r31sx + r32sy + r33sz.

Thus the vector in {R} can be expressed as

v = xr (r11sx + r12sy + r13sz) + yr (r21sx + r22sy + r23sz)
+ zr (r31sx + r32sy + r33sz).

Expanding this expression and collecting terms gives

v = (xrr11 + yrr21 + zrr31) sx + (xrr12 + yrr22 + zrr32) sy

+ (xrr13 + yrr23 + zrr33) sz.

This is v expressed as a linear combination of the basis vectors in {S} We have
determined the components of the vector in {S} in terms of its components and the
basis vectors in {R}, provided that we know the components of the basis vectors
in {R} in the {S} basis:

xs = (xrr11 + yrr21 + zrr31)
ys = (xrr12 + yrr22 + zrr32) (1.112)
zs = (xrr13 + yrr23 + zrr33).

Eqns. 1.112 are easily recognized as a matrix equation:
⎡
⎣

r11 r21 r31

r12 r22 r32

r13 r23 r33

⎤
⎦
⎡
⎣

xr

yr

zr

⎤
⎦ =

⎡
⎣

xs

ys

zs

⎤
⎦ (1.113)

Note that the matrix in this expression is the transpose of the matrix that consists
of the coefficients of the components of the {R} basis vectors in the {S} basis.

1.5.2 Transformation from the Unit Cell Basis to an
Orthonormal Basis

The strategy to formulate a method to transform vectors from a unit cell basis into
an orthonormal basis should now be clear. We determine the components of the unit
cell axes in the orthonormal basis and transpose the matrix of the components. This
will provide a transformation matrix B such that Bvf = vc, where vf = [xf yf zf ],
in fractional coordinates in the unit cell basis, and vc = [xc yc zc], the Cartesian
coordinates of the vector.
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Figure 1.31 The standard orientation of a unit cell in a Cartesian coordinate sys-
tem. The a axis is coincident with i, The b axis lies in the ij plane, and the z compo-
nent of the c axis points in the same direction as k.

There is, however, one necessary step before the B matrix is determined. The
orientation of the unit cell with respect to the Cartesian coordinate system is arbi-
trary. If we place the unit cell origin at the origin of the Cartesian system we can
rotate the unit cell at any angle about the origin. Each orientation will, of course,
create a different transformation matrix since the relation between the bases will
change. We must therefore fix the orientation in some rational way. Fig. 1.31 il-
lustrates the standard orientation of the unit cell with respect to the orthonormal
basis. This orientation maintains right-handed coordinates for both systems. The
a axis is coincident with the i axis, and points in the same direction (both are
positive or negative simultaneously). The b axis is coplanar with i and j and points
in a direction such that a×b is coincident with i and points in the same direction.
The z component of the c axis points in the same direction as k.

We begin with a vector v with coordinates in the unit cell basis {a b c}. Vectors
will be considered column vectors in the discussion which follows. We will use the
symbol vf = [xf yfzf ] to denote a general vector with fractional coordinates in the
unit cell basis:

vf = xfa + yfb + zfc. (1.114)

We seek to determine the components of the same vector in Cartesian coordinates,
which we will denote vc = [xc yc zc] such that

vc = xci + ycj + zck. (1.115)
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In the unit cell basis the components of the axial basis vectors are

a = 1a + 0b + 0c = [1 0 0]
b = 0a + 1b + 0c = [0 1 0] (1.116)
c = 0a + 0b + 1c = [0 0 1].

The lengths of the unit cell axes, a, b, and c, and the angles between the axes, α,
β, and γ are collectively known as the unit cell parameters. In the orthonormal
basis the unit cell basis vectors have components ac = [ax ay az], bc = [bx by bz],
and cc = [cx cy cz]. The unit cell lengths and the components are expressed in the
same units as the unit vectors of the Cartesian system (e.g., Å):

ac = axi + ayj + azk

bc = bxi + byj + bzk (1.117)
cc = cxi + cyj + czk.

Determining these 9 components will provide the transformation matrix that we
seek. Since a lies along the i axis,

ax = a (1.118)
bx = 0 (1.119)
cx = 0. (1.120)

Since bc lies in the ij plane its z component is zero. The dot product of ac and bc

gives us bx:

ac · bc = ab cos γ

ac · bc = ac
T bc =

[
a 0 0

]
⎡
⎣

bx

by

0

⎤
⎦ = abx + 0 + 0 =⇒

abx = ab cos γ

bx = b cos γ. (1.121)

The dot product of bc with itself provides by:

bc · bc = bb cos(0) = b2

bc · bc = bc
T bc =

[
b cos γ by 0

]
⎡
⎣

b cos γ
by

0

⎤
⎦

= b2 cos2 γ + b2
y + 0 =⇒

b2 = b2 cos2 γ + b2
y

b2
y = b2(1 − cos2 γ)

= b2 sin2 γ

by = b sin γ (1.122)
bz = 0. (1.123)
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The x component of cc is determined from the dot product of ac and cc:

ac · cc = ac cosβ

ac · cc = ac
T cc =

[
a 0 0

]
⎡
⎣

cx

cy

cz

⎤
⎦

= acx + 0 + 0 =⇒
acx = ac cosβ

cx = c cosβ. (1.124)

The y component of cc is determined from the dot product of bc and cc:

bc · cc = bc cos α

bc · cc = bc
T cc =

[
b cos γ b sin γ 0

]
⎡
⎣

c cos β
cy

cz

⎤
⎦

= bc cos β cos γ + cyb sin γ + 0 =⇒
bc cos α = bc cos β cos γ + cyb sin γ

cyb sin γ = bc(cos α − cos β cos γ)

cy =
c(cosα − cos β cos γ)

sin γ
(1.125)

Finally, the z component of cc is obtained from the length of the axis and the x
and y components:

c2 = c2
x + c2

y + c2
z

c2
z = c2 − c2

x − c2
y

= c2 − c2 cos2 β − c2(cosα − cos β cos γ)2

sin2 γ

= c2

(
sin2 γ − cos2 β sin2 γ − (cos α − cos β cos γ)2

sin2 γ

)

=
c2

sin2 γ
(sin2 γ − cos2 β sin2 γ − cos2 α − cos2 β cos2 γ + 2 cosα cos β cos γ)

Substituting − cos2 β sin2 γ − cos2 β cos2 γ = − cos2 β(sin2 γ + cos2 γ) = − cos2 β
and sin2 γ = 1 − cos2 γ,

c2
z =

c2

sin2 γ
(1 − cos2 α − cos2 β − cos2 γ + 2 cosα cos β cos γ).

cz =
c(1 − cos2 α − cos2 β − cos2 γ + 2 cos α cos β cos γ)

1
2

sin γ
. (1.126)

Later in the chapter we will derive an expression for the unit cell volume
(Eqn. 1.5.4): V = abc(1 − cos2 α − cos2 β − cos2 γ + 2 cos α cos β cos γ)

1
2 . Mul-

tiplying the expression for cz by ab/ab results in

cz =
V

ab sin γ
. (1.127)
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We have now determined the components of the axial vectors in a Cartesian coor-
dinate system, based on the unit cell parameters:

ac = a i + 0 j + 0 k

bc = b cos γ i + b sin γ j + 0 k (1.128)

cc = c cosβ i +
(

c(cos α − cos β cos γ)
sin γ

)
j +
(

V

ab sin γ

)
k.

The matrix of coefficients is

C =

⎡
⎣

ax ay az

bx by bz

cx cy cz

⎤
⎦

=

⎡
⎢⎢⎣

a 0 0
b cos γ b sin γ 0

c cos β

(
c(cos α − cos β cos γ)

sin γ

)
V

ab sin γ

⎤
⎥⎥⎦ . (1.129)

The matrix that will transform a vector in fractional coordinates based on a unit
cell with cell parameters a, b, c, α, β γ, and V into an orthonormal basis is
therefore:

B = CT =

⎡
⎢⎢⎢⎣

a b cos γ c cosβ

0 b sin γ

(
c(cosα − cos β cos γ)

sin γ

)

0 0 V
ab sin γ

⎤
⎥⎥⎥⎦ . (1.130)

B

⎡
⎣

xf

yf

zf

⎤
⎦ =

⎡
⎣

xc

yc

zc

⎤
⎦ . (1.131)

In Chapter 3 a basis related to the diffraction pattern and known as a the reciprocal
basis will be introduced. Each cell parameter in the unit cell basis is related to the
cell parameters in the reciprocal basis, and we will later use these relationships to
simplify B.

To transform a vector in Cartesian coordinates into unit cell coordinates we
need only invert the B matrix:

Bvf = vc (1.132)
B−1Bvf = B−1vc

Ivf = B−1vc

B−1vc = vf (1.133)

1.5.3 Determining Distances and Angles In the Unit Cell

A virtual plethora of crystal structures are now available to the scientific investiga-
tor, either in the published literature or archived in databases22. These structures
contain the unit cell parameters and the [x y z] coordinates of the atoms inside
the unit cell. It is unlikely that there is a crystallographer alive who has not been
confronted by frustrated colleagues who have taken the atomic coordinates from
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a published structure and attempted to calculate interatomic distances and angles
from them. The reason, of course, is that they are treating the coordinates as Carte-
sian coordinates in an orthonormal basis, when the coordinates are actually listed
as fractional coordinates in the unit cell basis. While there are software programs
available which will accept fractional coordinates2, allowing the user to determine
molecular parameters, the use of the transform derived in the previous section is
very straightforward, as an example using the 2-mercaptopyridine structure will
illustrate.

The crystallographic data in the literature will ordinarily list the unit cell param-
eters, including the cell volume and the space group (the internal crystal symmetry
– discussed in Sec. 2.4) along with other information related to data collection and
refinement of the structure. Somewhere in the manuscript or archive∗ will be a list
of the fractional coordinates of the atoms in the unit cell, labeled as x, y, and z
(rather that xf , etc.):

The title compound, 2-mercaptopyridine, crystallized in the monoclinic
space group P21/n, with a = 6.112(5) Å, b = 6.326(5) Å, c = 14.314(5)
Å, β = 101.530(5)◦, V = 542.3(6) Å3, Z = 4, T = 293 K.

The numbers in parentheses after each of the unit cell parameters are the esti-
mated standard deviations of the parameters. They are a measure of the uncertainty
in the last digit (e.g., for a, the standard deviation of the axial length is 0.005 Å).
Standard deviations will be discussed in detail in Chapters 5 and 8.

Positional Parameters of 2-Mercaptopyridine
Atom x y z

S(1) 0.7403 0.0629 0.4073
H(1) 0.8714 0.0983 0.4799
N(1) 0.3705 0.2616 0.4294
C(1) 0.5501 0.2608 0.3860
C(2) 0.5630 0.4351 0.3256
H(2) 0.683 0.431 0.292
C(3) 0.4070 0.5920 0.3147
H(3) 0.423 0.693 0.271
C(4) 0.2289 0.5854 0.3617
H(4) 0.108 0.682 0.347
C(5) 0.2151 0.4162 0.4187
H(5) 0.083 0.368 0.453

Figure 1.32 displays a displacement ellipsoid plot23 of the 2-mercaptopyridine
molecule showing the atom labeling scheme. The displacement ellipsoids are in-
formative in that they can tell us something about how the molecule vibrates (in
good structures) or alternatively characterize the quality of the diffraction data (in
not-so-good structures). For our purposes here we only note that this is typical of
drawings in the literature and that the centers of the atoms lie at the centers of the
ellipsoids. Note that not all of the unit cell parameters are listed. We will discover
in Sec. 2.3.6 that some of the unit cell angles are fixed due to the lattice symmetry.

∗Atomic positions were routinely published in the older literature. Current journals generally
refer the reader to an archival database where the atomic parameters are stored.
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Figure 1.32 Displacement ellipsoid plot of the 2-mercaptopyridine molecule. Ellip-
soids are plotted at the 50% level.

It is common practice to list only those parameters which are determined experi-
mentally, rather than assigned by constraint. In this example these fixed angles are
α = γ = 90◦. In a substantial majority of the structures found in the literature the
unlisted angles will be 90◦, but not always.

Suppose that we wish to know the interatomic distance (bond length) between
S(1) and C(1), and the N(1)-C(1)-S(1) interatomic angle with C(1) at the vertex.
To calculate these parameters we must first convert the fractional coordinates of
the atom positions to Cartesian coordinates (in Å), requiring the B matrix:

B =

⎡
⎢⎢⎢⎣

6.112 {6.326 cos(90◦)} {14.314 cos(101.53◦)}
0 {6.326 sin(90◦)} 14.314 {cos(90◦) − cos(101.53◦) cos(90◦)}

sin(90◦)

0 0
542.3

(6.112)(6.326) sin(90◦)

⎤
⎥⎥⎥⎦ .

=

⎡
⎣

6.112 0 −2.861
0 6.326 0
0 0 14.025

⎤
⎦ .

Using Eqn. 1.131 for the S(1) fractional coordinates transforms
[(0.74025) (0.06290) (0.40731)] into Cartesian coordinates in Å:

⎡
⎣

6.112 0 −2.861
0 6.326 0
0 0 14.025

⎤
⎦
⎡
⎣

0.74025
0.06290
0.40731

⎤
⎦ =

⎡
⎣

3.359
0.398
5.712

⎤
⎦ .
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The remainder of the coordinates, which we will call crystal Cartesian coordinates,
allow for the calculation of any distance or angle in the molecule:

Crystal Cartesian Coordinates

Atom xc yc zc

S(1) 3.359 0.398 5.712
H(1) 3.953 0.622 6.731
N(1) 1.036 1.655 6.022
C(1) 2.258 1.650 5.414
C(5) 0.117 2.633 5.872
C(2) 2.510 2.752 4.567
C(4) 0.364 3.703 5.073
C(3) 1.587 3.745 4.414
H(5) −0.789 2.328 6.353
H(2) 3.339 2.727 4.095
H(3) 1.810 4.384 3.801
H(4) −0.333 4.31 4.867

The components of the
−−−−−−→
C(1)S(1) vector translated to the origin are

[(3.359) (0.398)(5.712)]− [(2.258) (1.650) (5.414)] = [(1.101) (−1.252) (0.298)].

The carbon-sulfur bond length is |−−−−−−→C(1)S(1)| = (1.1012 + (−1.252)2 + 0.2982)
1
2 =

1.694 Å. The components of the
−−−−−−→
C(1)N(1) vector translated to the origin

are [(-1.222) (0.005) (0.608)], resulting in a carbon-nitrogen bond length of
|−−−−−−→C(1)N(1)| = 1.365 Å. The N(1)-C(1)-S(1) angle, ν, is determined from the
dot product of these two vectors:

−−−−−−→
C(1)S(1) · −−−−−−→

C(1)N(1) = [(1.101)(−1.222) +
(−1.252)(0.005) + (0.298)(0.608)] = -1.170.

−−−−−−→
C(1)S(1) · −−−−−−→C(1)N(1) =

(
|−−−−−−→C(1)S(1)|

)(
|−−−−−−→C(1)N(1)|

)
cos ν = −1.170.

cos ν =
−1.170(

|−−−−−−→C(1)S(1)|
)(

|−−−−−−→C(1)N(1)|
) =

−1.170
(1.694)(1.365)

= −0.506.

ν = 120.4◦.

1.5.4 Determining the Volume of the Unit Cell

The unit cell volume, which we have already used to simplify the B matrix, is also
a useful parameter for the crystallographer during the early stages of structural
investigation. With the cell volume in hand, the density of the crystal under in-
vestigation can be calculated and tested for consistency with the putative contents
of the unit cell. A strange density usually means that the cell does not contain
what it is thought to contain, or that the unit cell is incorrect. The general unit
cell, shown in Fig. 1.33 is a parallelepiped, based on axes a, b, and c. The volume
of a parallelepiped is determined as the area of its base, Abc, times its height, ha.
The base, in turn, is a parallelogram with an area determined as the length of its



60 Coordinate Systems in Crystallography

Figure 1.33 Unit cell parallelepiped. The bc vectors determine the base, with the
perpendicular ha the height. The b axis is the base of the parallelogram that makes
up the base of the parallelepiped. The height of the parallelogram is the perpendicu-
lar, hc.

base, b, times its height, hc. The area of the base can be determined from the
vector product of b and c:

Abc = bhc

hc = c sin η

|b × c| = bc sin η = bhc

Abc = |b × c|. (1.134)
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The height of the parallelepiped, ha, is a perpendicular from the base, and is there-
fore parallel to (b × c). The dot product of a and (b × c) determines ha, which is
the projection of a onto (b × c) (Eqn. 1.6):

V = Abcha

ha =
a · (b × c)
|b × c|

=
a · (b × c)

Abc

V = a · (b × c). (1.135)

The scalar, a·(b×c),∗ is known as a scalar triple product ; the volume of the unit cell
is the scalar triple product of unit cell vectors. The scalar triple product provides
us with the means to determine the cell volume without having to transform the
unit cell parameters into orthonormal coordinates. We begin with Eqn. 1.71:

b × c =

∣∣∣∣∣∣
i j k
bx by bz

cx cy cz

∣∣∣∣∣∣
= i
∣∣∣∣
by bz

cy cz

∣∣∣∣− j
∣∣∣∣
bx bz

cx cz

∣∣∣∣+ k
∣∣∣∣
bx by

cx cy

∣∣∣∣

=
[ ∣∣∣∣

by bz

cy cz

∣∣∣∣
(
−
∣∣∣∣
bx bz

cx cz

∣∣∣∣
) ∣∣∣∣

bx by

cx cy

∣∣∣∣
]

a · (b × c) = ax

∣∣∣∣
by bz

cy cz

∣∣∣∣− ay

∣∣∣∣
bx bz

cx cz

∣∣∣∣+ az

∣∣∣∣
bx by

cx cy

∣∣∣∣

=

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣
. (1.136)

The volume of the unit cell is the determinant of the matrix consisting of row vectors
composed of the Cartesian coordinates of the unit cell axes. Thus,

V =

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣

V 2 =

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣

=

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣

∣∣∣∣∣∣
ax bx cx

ay by cy

az bz cz

∣∣∣∣∣∣
(Determinant Property 3)

(1.137)
∗Note that a · (b × c) ≡ a · b × c is unambiguous, since (a · b) × c is meaningless.
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V 2 =

∣∣∣∣∣∣

⎡
⎣

ax ay az

bx by bz

cx cy cz

⎤
⎦
⎡
⎣

ax bx cx

ay by cy

az bz cz

⎤
⎦
∣∣∣∣∣∣

(Determinant Property 4)

=

∣∣∣∣∣∣
a · a a · b a · c
b · a b · b b · b
c · a c · b c · c

∣∣∣∣∣∣

=

∣∣∣∣∣∣
a2 ab cos γ ac cosβ

ab cos γ b2 bc cos α
ac cos β bc cos α c2

∣∣∣∣∣∣
. (1.138)

Expansion of the determinant gives

V 2 = (a2b2c2) + (a2b2c2 cos α cos β cos γ) + (a2b2c2 cos α cos β cos γ)
−(a2b2c2 cos2 β) − (a2b2c2 cos2 α) − (a2b2c2 cos2 γ).

= a2b2c2(1 − cos2 α − cos2 β − cos2 γ + 2 cosα cos β cos γ).

V = abc(1 − cos2 α − cos2 β − cos2 γ + 2 cos α cos β cos γ)
1
2 . (1.139)

This is the expression used to simplify the B matrix (Eqn. 1.126). The matrix of
the determinant in Eqn. 1.138 contains all of the metrics of the unit cell and is
known as the metric tensor∗ of the lattice. We will encounter the metric tensor
later on, as it is generally obtained experimentally without prior knowledge of the
unit cell parameters, and provides a means for obtaining them!

1.5.5 Important Identities

In Chapter 3 a new lattice will be introduced which is reciprocal to the crystal
lattice. The determination of the relationships between the basis vectors in this
new lattice and those in the crystal lattice will require identities relating the basis
vectors. These identities involve combinations of scalar and vector products, and
will be developed here for later use.

The scalar triple product, a ·b×c has already been introduced (Eqn. 1.136) and
shown to be equal to the unit cell volume. It is useful to generate the remaining
two scalar triple products from the first in order to determine the vector products
that will yield positive cell volumes. We do this by switching rows in the determi-
nant representation of a · b × c, recalling that each switch changes the sign of the
determinant (and therefore the volume):

a · (b × c) =

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
bx by bz

ax ay az

cx cy cz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
bx by bz

cx cy cz

ax ay az

∣∣∣∣∣∣

= b · (c × a) (1.140)

∗The word tensor will be used here in its “physics” context, as an entity that characterizes the
properties of a physical system. All of the tensors that we will encounter will be represented by
3 × 3 matrices and we will often use tensor and matrix interchangeably.
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and

a · (b × c) =

∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
cx cy cz

bx by bz

ax ay az

∣∣∣∣∣∣
=

∣∣∣∣∣∣
cx cy cz

ax ay az

bx by bz

∣∣∣∣∣∣

= c · (a× b). (1.141)

It follows that V = b · (c× a) and V = c · (a× b). Note that reversal of any of
the vector products produces a negative volume for the unit cell. This is a useful
diagnostic during the course of the structural investigation. If a negative unit cell
volume is determined, one of the axes is pointing in a direction that renders the
coordinate system left-handed. Reversing the direction of one of the axes in the
vector product will correct this.

The vector triple product is the vector analog of the scalar triple product: a ×
(b×c). The vector b×c is perpendicular to the bc plane. The vector triple product
produces a vector that is perpendicular to that vector, and therefore lies in the bc
plane. Its components are determined from the scalar products of a with b and c:

a× (b × c) = (a · c)b− (a · b) c. (1.142)

We prove this by showing that the expression on the right reduces to the vector
triple product:

(a · c)b− (a · b) c = (axcx + aycy + azcz)(bxi + byj + bzk)
− (axbx + ayby + azbz)(cxi + cyj + czk).

Expanding and collecting terms gives

(a · c)b− (a · b) c = [ay(bxcy − bycx) − az(bzcx − bxcz)] i
+ [az(bycz − bzcy) − ax(bxcy − bycx)] j
+ [ax(bzcx − bxcz) − ay(bycz − bzcy)]k.

We define v = vxi + vyj + vzk such that vx = bycz − bzcy, vy = bzcx − bxcz, and
vz = bxcy − bycx, that is, v = b × c. Substituting these components:

(a · c)b− (a · b) c = (ayvz − azvy) i
+ (azvx − axvz) j
+ (axvy − ayvx)k
= a× v = a × (b× c).

The scalar quadruple product is the scalar product of two vector products,
(a × b) · (c × d):

(a× b) · (c × d) = (a · c)(b · d) − (a · d)(b · c). (1.143)
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The scalar triple product and the vector triple product are employed to prove this:

Let v = c × d.

(a × b) · (c × d) = (a × b) · v = v · (a× b) (scalar triple product)

=

∣∣∣∣∣∣
vx vy vz

ax ay az

bx by bz

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
ax ay az

vx vy vz

bx by bz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ax ay az

bx by bz

vx vy vz

∣∣∣∣∣∣

= a · (b× v) = a · [b × (c × d)] (vector triple product)
= a · [(b · d) c− (b · c)d]
= (a · c)(b · d) − (a · d)(b · c).

The scalar quadruple product is conveniently represented as a 2 × 2 determinant:

(a × b) · (c × d) =
∣∣∣∣
a · c b · c
a · d b · d

∣∣∣∣ . (1.144)

The vector quadruple product is the vector product of two vector products,
(a× b) × (c× d):

Let v = a × b.

v × (c× d) = (v · d)c− (v · c)d (vector triple product)
= (d · (a× b))c− (c · (a× b))d
= (a · (b× d))c− (a · (b × c))d

=⇒ (a× b) × (c× d) = (a · b × d)c− (a · b × c)d (1.145)
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Exercises

1. The copper atoms depicted in Fig. 1.1 are arranged in a cubic unit cell. Each
edge of the cell has the same length: a = b = c = 3.6147 . Determine the
distances between the planes with (a) (1 1 1), (b) (2 2 2), and (c) (3 3 3) indices.

2. Consider two 2-dimensional unit cells, each with the same axial lengths: a = 2.40
and b = 3.20 . For unit cell A, γ = 90◦; for unit cell B, γ = 117◦. A point p is
located in each unit cell at the end of the sum of a vector of magnitude 1.80 ,
parallel to the a axis and a vector of magnitude 2.40 , parallel to the b axis. (a)
Determine the fractional coordinates of point p in each unit cell. (b) Determine
the distance from the origin to point p in each unit cell.

3. (a) Derive a formula for the inverse of a 2×2 matrix and use matrix multiplication
to demonstrate that your formula is correct (DD−1 = I). (b) Compute the
inverse of the following matrix:

D =

⎡
⎣

1.000 2.000 3.000
2.000 1.000 3.000
3.000 2.000 1.000

⎤
⎦ .

(c) Demonstrate that the matrix calculated in part (b) is D−1.

4. Show that (a) the inverse of a matrix for the rotation of angle ϕ about a coordi-
nate axis (e.g., the x axis) is the rotation matrix for the −ϕ rotation about the
same axis, (b) the matrix for a reflection across a coordinate plane (e.g., the xz
plane) is its own inverse, and (c) the inversion matrix is its own inverse.

5. Using matrices, show that sequential rotations about a coordinate axis of ϕ1

followed by ϕ2 is equivalent to a single rotation of (ϕ1 + ϕ2) about the same
axis.

6. Show that (a) the rotation matrices for rotation about the coordinate axes are
orthonormal matrices, (b) the inverses of these matrices are their transposes,
and (c) the rotation of a general vector effected by any of these matrices does
not alter the length of the vector.

7. The monoclinic unit cell of CuO has the following parameters: a = 4.6837(5) Å,
b = 3.4226(6) Å, c = 5.1288(6) Å, α = 90.00◦, β = 99.54◦(1) and γ = 90.00◦.∗
The fractional coordinates of the contents of the unit cell are

atom xf yf zf atom xf yf zf

Cu1 0.2500 0.2500 0.0000 O1 0.0000 0.4184 0.2500
Cu2 0.7500 0.7500 0.5000 O2 0.5000 0.9184 0.2500
Cu3 0.2500 0.7500 0.5000 O3 0.0000 0.5816 0.7500
Cu4 0.7500 0.2500 0.5000 O4 0.5000 0.0816 0.7500

∗Åsbrink, S. and Norrby, L.-J., Acta. Cryst., B26, 8(1970).
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(a) Determine the shortest (contact) distance between the copper(II) ions and
the oxide ions in the unit cell. (b) Determine the volume of the unit cell. (c)
Determine the mass of the unit cell in grams. (d) Determine the density of solid
copper(II) oxide in g/cm3.

8. The orthorhombic unit cell of CuSO4 has the following parameters:∗ a = 8.39 Å,
b = 6.89 Å c = 4.83 Å, α = 90.00◦, β = 90.00◦ and γ = 90.00◦

The fractional coordinates of the basic unit in the unit cell (repeated in order
to fill the cell) are

atom xf yf zf atom xf yf zf

Cu1 0.000 0.000 0.893 O2 0.375 0.250 0.439
S1 0.185 0.250 0.445 O3 0.129 0.069 0.307
O1 0.141 0.250 0.755

(a) Determine the average sulfur-oxygen distance and the average O-S-O angle
in the sulfate ion. (b) The experimentally measured density of anhydrous copper
sulfate is 3.6 g/cm3. How Many CuSO4 units are in the unit cell? (c) The basic
unit in the unit cell seems to be missing an oxygen atom. How can this be if the
stoichiometry in the crystal is CuSO4? Hint: The basic unit in the unit cell is
called the asymmetric unit. You may have to read ahead in Chapter 2 to answer
this question. The space group of the crystal is Pnma.

∗Rao, B.R., Acta. Cryst., 14, 321(1961).


