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Outlook of the Antiviral Drug Era, Now More Than 50 Years After
Description of the First Antiviral Drug
Erik De Clercq

1.1
Introduction: The Prehistory

More than 50 years ago, the synthesis of IDU (iododeoxyuridine), a thymidine
analogue, was described by Prusoff [1]. This compound would later become the first
antiviral drug to be licensed for (topical) use in the treatment of herpes simplex virus
(HSV) infections of the eye. In this sense, the advent of IDUmarked the birth of the
antiviral drug era. There are now about 50 licensed antiviral compounds, half of them
are used for the treatment of AIDS, of which the viral origin was first recognized 27
years ago [2, 3] (2008 Nobel Prize for Medicine or Physiology was awarded to
Françoise Barr�e-Sinoussi and Luc Montagnier for their discovery of human immu-
nodeficiency virus and to Harald zur Hausen for demonstrating the link between
human papilloma virus (HPV) and cervical cancer).

Was IDU truly the first antiviral? In retrospect, the antiviral chemotherapy era had
a rather slow and unremarkable start. The first compounds quoted to have antiviral
activity (against vaccinia virus) were the thiosemicarbazones [4, 5]. These compounds
were also found effective against vaccinia virus infection in mice and rabbits [6–8],
and one of the thiosemicarbazones, that is, N-methylisatin-b-thiosemicarbazone,
even entered clinical studies for the prophylaxis of smallpox [9] just when the
smallpox vaccination took over and made any further attempts to develop an
antipoxvirus drug apparently superfluous.

Then came the benzimidazole derivatives as inhibitors of influenza virus multi-
plication [10, 11], but despite the reported effectiveness of the 5,6-dichloro-1-b-D-
ribofuranosyl benzimidazole (DRB) [10, 11] against influenza virusmultiplication, it
was not pursued further as a potential anti-influenza virus agent. Another benz-
imidazole derivative, 2-(1-hydroxybenzyl)benzimidazole (HBB), was found active
against the multiplication of poliovirus (and other enteroviruses) [12–14], but with
the successful implementation of the poliovirus vaccine, just as we had witnessed for
smallpox, interest in developing an antiviral drug for poliovirus infections vanished.

IDU, soon to be followed by TFT (trifluorothymidine), could be considered as the
third, and successful, attempt to herald the antiviral chemotherapy era. IDUwas first
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considered as a potential antitumor agent [15] before it was shown byHerrmann to be
active againstHSVand vaccinia virus [16]. That IDUand TFT finally became antiviral
drugs for the topical treatment of HSV eye infections, in particular HSV keratitis, is
due to the pioneering work of Kaufman [17, 18].

1.2
Key Events in Antiviral Drug Development

Table 1.1 presents the key events in antiviral drug discovery, 1959 being the yearwhen
IDU was first described [1]. Ribavirin was the first low molecular weight compound
described as a broad-spectrum antiviral agent (in 1972) by Sidwell et al. [19]. The
combination of ribavirin with (pegylated) interferon-a has now become a standard
treatment [20] for patients with chronic hepatitis C. That virus infections could be
specifically tackled,without harm to thehost cell, was heralded by the advent (in 1977)
of acyclovir [21, 22], which is today still considered as the gold standard for the
treatment of HSV infections. Two years after the discovery of HIV, in 1985, the first
antiretrovirus agent (to become a drug 2 years later), AZT (zidovudine) was
described [23], and this opened the search for, and development of, a wealth of new
20,30-dideoxynucleoside analogues, now collectively referred to as nucleoside reverse
transcriptase inhibitors (NRTIs).

In 1986, we described the first of a new class of broad-spectrum anti-DNA virus
agents [24], namely, acyclic nucleoside phosphonates, several of which are active
against the HIV and HBV reverse transcriptase and, therefore, referred to as
nucleotide reverse transcriptase inhibitors (NtRTIs). Then followed in December
1989 and 1990 the description of a new concept for inhibiting the HIV-1 reverse
transcriptase by nonnucleoside analogues (i.e., HEPT [25, 26] and TIBO [27]), giving
rise to a still growing class of antiviral drugs, the nonnucleoside reverse transcriptase
inhibitors (NNRTIs). With saquinavir, the year 1990 marked the birth of the rational
design of HIVprotease inhibitors (HIV PIs), which, in themean time, has yielded 10
licensed drugs.

In 1992, we described an unusual class of compounds, the bicyclams as HIV
inhibitors interacting with a viral uncoating event [28]. These compounds (prototype:
AMD3100) would be, later on, shown to act as CXCR4 antagonists. Together with the
CCR5 antagonists (the only licensed anti-HIVdrug of this class of compounds being
maraviroc), CXCR4 and CCR5 antagonists can be considered coreceptor inhibitors
(CRIs), targeted at the coreceptor usage of X4 and R5 HIV strains, respectively. The
year 1993 marked the description of two totally different strategic options: (i) that of
DP-178, which later on would become known as enfuvirtide as an HIV fusion
inhibitor (FI) [29] and (ii) that of 4-guanidino-Neu5Ac2en, which later on would
become known as zanamivir as a neuraminidase-based inhibitor (NAI) of influenza
virus replication [30]. Then followed in 1998 the seminal observation that HSV
replication could be inhibited at the DNA helicase–primase level by a 2-aminothiazole
(T157602) [31] that would later give impetus to the development of helicase–primase
inhibitors (HPIs) as potential anti-HSV drugs.
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Although considered an attractive target for two decades or so, the HIV integrase
became a realistic target only when Hazuda et al. [32] demonstrated in 2000 it to be
inhibited by the so-called diketo acids, which have yielded one integrase inhibitor
(INI) that has already been formally approved (raltegravir) and another one under
development (elvitegravir). Also described in 2000 was a pestivirus inhibitor
(VP32947) [33] that hallmarked the search for inhibitors targeted at the RNA-
dependent RNA polymerase (RdRp) of not only pestiviruses but also hepaciviruses
(nonnucleoside RNA replicase inhibitors (NNRRIs)). In 2003, Lamarre et al.
published their pioneering observation that hepatitis C virus (HCV) replication
could be inhibited by ciluprevir [34], which (although the compound itself was
not further developed) generated the search for other HCV PIs. Also in 2003,
Migliaccio et al. [35] reported that 20-C-methyl-substituted ribonucleosides were
inhibitory to the replication of HCVand other flaviviruses by acting as nonobligate
chain terminators, thus inciting the search for nucleoside RNA replicase inhibitors
(NRRIs).

While, since the days ofmethisazone, interest in developing antivirals for poxvirus
infections (i.e., smallpox) died, the advent in 2005 of ST-246 testifies to the renewed
interest in this area [36], and this is further demonstrated by the observations that
poxvirus infections can be successfully suppressed through inhibitors of tyrosine
kinases (Gleevec [37] and CI-1033 [38]).

1.3
Antiviral Drugs: Current State of the Art

Most of the antiviral agents that have been approved, and are used in the treatment of
virus infections, are targeted at HIV, HBV, HCV, influenza virus, HSV, and other
herpesviruses such as varicella zoster virus (VZV) and cytomegalovirus (CMV).More
compounds for the treatment of HIV, HBV, HCV, HSV, VZV, CMV, and influenza
virus and several other viral infections, for example, poxvirus (e.g., variola, vaccinia,
andmonkeypox), respiratory syncytial virus, hemorrhagic fever virus (e.g., Lassa, Rift
Valley, Ebola, yellow fever, and dengue), and enterovirus (e.g., polio, Coxsackie, and
Echo), either are in clinical or preclinical development or still have to be developed.
The antiviral compounds that have been approved by the US FDA (Food and Drug
Administration) are listed in Table 1.2.

1.4
Antiviral Drugs Active against Herpesviruses (i.e., HSV, VZV, and so on)

Starting from IDU and TFT, many more 5-substituted 20-deoxyuridines were
synthesized [39], the most prominent antiviral drug of this class of compounds
being (E)-5-(2-bromovinyl)-20-deoxyuridine (BVDU) [40]. Although selectively active
against both HSV-1 and VZV, BVDU has been developed specifically for the
treatment of VZV infections (i.e., herpes zoster) [41].

4j 1 Outlook of the Antiviral Drug Era



Table 1.2 Antiviral drugs approved by the US FDA.

Registered brand name Generic name Manufacturer

Anti-HIV compounds

Nucleoside reverse transcriptase inhibitors

Retrovir Zidovudine (AZT) GlaxoSmithKline
Videx�, Videx� EC Didanosine (ddI) Bristol–Myers Squibb
Hivid� Zalcitabine (ddC) Roche
Zerit� Stavudine (d4T) Bristol–Myers Squibb
Epivir�, Zeffix� Lamivudine (3TC) GlaxoSmithKline
Ziagen� Abacavir (ABC) GlaxoSmithKline
Emtriva� Emtricitabine ((�)FTC) Gilead Sciences
Combivir� Lamivudine þ zidovudine GlaxoSmithKline
Trizivir� Abacavir þ lamivudine þ

zidovudine
GlaxoSmithKline

Epzicom� Abacavir þ lamivudine GlaxoSmithKline

Nucleotide reverse transcriptase inhibitors

Viread� Tenofovir disoproxil fumarate Gilead Sciences
Truvada� Tenofovir disoproxil

fumarate þ emtricitabine
Gilead Sciences

Atripla� Tenofovir disoproxil
fumarate þ
emtricitabine þ efavirenz

Gilead Sciences and
Bristol–Myers Squibb

Nonnucleoside reverse transcriptase inhibitors

Viramune� Nevirapine Boehringer Ingelheim
Rescriptor� Delavirdine Pfizer
Sustiva�, Stocrin� Efavirenz Bristol–Myers Squibb
Intelence� Etravirine Tibotec

Protease inhibitors

Fortovase� Saquinavir Roche
Norvir� Ritonavir Abbott
Crixivan� Indinavir Merck
Viracept� Nelfinavir Pfizer
Agenerase�, Prozei� Amprenavir GlaxoSmithKline
Kaletra� Lopinavir þ ritonavir Abbott
Reyataz� Atazanavir Bristol–Myers Squibb
Lexiva� Fosamprenavir GlaxoSmithKline
Aptivus� Tipranavir Boehringer Ingelheim
Prezista� Darunavir Tibotec

Viral entry inhibitors

Coreceptor inhibitors

Selzentry�, Celsentri� Maraviroc Pfizer

Fusion inhibitors

Fuzeon� Enfuvirtide (T-20) Roche

(Continued )

1.4 Antiviral Drugs Active against Herpesviruses (i.e., HSV, VZV, and so on) j5



Table 1.2 (Continued)

Registered brand name Generic name Manufacturer

Integrase inhibitors

Isentress� Raltegravir Merck

Anti-HBV compounds

Epivir�, Zeffix� Lamivudine (3TC) GlaxoSmithKline
Hepsera� Adefovir dipivoxil Gilead Sciences
Baraclude� Entecavir Bristol–Myers Squibb
Tyzeka�, Sebivo� Telbivudine Idenix Pharmaceuticals
Viread� Tenofovir disoproxil fumarate Gilead Sciences
Intron A� Interferon-a-2b Schering-Plough
Pegasys� Pegylated interferon-a-2a Roche

Antiherpesvirus compounds

HSV and VZV inhibitors

Zovirax� Acyclovir (ACV) GlaxoSmithKline
Zelitrex�, Valtrex� Valaciclovir (VACV) GlaxoSmithKline
Denavir�, Vectavir� Penciclovir (PCV) Novartis
Famvir� Famciclovir (FCV) Novartis
Herpid�, Stoxil�, Idoxene�,
Virudox�

Idoxuridine (IDU, IUdR) Yale University

Viroptic� Trifluridine (TFT) King Pharmaceuticals
Zostex�, Brivirac�, Zerpex� Brivudin (BVDU)a Berlin Chemie/Menarini

CMV inhibitors

Cymevene�, Cytovene� Ganciclovir (GCV) Roche
Valcyte� Valganciclovir (VGCV) Roche
Foscavir� Foscarnet Astra Zeneca
Vistide� Cidofovir (CDV) Pfizer
Vitravene� Fomivirsen Novartis

Anti-influenza virus compounds

Symmetrel�, Mantadix�,
Amantan�

Amantadine Endo Pharmaceuticals

Flumadine� Rimantadine Forest Laboratories
Relenza� Zanamivir GlaxoSmithKline
Tamiflu� Oseltamivir Roche
Virazole�, Virazid�, Viramid� Ribavirin Valeant Pharmaceuticals

Anti-HCV compounds

Rebetol� Ribavirin Schering-Plough
Copegus� Ribavirin Roche
Pegasys� Pegylated interferon-a-2a Roche
Roferon A� Interferon-a-2a Roche
Intron A� Interferon-a-2b Schering-Plough
PEG-Intron� Pegylated interferon-a-2b Schering-Plough
Rebetron� Interferon-a-2b þ ribavirin Schering-Plough

a) Not formally approved by the US FDA.
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BVDUowes its antiviral selectivity to a specific phosphorylation by theHSV-1- and
VZV-encoded thymidine kinase, just as acyclovir does, but compared to acyclovir,
BVDU is a much more potent inhibitor of VZV replication. If BVDU is further
converted to a bicyclic furano[2,3-d]pyrimidine nucleoside analogue (BCNA) carrying
an aliphatic side chain interrupted by a phenyl moiety [42, 43], as in Cf 1743, the
compound becomes exquisitely and exclusively active against VZV.

Although BVDU and acyclovir belong, respectively, to the pyrimidine and purine
nucleoside analogues, they share, structurally, the same carboxamide pharmaco-
phore (Figure 1.1), which may explain why they are both specifically recognized as
substrate by the HSV- and VZV-encoded thymidine kinases. The same pharmaco-
phore is found in other acyclic guanosine analogues such as ganciclovir and
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Figure 1.1 Pharmacophores in antiherpesvirus agents.
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penciclovir, again explaining the specificity of these compounds against HSV and
VZV. Remarkably, the same pharmacophore is also found in ribavirin, which was
described as a broad-spectrum antiviral agent, 5 years before acyclovir was reported
(see Table 1.1), but in the case of ribavirin, the presence of the ribofuranosyl moiety
primarily directs its antiviral activity spectrum toward RNA viruses due to an
inhibitory action at the level of the IMP dehydrogenase [44–46].

While BVDU and acyclovir interact in their active triphosphate form with the viral
DNApolymerase, thefirst phosphorylation step by the viral thymidinekinase required
only to initiate the activation process, theHPIs seem to be directly targeted at theHSV
helicase–primase UL5–UL8–UL52 complex [47]. The first HPI reported to inhibit
HSV replication via interaction with the helicase component of this complex [31] was
the 2-aminothiazole T-157602. The HPIs that were subsequently described and also
found to be more effective than acyclovir and famciclovir against HSV infections in
murine models of HSV-1 andHSV-2 infection [48–51], namely, BILS 179BS and BAY
57-1293, are also built upon the 2-aminothiazole scaffold (Figure 1.1). HPIs represent
an exciting new avenue in the development of antivirals active against herpes-
viruses [47], but whether they represent an alternative (or additional) strategy to
acyclovir (and acyclic guanosine analogues in general) will depend on their exact
spectrum of antiviral activity, whether or not encompassing VZV (an issue that
presently can only be speculated upon), and the readiness by which they elicit
resistance mutations [52, 53] (an issue that needs continued vigilance).

1.5
Antiviral Drugs Active against Retroviruses (HIV)

The best known class of the antiretroviral agents is that of the nucleoside reverse
transcriptase inhibitors, now containing seven members – zidovudine, didanosine,
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zalcitabine, stavudine, lamivudine, abacavir, and emtricitabine – that are on the
market [54]. What all these compounds have in common is that they are 20,30-
dideoxynucleoside analogues (Figure 1.2, NRTIs), which through the absence of a 30-
hydroxyl group inevitably act as chain terminators at the reverse transcriptase level.
The last three of the series, namely, lamivudine (3TC, originally described as its
racemic form, BCH-189) [55], abacavir (1592 U89) [56], and emtricitabine ((�)
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FTC) [57, 58], correspond to the (�)- or L-enantiomeric form (whereas the first four
have the natural D-form).

NtRTIs should be clearly distinguished from the NRTIs as they contain a

phosphonate group P C O

O

that is isosteric with the phosphate group

P O C

O

of the normal nucleotides.

To this class of compounds belong adefovir and tenofovir (Figure 1.2, NtRTIs) [59],
used in their oral prodrug forms, adefovir dipivoxil and tenofovir disoproxil fumarate
(TDF), in the treatment of hepatitis B virus (HBV) and HIV infections, respectively.
TDF has since 2008 also been licensed for the treatment of HBV infections [60]. TDF
is also commercially available, in combination with emtricitabine (Truvada�), and in
combination with emtricitabine and efavirenz (Atripla�), for the treatment of HIV
infections.

TheHEPTand TIBOderivatives were thefirst nonnucleoside reverse transcriptase
inhibitors to be described [61]. This class has now yielded an abundance of
compounds, four of which have been formally approved (nevirapine, delavirdine,
efavirenz, and etravirine) and a fifth is forthcoming (rilpivirine). All these com-
pounds have a butterfly-like shape (Figure 1.2, NNRTIs), a term first coined by Ding
et al. [62], and it has also been shown by crystallographic analysis [63].

All protease inhibitors (PIs) that have been licensed for clinical use (from
saquinavir to darunavir, Figure 1.2, PIs) [54], with the exception of tipranavir, are
built upon the hydroxyethylene scaffold [�CH(OH)�CH2�], which can be consid-
ered peptidomimetic and thus imitates the peptide linkage that has to be cleaved by
the viral protease during the viral protein maturation process. PIs are generally used
in combination with other antiretroviral classes. Given their common scaffold they
may be expected to give similar potency, side effects, and resistance profiles.

Of the fusion inhibitors (FIs), the first and still the only FI used in the treatment of
HIV-1 infections is enfuvirtide (structure as given in Ref. [64]), a 36-amino acid
peptide, for which proof of concept in the clinic was provided by Kilby et al. [65] and
the clinical efficacy further demonstrated by Lalezari et al. [66] and Lazzarin et al. [67].
Limitations to the widespread use of enfuvirtide are its parenteral administration
(subcutaneous injection twice daily), the local induration it may cause, and the cost.

Of the coreceptor inhibitors, none is likely to be available soon for the treatment of
X4 HIV infections (instead, the CXCR4 antagonist AMD3100 has been developed,
and recently licensed, as a stem cell mobilizer for autologous transplantation in
patients with hematological malignancies such as non-Hodgkin�s lymphoma or
multiple myeloma [68]). Several CCR5 antagonists have been described for the
treatment of R5 HIV infections [69]: only one (maraviroc) has been licensed for
clinical use and a second one (vicriviroc) is forthcoming. It is difficult to discern what
these compounds have in common structurally, except for the presence of a number
of basic nitrogens (Figure 1.2, CRIs).
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In HIV integrase inhibitors, the prime structural determinant is undoubtedly the
diketo acid group, which was already evident in the first �diketo acid� derivative (L-
731988) that was described [32] and which subsequently [70] led via L-870810 to
raltegravir (MK0518) that has been licensed for clinical use after its clinical efficacy
was clearly demonstrated [71, 72]. Next in line is elvitegravir (GS-9137), a quinolone 3-
carboxylic acid derivative (which can also be considered a �diketo acid� derivative)
(Figure 1.2, INIs). Being also a quinolone derivative, elvitegravir could theoretically
act as a transcription inhibitor, but it has been ascertained that elvitegravir, just like L-
870810, acts as a genuine INI [73]. Both raltegravir and elvitegravir are assumed to
interfere with the strand transfer reaction of theHIV integrase, themutationsQ148K
and T66I conferring the highest resistance to both drugs [74].

1.6
Antiviral Drugs Active against Hepatitis B Virus

There are at present seven drugs approved by the US FDA for the treatment of
hepatitis B virus: interferon-a-2b (Intron A), lamivudine (3TC), adefovir dipivoxil,
entecavir, peginterferon-a-2a (Pegasys), telbivudine, and tenofovir disoproxil fuma-
rate (a few others, that is, clevudine (L-FMAU), emtricitabine ((�)FTC), valtorcitabine
(valLdC), amdoxovir (DAPD), and racivir, are still under development). The anti-HBV
agents have been reviewed recently [75]. Two of these compounds (lamivudine and
tenofovir) are also used for the treatment of HIV infections, and as both HIV and
HBVdepend for their replication on a virus-associated reverse transcriptase (RT), it is
not surprising that someof theRTinhibitors that are active againstHIVare also active
against HBV, and vice versa. However, there are exceptions; that is, entecavir and
telbivudine (Figure 1.3) are specific inhibitors of HBV replication. They both are
assumed to interact with the viral DNApolymerase, but how they do so has not been
fully explained. Entecavir, if it is incorporated into the viral DNA, has to act as an
obligatory chain terminator, but this is not necessarily so for telbivudine since the
latter contains a 30-hydroxyl group, theoretically allowing further chain elongation.
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Figure 1.3 Pharmacophores in anti-HBV agents.
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1.7
Antiviral Drugs Active against DNA Viruses at Large

For the majority of DNA virus infections there is no specific (formalized) treatment,
including polyoma-, papilloma-, and adenovirus, the herpesviruses Epstein–Barr
virus (EBV) and human herpesvirus type 6 (HHV-6), and the whole family of
poxviridae (including the orthopoxviruses variola, vaccinia, monkeypox, and cow-
pox), the parapoxviruses (i.e., orf), andmollusciviruses (i.e.,molluscumcontagiosum
virus). Cidofovir, which has been formally licensed only for the treatment of CMV
retinitis in AIDS patients, could be used �off label� for the treatment of other
herpesvirus infections as well as polyoma-, papilloma-, adeno-, and poxvirus infec-
tions. The problem with cidofovir and all other acyclic nucleoside phosphonates,
however, is that they have poor, if any, oral bioavailability, and to overcome this
problem, alkoxyalkyl (i.e.,hexadecyloxypropyl (HDP) and octadecyloxyethyl (ODE))
esters of cidofovir have been synthesized with high efficacy in the oral treatment of
various (experimental) orthopoxvirus infections in mice [76, 77], as reviewed by
Hostetler [78].

The parent compound of the acyclic nucleoside phosphonates is (S)-HPMPA
(Figure 1.4) that was first described [24] in 1986. Then followed (S)-HPMPC [79] and,
more recently, (R)-HPMPO-DAPy [80] and (S)-HPMP-5-azaC [81], and the HDP and
ODE prodrugs of (S)-HPMP-5-azaC [82]. (R)-HPMPO-DAPy (Figure 1.4) proved
more effective than postexposure smallpox vaccination in a lethal model of
monkeypox virus infection in cynomolgus monkeys [83], and (S)-HPMP-5-azaC
(Figure 1.4) proved to be a more potent and more selective antiviral agent than
cidofovir (S)-HPMPC) [84]. The new acyclic nucleoside phosphonates (R)-HPMPO-
DAPy and (S)-HPMP-5-azaC, and alkoxyalkyl esters thereof, offer a wealth of
potential applications in the broad field of DNA (pox, adeno, polyoma, papilloma,
and herpes) virus infections, which have so far remained largely untapped.

OP
HO

HO

O

HO

N

N

N

N

NH2

R

OP
HO

HO

O

HO

N

N

X

NH2

O

OP
HO

HO

O

HO

N

N

NH2

H2 ON

R = H : (S)-HPMPA
R = NH2 : (S)-HPMPDAP

X = CH : (S)-HPMPC
(cidofovir)

X = N : (S)-HPMP-5-azaC 

(R)-HPMPO-DAPy

Figure 1.4 Pharmacophores in broad-spectrum anti-DNA virus agents.

1.7 Antiviral Drugs Active against DNA Viruses at Large j13



1.8
Antiviral Drugs for Influenza A Virus Infections

Ever since amantadine was discovered as an inhibitor of influenza A virus replica-
tion [85], it has been considered a potential strategy for the therapy and prophylaxis of
influenza A virus infections [60], but amantadine has also become notorious for
rapidly leading to resistance development, probably a consequence of the specificity
of its interaction with the M2 protein of influenza A virus. Various other strategies
have been considered in the war against influenza [86], among which are ribavirin,
viramidine, siRNAs, and phosphorothioate oligonucleotides, interferon (inducers),
and viral RdRp inhibitors [87]. Themost fascinating [88, 89] of the RdRp inhibitors is
undoubtedly T-705.

At present, the neuraminidase inhibitors are still considered the most likely
candidates to be used not only to curtail the annual recurrences of seasonal influenza
(A (H1N1), A (H3N2), and influenza B) but also to prevent pandemics with any
influenza A virus infection, whether avian (i.e., influenza A H5N1) or any new
influenza A (H1N1) strain, such as the recent �Mexican� variant.

Neuraminidase inhibitors do have a very specific interaction with the viral
neuraminidases (sialidase) [86] (Figure 1.5), �trapping� the newly formed virions
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at the cell surface, thus preventing the release of these progeny influenza virions from
the cells (in which they have been formed) [87]. Unfortunately, influenza A seems to
readily develop resistance against neuraminidase inhibitors such as oseltamivir
(Tamiflu�) [89]. On the one hand, this points to the specificity of oseltamivir as an
antiviral agent and, on the other hand, it argues for a close surveillance of the possible
emergence of resistance with the extended use of neuraminidase inhibitors such as
oseltamivir.

1.9
Antiviral Drugs for Hepatitis C Virus

Standard care for hepatitis C nowadays consists of the administration of pegylated
interferon-a-2a, in combination with ribavirin. Yet, specific anti-HCV agents are
under development that are targeted at either the HCV (serine) protease or HCV
RdRp. Themost advanced among theHCVprotease inhibitors are telaprevir [90] and
boceprevir [91, 92]. The efficacy of telaprevir, in combination with pegylated inter-
feron and ribavirin, in the treatment of hepatitis C has recently been demonstrat-
ed [93, 94]. The first HCV PI to be described and to show antiviral activity in humans
was ciluprevir (BILN 2061) [34]. While ciluprevir and a successor thereof, TMC-
435350 [95], do have a macrocyclic structure (not shown), telaprevir and boceprevir
are built upon a (poly)peptide scaffold.

Like the HIV RT, the HCV RdRp can be targeted at both the catalytic site (by
NRRIs) and the allosteric site (by NNRRIs). A characteristic of the anti-HCVactivity
of NRRIs is the presence of the 20-C-methyl pharmacophore, as in 20-C-methyla-
denosine, 20-C-methylguanosine, 20-C-methylcytidine, 7-deaza-20-C-methyladeno-
sine, and 20-deoxy-20-fluoro-20-C-methylcytidine (Figure 1.6, NRRIs). 2-C-Methyl-
substituted ribonucleosides are active not only against hepaciviruses such as HCV
but also against pestiviruses, such as bovine viral diarrhea virus (BVDV), and
flaviviruses, such as yellow fever and West Nile [35]. They act as nonobligate chain
terminators of the RdRp [35]. The first NRRI to enter the clinic was valopicitabine
(NM 283: 30-valine ester of 20-C-methylcytidine). It was also the first to be
discontinued for further development. An exception to the rule that the nucleoside
analogues active against HCV should contain a 20-C-methyl group is the 40-
azidocytidine (R1479) [96], and like valopicitabine, this compound has apparently
not been further developed.

Resulting from the first wave of NNRRIs were thiophene, 2-carboxylic acid,
benzimidazole, and benzothiadiazine derivatives [97], further extended by various
other derivatives among which was the benzofuran derivative HCV-796 [98]. The
latter proved, in fact, highly active against the HCV replicon system [99], but its
further development has apparently been stopped. One of the most potent anti-HCV
agents (in development) acting as an NNRRI is GS-327073 (Figure 1.6, NNRRIs). It
has an EC50 of 0.002–0.004 mM in the HCV (genotype 1b) replicon system. GS-
327073 is based upon the 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]
pyridine BPIP skeleton, which was akin to VP 32947 [33] first identified as a potent
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and selective inhibitor of the replication of pestiviruses such as BVDV [100]. BPIP
was from the start recognized as an inhibitor of RdRp, the �finger� domain of the
enzyme being its target. Further chemical modifications of the BPIP skeleton led to
the identification of GS-327073 as a potent and selective NNRRI of the HCV RdRp,
again with the �finger� domain being the target site [101].
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1.10
Antiviral Drugs for Poxviruses (i.e., Variola, Vaccinia, and so on)

Poxviruses (such as variola, vaccinia, cowpox, and monkeypox) are the largest of all
viruses and contain the largest set of genes encoding for specific viral proteins that
could be considered targets for chemotherapeutic intervention. At present, cidofovir
(S)-HPMPC) has remained the only drug that could be used, albeit off label, both for
the therapy and short-term prophylaxis of smallpox (should it, for example, occur in
the context of a bioterrorist attack) and monkeypox and for the treatment of the
complications of vaccinia that could arise in immunosuppressed patients inadver-
tently inoculated with the smallpox vaccine [60, 102]. If needed, cidofovir could be
used in its oral prodrug form (i.e.,hexadecylpropyl (HDP)-cidofovir), now known as
CMX001. In the mean time, a new compound ST-246 (Figure 1.7) has come along,
developed by SIGA Technologies Inc., which appears to inhibit variola virus and
other orthopoxvirus infections by inhibiting the F13L phospholipase involved in
extracellular virus production [36, 60, 103]. ST-246 acts synergistically with
CMX001 [104], which throws open interesting prospects for this drug combination
in the treatment of orthopoxvirus infections. Most important would be to know
whether ST-246 is efficacious against smallpox, or the complications of smallpox
vaccination such as eczema vaccinatum.A recent case of severe eczema vaccinatum
in a household contact of a smallpox vaccinee illustrates the importance of the
complications of smallpox vaccination and the possible impact ST-246 may have in
such case(s) [60, 105].

In addition to specifically viral protein-targeted agents (such as ST-246), a number
of compounds that interfere with cellular signal transduction, by inhibiting protein
tyrosine kinases, such as STI-571 (Gleevec) [37] and 4-anilinoquinazoline CI-
1033 [38], have been reported to strongly inhibit poxvirus (i.e., vaccinia virus)
infections in vivo. These observations point to the options still available to treat
poxvirus infections in vivo.
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1.11
Further Options to Treat Virus Infections

Other, still, investigational strategies for the treatment of HIV and HCV infections
have been described recently [98]. The farthest developed in the clinic (phase II) is a
nonimmunosuppressive derivative of cyclosporin A, Debio-025 (structure as shown
in Ref. [106]), a cyclophilin binding agent that has potent activity against both
HCV [107] and HIV-1 [108]. Debio-025 has shown potent anti-HCV activity in
patients coinfected with HCV and HIV-1 [109].

For the treatment of poliovirus, and other enterovirus, and rhinovirus infections, a
large variety of antipicornavirus agents have been described [106], the last in the
series being a protein 3A inhibitor, TTP-8307 [110]. None of these compounds,
however, has been developed from a clinical viewpoint. Likewise, increasingly
significant attempts have been undertaken to find specific inhibitors for flavivirus
(such as dengue virus) and other hemorrhagic fever virus infections [89], and for
these virus infections, a �druggable� candidate compound is still eagerly awaited.

While the search for new therapeutic options to treat influenza virus infections has
been continuously spurred by the emergence of new virus strains with pandemic
�allures,� relatively little effort has beenmade to find or develop new therapeutics for
respiratory syncytial virus (RSV) infections. Of significant potential in this regard
might be a benzodiazepine, RSV604 (structure as shown in Ref. [111]), which seems
to be targeted at the RSV nucleocapsid protein and has proceeded to phase II clinical
trials [111].

1.12
Conclusions

In addition to the some 50 antivirals that have been formally approved, now exactly 50
years after the first antiviral drug (IDU) was synthesized, the number of potential
antiviral drug candidates is steadily growing [112]. Most of the antiviral drug
development efforts have been focused on HIV, followed by HCV and HBV, and
influenza virus coming next because of its capriolic incidence. Also, hemorrhagic
fever virus (and related encephalitis) infections, because of their global impact,
should and have received accrued attention from a therapeutic viewpoint.

Other virus infections, such as herpes simplex and polio, have received relatively
little attention because it has been felt they are sufficiently contained by established
procedures, acyclovir therapy and vaccination, respectively. The methodology to
design new antiviral drug strategies has gradually shifted from �serendipitous�
screening to �rational� structure-based drug design, although in most instances this
rational approach boiled down to the sheer chemicalmodification of a known scaffold
or building on further from a known pharmacophore.

Surprisingly, the combination drug strategy that has been diligently worked out for
HIV, primarily to prevent HIV drug resistance development, has not (yet) been
exploited or even explored for other viruses such as HBV, HSV, or influenza. For
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HCV, as for HIV, it is believed that it will be necessary to combine different drugs
acting by different mechanisms, but before this could be done, the individual drugs
have to be identified and approved.

Most of the antiviral drugs now in, or considered for, clinical use are targeted at
specific viral events, enzymes (i.e., polymerases, proteases), or processes (i.e.,
virus–cell fusion). The observation that protein kinase inhibitors such as Gleevec
and anilinoquinazolines have antiviral activities (e.g., against poxviruses) should
signal a broader applicability of these protein kinase inhibitors. Potential usefulness
in the treatment of virus infections may also extend to various other protein kinase
inhibitors (such as flavopiridol and rapamycin) [113].
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