Contents

List of Contributors XIII Preface XVII A Personal Foreword XIX

1Outlook of the Antiviral Drug Era, Now More Than 50 Years After
Description of the First Antiviral Drug1

v

Erik De Clercq

- 1.1 Introduction: The Prehistory 1
- 1.2 Key Events in Antiviral Drug Development 2
- 1.3 Antiviral Drugs: Current State of the Art 4
- 1.4 Antiviral Drugs Active against Herpesviruses (i.e., HSV, VZV, and so on) 4
- 1.5 Antiviral Drugs Active against Retroviruses (HIV) 8
- 1.6 Antiviral Drugs Active against Hepatitis B Virus 12
- 1.7 Antiviral Drugs Active against DNA Viruses at Large 13
- 1.8 Antiviral Drugs for Influenza A Virus Infections 14
- 1.9 Antiviral Drugs for Hepatitis C Virus 15
- 1.10 Antiviral Drugs for Poxviruses (i.e., Variola, Vaccinia, and so on) 17
- 1.11 Further Options to Treat Virus Infections 19
- 1.12 Conclusions 19
 - References 20

2 Inhibition of HIV Entry 29

José A. Esté

- 2.1 Introduction 29
- 2.2 The HIV Glycoproteins 30
- 2.2.1 Structure of the HIV-1 Glycoprotein gp120 30
- 2.2.2 Structure of the HIV-1 Transmembrane Glycoprotein gp41 31
- 2.3 Mechanism of HIV Entry 32
- 2.3.1 Virus Attachment 32
- 2.3.2 Coreceptors: Virus Tropism and Infectivity 33

VI Contents

2.3.3	Virus–Cell Fusion 33
2.3.4	Endocytosis of HIV 33
2.4	Inhibition of HIV Entry 34
2.4.1	Inhibitors of Virus Attachment 34
2.4.1.1	Polyanions as Inhibitors of HIV Attachment 34
2.4.1.2	Small-Molecule Inhibitors of the gp120–CD4 Interaction 36
2.4.2	Postattachment Inhibitors 37
2.4.3	CCR5 Antagonists 38
2.4.3.1	Maraviroc 38
2.4.3.2	Vicriviroc 39
2.4.3.3	Pro-140 39
2.4.3.4	Resistance to CCR5 Antagonists 39
2.4.4	CXCR4 Antagonists 40
2.4.5	Inhibitors of HIV Fusion: Enfuvirtide 41
2.5	Concluding Remarks 42
	References 42
3	Targeting Integration Beyond Strand Transfer: Development
	of Second-Generation HIV Integrase Inhibitors 51
	Arnout R.D. Voet, Marc De Maeyer, Frauke Christ, and Zeger Debyser
3.1	HIV: The Causative Agent of AIDS 51
3.1.1	Replication Cycle of HIV 51
3.1.2	Highly Active Antiretroviral Therapy 52
3.2	The Integration Step: A Complex Mechanism with Different
	Possibilities for Inhibition 53
3.2.1	HIV-1 Integrase 53
3.2.1.1	The Structural Organization of HIV-1 Integrase 54
3.2.2	HIV-1 IN as a Target for HAART 55
3.2.2.1	Integrase Strand Transfer Inhibitors 55
3.2.2.2	Integrase Binding Inhibitors 57
3.3	DNA Binding Inhibitors 59
3.4	Multimerization Inhibitors 60
3.5	Targeting Integrase Cofactor Interactions 62
3.6	Conclusion 64
	References 65
4	From Saquinavir to Darunavir: The Impact of
	10 Years of Medicinal Chemistry on a Lethal Disease 73
	Marie-Pierre de Béthune, Anik Peeters, and Piet Wigerinck
4.1	Introduction 73
4.2	The HIV Protease as a Target for AIDS 73
4.3	The Early Protease Inhibitors 74
4.4	The Medical Need for a "Next"-Generation PI 78
4.5	How Can We Explain the Superior Antiviral Activity

of Darunavir? 85

111

4.6 Clinical Development of Darunavir 86 4.7 Conclusions and Future Developments 87 References 87 5 Acyclic and Cyclic Nucleoside Phosphonates 91 Richard L. Mackman and Tomas Cihlar 91 Introduction 91 5.1 5.2 Nucleoside Phosphonate Strategy for Antivirals 92 5.3 Acyclic Nucleoside Phosphonates 95 5.3.1 Main Classes and their Structure–Activity Relationships 95 HPMP Analogues 95 5.3.1.1 PME Analogues 95 5.3.1.2 PMP and FPMP Analogues 5.3.1.3 97 5.3.2 Additional Examples of Antiviral ANPs 98 5.4 Cyclic Nucleoside Phosphonates 99 5.4.1 Main Classes and their Structure-Activity Relationships 100 Tetrahydrofuran Core 100 5.4.1.1 Cyclopentane and Cyclopentene Cores 103 5.4.1.2 Examples of CNPs Targeting Viral RNA Polymerases 104 5.4.2 5.5 Prodrugs of Nucleoside Phosphonates 107 5.5.1 Phosphonoesters 107 5.5.2 Phosphonoamidates 109 Clinical Applications of Antiviral Nucleoside Phosphonates 5.6 5.6.1 Cidofovir (Vistide[®]) 112 5.6.2 Adefovir Dipivoxil (Hepsera[®]) 112 Tenofovir Disoproxil Fumarate (Viread[®]) 113 5.6.3 5.7 Conclusions 115 References 115 6 Helicase-Primase Inhibitors: A New Approach to Combat Herpes Simplex Virus and Varicella Zoster Virus 129 Subhajit Biswas and Hugh J. Field Introduction 129 6.1 6.2 The Role of Helicase Primase in the Replication of HSV 130 6.3 Selective Inhibitors of Helicase Primase as Antiherpesvirus Antivirals 131 HPIs are Effective in Cell Culture and In Vivo 133 6.4 6.5 Effects of HPIs on the Establishment and Reactivation from Latency 134 HPIs: The Biochemical Basis for the Proposed Mechanism 6.6 of Action 134 6.7 HSV Acquired Resistance to HPIs 135 Patterns of Cross-Resistance 136 6.8 6.9 Further Insight into Mode of HPI Interaction with the HSV HP Complex from the Study of Resistance Mutations 139

VIII Contents

6 10	The Frequency and Origin of HDI Desigtance Mutations 140
6.11	III 5 Jug256 Age: a Mutation Conferring High Degistence to HDL 1/1
0.11	The Origin of Desigtance Mutations at Lligh Evenuency 142
0.12	Conductions 142
0.15	Conclusions 142
	References 144
7	Cyclophilin Inhibitors 147
	Grégoire Vuagniaux, Arnaud Hamel, Rafael Crabbé, Hervé C. Porchet,
	and Jean-Maurice Dumont
7.1	Introduction 147
7.2	Cyclophilin Overview 148
7.3	Cyclophilin Inhibitors Currently in Clinical Development 148
7.3.1	Chemical Structure 149
7.3.2	CypA PPIase Inhibition and Lack of Immunosuppressive
	Activity 149
7.4	Cyclophilin and HIV 149
7.4.1	Cyclophilin Inhibitors against HIV-1 151
7.4.1.1	In Vitro Anti-HIV-1 Activity 151
7.4.1.2	Resistance Profile 152
7.4.1.3	In Vivo Activity 152
7.4.1.4	Putative Mechanism of Action of Cyclophilin Inhibitors
	against HIV-1 152
7.4.1.5	Clinical Activity of Debio 025 against HIV-1 153
7.4.2	No Activity against Simian Immunodeficiency Virus 154
7.4.3	Activity against HIV-2 154
7.5	Cyclophilin and Hepatitis C 155
7.5.1	Putative Role of Cyclophilin in HCV Replication 155
7.5.2	Activity of Cyclophilin Inhibitors in HCV 157
7.5.3	Resistance Profile 158
7.6	Clinical Results in HCV 159
7.6.1	Debio 025 159
7.6.1.1	Randomized, Double-Blind, Placebo-Controlled Study
	in HIV-1/HCV Coinfected or HIV-1 Monoinfected Patients 159
7.6.1.2	Randomized, Double-Blind, Placebo-Controlled, Escalating
	Dose Ranging Study of Debio 025 in Combination with Pegasys
	in Treatment-Naïve Patients with Chronic Hepatitis 159
7.6.2	Study of Debio 025 in Combination with PEG-IFN α 2 and Ribavirin
	in Chronic HCV Genotype 1 Nonresponding Patients 162
7.6.3	Adverse Events 167
7.6.4	NIM811 and SCY635 167
7.7	Activity against Other Viruses 167
7.8	New Noncyclosporine Cyclophilin Inhibitors 168
7.8.1	Peptides and Peptidomimetics 168
7.8.2	CsA Bis-Urea Derivatives 169
7.8.3	Dimedone-Like Molecules 169

Contents IX

701	Ovinovalina Dovivativan 160
7.0.4	Quinoxanne Derivatives 169
/.8.5	Diarylurea Derivatives 170
7.8.6	Other Acylurea Derivatives 171
7.9	Conclusion 173
	References 173
8	Alkoxyalkyl Ester Prodrugs of Antiviral Nucleoside Phosphates and Phosphonates 181
	James R. Beadle and Karl Y. Hostetler
8.1	Introduction 181
82	Enhancing the Oral Activity of Antiviral Compounds: Overview
0.2	of the Development of Alkoxyalkyl Esterification Approach 182
8.3	Alkylglycerol and Alkoxyalkyl Prodrugs of Phosphonoformate:
	Enhanced Antiviral Activity and Synergism with AZT 185
8.4	Alkoxyalkyl Esters of Nucleoside 5'-Monophosphates 185
8.5	Oral Prodrugs of Acyclic Nucleoside
	Phosphonates 189
8.5.1	Cidofovir 189
8.5.1.1	Activity against Poxviruses In Vitro 189
8.5.1.2	Activity against Other Double-Stranded DNA Viruses In Vitro 190
8.5.1.3	Efficacy of Alkoxyalkyl Esters of ANPs in Animal Models
	of Disease 191
8.5.2	Alkoxyalkyl Esters of (S)-HPMPA 191
8.5.3	Alkoxyalkyl Esters of Tenofovir (HDP-(R)-PMPA) 196
8.5.4	Hexadecyloxypropyl Adefovir and Prodrugs of Other ANPs
0.6	and Antivirals 19/
8.6	Intraocular Delivery of Antiviral Prodrugs for Treatment
	or Prevention of Cytomegalovirus Retinitis 198
8.6.1	1-O-Octadecyl-sn-glycero-3-phosphonoformate (ODG-PFA) 198
8.6.2	Hexadecyloxypropyl Ganciclovir 5'-Monophosphate
062	(HDP-P-GCV) 199
8.0.5	Cyclic (S)-HPMPA 200
87	Conclusion 201
0.7	References 201
9	Maribavir: A Novel Benzimidazole Ribonucleoside for the Prevention
	and Treatment of Cytomegalovirus Diseases 209
	Karen K. Biron
9.1	Cytomegalovirus Diseases: Unmet Challenges 209
9.2	Maribavir: Antiviral Activity 210
9.3	Maribavir: Mechanisms of Action and Resistance 212
9.4	Preclinical Studies 214
9.5	Clinical Development of Maribavir: Early Phase I 215
9.6	Clinical Development in a Transplant Population 218

X Contents

9.7	Summary and Conclusions 220 References 221
10	Anti-HCMV Compounds 227
	Graciela Andrei and Robert Snoeck
10.1	Introduction 227
10.2	Anti-HCMV Drugs in Clinical Use 229
10.2.1	Classes of Anti-HCMV Drugs 229
10.2.2	Toxicity Associated with Approved Anti-HCMV Drugs 231
10.2.3	Resistance to Anti-HCMV Antivirals 233
10.3	Need for New Anti-HCMV Drugs 234
10.4	Novel Viral Targets 235
10.4.1	Viral Entry Inhibitors 235
10.4.1.1	β-Peptides 235
10.4.1.2	Dendrimers 235
10.4.1.3	Amphipathic DNA Polymers 237
10.4.1.4	Thiourea Derivatives 237
10.4.1.5	Phosphorothioate-Modified Oligonucleotides 237
10.4.2	Inhibitors of Viral Genome Replication 238
10.4.2.1	DNA Polymerase Inhibitors 238
10.4.2.2	Helicase/Primase Inhibitors 245
10.4.2.3	Inhibitors of Protein–Protein Interactions 246
10.4.3	Viral Gene Expression Inhibitors 248
10.4.3.1	Small Interfering RNAs 248
10.4.4	Inhibitors of Virion Assembly and Egress 248
10.4.4.1	Inhibitors of DNA Cleavage/Packaging 248
10.4.4.2	UL97 Protein Kinase (pUL97) Inhibitors 252
10.4.4.3	Viral Protease Inhibitors 256
10.4.5	Additional New Inhibitors of HCMV 256
10.4.5.1	Agonist for HCMV-Encoded Chemokine Receptors 256
10.4.6	HCMV Inhibitors with a Mechanism of Action not Fully Unraveled 258
10.4.6.1	CMV423 258
10.4.6.2	Berberine Chloride, Arylsulfone Derivatives, Lipophilic Alkyl
	Furano Pyrimidine Dideoxy Nucleosides, and
	4"-Benzoyl-Ureido-TSAO Derivatives 258
10.4.6.3	Leflunomide 259
10.4.6.4	Artesunate 260
10.5	Cellular Targets 260
10.5.1	Inhibitors of Cyclin-Dependent Kinases 261
10.5.2	Inhibitors of Cyclooxygenase 2 262
10.5.3	Proteasome Inhibitors 263
10.6	Conclusions 265

References 266

11	Lethal Mutagenesis as an Unconventional Approach to
	Combat HIV 283
	Pinar Iyidogan and Karen S. Anderson
11.1	Introduction 283
11.2	Viral Fitness and Intrinsic Mutagenesis in RNA Viruses
	and Retroviruses 284
11.3	Fundamentals of Lethal Mutagenesis 286
11.4	Mutagenic Pharmaceuticals as Antiviral Agents 288
11.4.1	Ribavirin 288
11.4.2	5-OH-dC 290
11.4.3	5-AZC 291
11.5	KP-1212: From Bench to Clinic 292
11.6	Challenges and Advantages of Lethal Mutagenesis
	Compared to Conventional Strategies 294
11.7	Concluding Remarks and Future Perspectives 296
	References 298
12	Recent Progress in the Development of HCV Protease Inhibitors 307
	Nagraj Mani, Bhisetti G. Rao, Tara L. Kieffer, and
	Ann D. Kwong
12.1	Introduction 307
12.2	HCV Therapy 307
12.2.1	The Role of HCV Protease 308
12.2.2	HCV Protease Inhibitor Design 310
12.2.3	Similarities and Differences in HCV Protease Inhibitors 310
12.2.4	Antiviral Potency and the Emergence of Resistance 316
12.3	Mechanism of Resistance and Cross-Resistance to NS3 Protease
	Inhibitors 316
12.3.1	Pattern of Resistance to Covalent Linear Protease Inhibitors 316
12.3.2	Pattern of Resistance to Noncovalent Protease Inhibitors 318
12.3.3	Cross-Resistance between Linear and Macrocyclic HCV Protease
	Inhibitors 318
12.4	Antiviral Potency and Clinical Efficacy of HCV Protease
	Inhibitors 319
12.4.1	Telaprevir 319
12.4.2	Boceprevir 320
12.4.3	Safety Profile of Protease Inhibitors 321
12.5	Future Directions 321
	References 322
13	Antiviral RNAi: How to Silence Viruses 329
	Karin J. von Eije and Ben Berkhout
13.1	The Discovery of RNA Interference 329
13.2	Therapeutic Application of the RNAi Mechanism 329
13.3	Mammalian Viruses and the RNAi Mechanism 331

XII Contents

13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11 13.12	Basic Design of an RNAi Therapy against Viruses 332 Selecting Optimal Targets 332 Prevention of Viral Escape 334 Multiplexing siRNAs 335 Delivery Issues 335 Potential Risks of an RNAi Therapy 336 Example of an Acute Infection: RSV 337 Example of a Chronic Infection: HIV-1 337 Future Perspective 338 References 340
14	Neuraminidase Inhibitors as Anti-Influenza Agents 351 Willard Lew, Michael Z. Wang, Xiaowu Chen, James F. Rooney, and Choung Kim
14 1	Introduction 351
14.2	Influenza Neuraminidase as a Drug Target 353
14.3	Neuraminidase Active Site and Inhibitor Binding 354
14.4	Small-Molecule Inhibitors of Influenza Neuraminidase 355
14.4.1	Zanamivir (Relenza) and Related Compounds 355
14.4.2	Laninamivir (CS-8958): A Long-Acting Neuraminidase Inhibitor 358
14.4.3	Oseltamivir (Tamiflu) 359
14.5	Mechanism of Resistance 364
14.6	Influenza Neuraminidase Inhibitors Based on Other Scaffolds 364
14.6.1	Peramivir (BCX-1812, RWJ-270201) 364
14.6.2	ABT-675 366
14.7	Clinical Use of Neuraminidase Inhibitors 367
14.8	Concluding Remarks 369
	References 370
15	From TIBO to Rilpivirine: The Chronicle of the Discovery of the Ideal Nonnucleoside Reverse Transcriptase Inhibitor 377 Erik De Clercq
15.1	Introduction 377
15.2	The TIBO Derivatives 378
15.3	From Loviride to Rilpivirine 380
15.4	Rilpivirine: How Does It Act? 381
15.5	Clinical Proof of Concept 383
15.6	Pharmacokinetics and Drug–Drug Interactions 383
15.7	Potency and Resilience to NNRTI Resistance 384
15.8	Conclusion 385 Beforences 385

Index 391