Contents

List of Contributors XIII
Preface XVII
A Personal Foreword XIX

1 Outlook of the Antiviral Drug Era, Now More Than 50 Years After
Description of the First Antiviral Drug 1

Erik De Clercq

1.1 Introduction: The Prehistory 1
1.2 Key Events in Antiviral Drug Development 2
1.3 Antiviral Drugs: Current State of the Art 4
1.4 Antiviral Drugs Active against Herpesviruses
 (i.e., HSV, VZV, and so on) 4
1.5 Antiviral Drugs Active against Retroviruses (HIV) 8
1.6 Antiviral Drugs Active against Hepatitis B Virus 12
1.7 Antiviral Drugs Active against DNA Viruses at Large 13
1.8 Antiviral Drugs for Influenza A Virus Infections 14
1.9 Antiviral Drugs for Hepatitis C Virus 15
1.10 Antiviral Drugs for Poxviruses (i.e., Variola, Vaccinia, and so on) 17
1.11 Further Options to Treat Virus Infections 19
1.12 Conclusions 19
References 20

2 Inhibition of HIV Entry 29

José A. Esté

2.1 Introduction 29
2.2 The HIV Glycoproteins 30
2.2.1 Structure of the HIV-1 Glycoprotein gp120 30
2.2.2 Structure of the HIV-1 Transmembrane Glycoprotein gp41 31
2.3 Mechanism of HIV Entry 32
2.3.1 Virus Attachment 32
2.3.2 Coreceptors: Virus Tropism and Infectivity 33
2.3.3 Virus–Cell Fusion 33
2.3.4 Endocytosis of HIV 33
2.4 Inhibition of HIV Entry 34
2.4.1 Inhibitors of Virus Attachment 34
2.4.1.1 Polyanions as Inhibitors of HIV Attachment 34
2.4.1.2 Small-Molecule Inhibitors of the gp120–CD4 Interaction 36
2.4.2 Postattachment Inhibitors 37
2.4.3 CCR5 Antagonists 38
2.4.3.1 Maraviroc 38
2.4.3.2 Vicriviroc 39
2.4.3.3 Pro-140 39
2.4.3.4 Resistance to CCR5 Antagonists 39
2.4.4 CXCR4 Antagonists 40
2.4.5 Inhibitors of HIV Fusion: Enfuvirtide 41
2.5 Concluding Remarks 42
References 42

3 Targeting Integration Beyond Strand Transfer: Development of Second-Generation HIV Integrase Inhibitors 51
Arnout R.D. Voet, Marc De Maeyer, Frauke Christ, and Zeger Debyser
3.1 HIV: The Causative Agent of AIDS 51
3.1.1 Replication Cycle of HIV 51
3.1.2 Highly Active Antiretroviral Therapy 52
3.2 The Integration Step: A Complex Mechanism with Different Possibilities for Inhibition 53
3.2.1 HIV-1 Integrase 53
3.2.1.1 The Structural Organization of HIV-1 Integrase 54
3.2.2 HIV-1 IN as a Target for HAART 55
3.2.2.1 Integrase Strand Transfer Inhibitors 55
3.2.2.2 Integrase Binding Inhibitors 57
3.3 DNA Binding Inhibitors 59
3.4 Multimerization Inhibitors 60
3.5 Targeting Integrase Cofactor Interactions 62
3.6 Conclusion 64
References 65

4 From Saquinavir to Darunavir: The Impact of 10 Years of Medicinal Chemistry on a Lethal Disease 73
Marie-Pierre de Béthune, Anik Peeters, and Piet Wigerinck
4.1 Introduction 73
4.2 The HIV Protease as a Target for AIDS 73
4.3 The Early Protease Inhibitors 74
4.4 The Medical Need for a “Next”-Generation PI 78
4.5 How Can We Explain the Superior Antiviral Activity of Darunavir? 85
5 Acyclic and Cyclic Nucleoside Phosphonates 91
Richard L. Mackman and Tomas Cihlar 91
5.1 Introduction 91
5.2 Nucleoside Phosphonate Strategy for Antivirals 92
5.3 Acyclic Nucleoside Phosphonates 95
5.3.1 Main Classes and their Structure–Activity Relationships 95
5.3.1.1 HPMP Analogues 95
5.3.1.2 PME Analogues 95
5.3.1.3 PMP and FPMP Analogues 97
5.3.2 Additional Examples of Antiviral ANPs 98
5.4 Cyclic Nucleoside Phosphonates 99
5.4.1 Main Classes and their Structure–Activity Relationships 100
5.4.1.1 Tetrahydrofuran Core 100
5.4.1.2 Cyclopentane and Cyclopentene Cores 103
5.4.2 Examples of CNPs Targeting Viral RNA Polymerases 104
5.5 Prodrugs of Nucleoside Phosphonates 107
5.5.1 Phosphonoesters 107
5.5.2 Phosphonoamidates 109
5.6 Clinical Applications of Antiviral Nucleoside Phosphonates 111
5.6.1 Cidofovir (Vistide®) 112
5.6.2 Adefovir Dipivoxil (Hepsera®) 112
5.6.3 Tenofovir Disoproxil Fumarate (Viread®) 113
5.7 Conclusions 115
References 115

6 Helicase–Primase Inhibitors: A New Approach to Combat Herpes Simplex Virus and Varicella Zoster Virus 129
Subhajit Biswas and Hugh J. Field 129
6.1 Introduction 129
6.2 The Role of Helicase Primase in the Replication of HSV 130
6.3 Selective Inhibitors of Helicase Primase as Antiherpesvirus Antivirals 131
6.4 HPIs are Effective in Cell Culture and In Vivo 133
6.5 Effects of HPIs on the Establishment and Reactivation from Latency 134
6.6 HPIs: The Biochemical Basis for the Proposed Mechanism of Action 134
6.7 HSV Acquired Resistance to HPIs 135
6.8 Patterns of Cross-Resistance 136
6.9 Further Insight into Mode of HPI Interaction with the HSV HP Complex from the Study of Resistance Mutations 139
6.10 The Frequency and Origin of HPI-Resistance Mutations 140
6.11 UL5 Lys356Asn: a Mutation Conferring High Resistance to HPI 141
6.12 The Origin of Resistance Mutations at High Frequency 142
6.13 Conclusions 142
References 144

7 Cyclophilin Inhibitors 147
Grégoire Vuagniaux, Arnaud Hamel, Rafael Crabbé, Hervé C. Porchet, and Jean-Maurice Dumont

7.1 Introduction 147
7.2 Cyclophilin Overview 148
7.3 Cyclophilin Inhibitors Currently in Clinical Development 148
7.3.1 Chemical Structure 149
7.3.2 CypA PPIase Inhibition and Lack of Immunosuppressive Activity 149
7.4 Cyclophilin and HIV 149
7.4.1 Cyclophilin Inhibitors against HIV-1 151
7.4.1.1 In Vitro Anti-HIV-1 Activity 151
7.4.1.2 Resistance Profile 152
7.4.1.3 In Vivo Activity 152
7.4.1.4 Putative Mechanism of Action of Cyclophilin Inhibitors against HIV-1 152
7.4.1.5 Clinical Activity of Debio 025 against HIV-1 153
7.4.2 No Activity against Simian Immunodeficiency Virus 154
7.4.3 Activity against HIV-2 154
7.5 Cyclophilin and Hepatitis C 155
7.5.1 Putative Role of Cyclophilin in HCV Replication 155
7.5.2 Activity of Cyclophilin Inhibitors in HCV 157
7.5.3 Resistance Profile 158
7.6 Clinical Results in HCV 159
7.6.1 Debio 025 159
7.6.1.1 Randomized, Double-Blind, Placebo-Controlled Study in HIV-1/HCV Coinfected or HIV-1 Monoinfected Patients 159
7.6.1.2 Randomized, Double-Blind, Placebo-Controlled, Escalating Dose Ranging Study of Debio 025 in Combination with Pegasys in Treatment-Naïve Patients with Chronic Hepatitis 159
7.6.2 Study of Debio 025 in Combination with PEG-IFNα2 and Ribavirin in Chronic HCV Genotype 1 Nonresponding Patients 162
7.6.3 Adverse Events 167
7.6.4 NIM811 and SCY635 167
7.7 Activity against Other Viruses 167
7.8 New Noncyclosporine Cyclophilin Inhibitors 168
7.8.1 Peptides and Peptidomimetics 168
7.8.2 CsA Bis-Urea Derivatives 169
7.8.3 Dimedone-Like Molecules 169
7.8.4 Quinoxaline Derivatives 169
7.8.5 Diarylurea Derivatives 170
7.8.6 Other Acylurea Derivatives 171
7.9 Conclusion 173
References 173

8 Alkoxyalkyl Ester Prodrugs of Antiviral Nucleoside Phosphates and Phosphonates 181
James R. Beadle and Karl Y. Hostetler
8.1 Introduction 181
8.2 Enhancing the Oral Activity of Antiviral Compounds: Overview of the Development of Alkoxyalkyl Esterification Approach 182
8.3 Alkylglycerol and Alkoxyalkyl Prodrugs of Phosphonoformate: Enhanced Antiviral Activity and Synergism with AZT 185
8.4 Alkoxyalkyl Esters of Nucleoside 5'-Monophosphates 185
8.5 Oral Prodrugs of Acyclic Nucleoside Phosphonates 189
8.5.1 Cidofovir 189
8.5.1.1 Activity against Poxviruses In Vitro 189
8.5.1.2 Activity against Other Double-Stranded DNA Viruses In Vitro 190
8.5.1.3 Efficacy of Alkoxyalkyl Esters of ANPs in Animal Models of Disease 191
8.5.2 Alkoxyalkyl Esters of (S)-HPMPA 191
8.5.3 Alkoxyalkyl Esters of Tenofovir (HDP-(R)-PMPA) 196
8.5.4 Hexadecyloxypropyl Adefovir and Prodrugs of Other ANPs and Antivirals 197
8.6 Intraocular Delivery of Antiviral Prodrugs for Treatment or Prevention of Cytomegalovirus Retinitis 198
8.6.1 1-O-Octadecyl-sn-glycero-3-phosphonoformate (ODG-PFA) 198
8.6.2 Hexadecyloxypropyl Ganciclovir 5'-Monophosphate (HDP-P-GCV) 199
8.6.3 Hexadecyloxypropyl Esters of Cyclic Cidofovir and Cyclic (S)-HPMPA 200
8.7 Conclusion 201
References 201

9 Maribavir: A Novel Benzimidazole Ribonucleoside for the Prevention and Treatment of Cytomegalovirus Diseases 209
Karen K. Biron
9.1 Cytomegalovirus Diseases: Unmet Challenges 209
9.2 Maribavir: Antiviral Activity 210
9.3 Maribavir: Mechanisms of Action and Resistance 212
9.4 Preclinical Studies 214
9.5 Clinical Development of Maribavir: Early Phase I 215
9.6 Clinical Development in a Transplant Population 218
10 Anti-HCMV Compounds 227
Graciela Andrei and Robert Snoeck

10.1 Introduction 227
10.2 Anti-HCMV Drugs in Clinical Use 229
10.2.1 Classes of Anti-HCMV Drugs 229
10.2.2 Toxicity Associated with Approved Anti-HCMV Drugs 231
10.2.3 Resistance to Anti-HCMV Antivirals 233
10.3 Need for New Anti-HCMV Drugs 234
10.4 Novel Viral Targets 235
10.4.1 Viral Entry Inhibitors 235
10.4.1.1 β-Peptides 235
10.4.1.2 Dendrimers 235
10.4.1.3 Amphiphatic DNA Polymers 237
10.4.1.4 Thiourea Derivatives 237
10.4.1.5 Phosphorothioate-Modified Oligonucleotides 237
10.4.2 Inhibitors of Viral Genome Replication 238
10.4.2.1 DNA Polymerase Inhibitors 238
10.4.2.2 Helicase/Primase Inhibitors 245
10.4.2.3 Inhibitors of Protein–Protein Interactions 246
10.4.3 Viral Gene Expression Inhibitors 248
10.4.3.1 Small Interfering RNAs 248
10.4.4 Inhibitors of Virion Assembly and Egress 248
10.4.4.1 Inhibitors of DNA Cleavage/Packaging 248
10.4.4.2 UL97 Protein Kinase (pUL97) Inhibitors 252
10.4.4.3 Viral Protease Inhibitors 256
10.4.5 Additional New Inhibitors of HCMV 256
10.4.5.1 Agonist for HCMV-Encoded Chemokine Receptors 256
10.4.6 HCMV Inhibitors with a Mechanism of Action not Fully Unraveled 258
10.4.6.1 CMV423 258
10.4.6.2 Berberine Chloride, Arylsulfone Derivatives, Lipophilic Alkyl Furano Pyrimidine Dideoxy Nucleosides, and 4′-Benzoyl-Ureido-TSAO Derivatives 258
10.4.6.3 Leflunomide 259
10.4.6.4 Artesunate 260
10.5 Cellular Targets 260
10.5.1 Inhibitors of Cyclin-Dependent Kinases 261
10.5.2 Inhibitors of Cyclooxygenase 2 262
10.5.3 Proteasome Inhibitors 263
10.6 Conclusions 265
References 266
11 Lethal Mutagenesis as an Unconventional Approach to Combat HIV 283
Pinar Iyidogan and Karen S. Anderson

11.1 Introduction 283
11.2 Viral Fitness and Intrinsic Mutagenesis in RNA Viruses and Retroviruses 284
11.3 Fundamentals of Lethal Mutagenesis 286
11.4 Mutagenic Pharmaceuticals as Antiviral Agents 288
11.4.1 Ribavirin 288
11.4.2 5-OH-dC 290
11.4.3 5-AZC 291
11.5 KP-1212: From Bench to Clinic 292
11.6 Challenges and Advantages of Lethal Mutagenesis Compared to Conventional Strategies 294
11.7 Concluding Remarks and Future Perspectives 296
References 298

12 Recent Progress in the Development of HCV Protease Inhibitors 307
Nagraj Mani, Bhisetti G. Rao, Tara L. Kieffer, and Ann D. Kwong

12.1 Introduction 307
12.2 HCV Therapy 307
12.2.1 The Role of HCV Protease 308
12.2.2 HCV Protease Inhibitor Design 310
12.2.3 Similarities and Differences in HCV Protease Inhibitors 310
12.2.4 Antiviral Potency and the Emergence of Resistance 316
12.3 Mechanism of Resistance and Cross-Resistance to NS3 Protease Inhibitors 316
12.3.1 Pattern of Resistance to Covalent Linear Protease Inhibitors 316
12.3.2 Pattern of Resistance to Noncovalent Protease Inhibitors 318
12.3.3 Cross-Resistance between Linear and Macrocyclic HCV Protease Inhibitors 318
12.4 Antiviral Potency and Clinical Efficacy of HCV Protease Inhibitors 319
12.4.1 Telaprevir 319
12.4.2 Boceprevir 320
12.4.3 Safety Profile of Protease Inhibitors 321
12.5 Future Directions 321
References 322

13 Antiviral RNAi: How to Silence Viruses 329
Karin J. von Eije and Ben Berkhout

13.1 The Discovery of RNA Interference 329
13.2 Therapeutic Application of the RNAi Mechanism 329
13.3 Mammalian Viruses and the RNAi Mechanism 331