Index

Abbe resolution limit 798–799
aberrations 802, 803
above threshold ionization (ATI) 52
absorption edge 232–233
absorption spectra
– DRIFTS 450–453
– EXAFS 233, 239, 245, 254
– Infra-red 664, 667, 672, 676, 679–681
– UV-VIS 262–263, 374–375
– MBS 358, 367, 373–381
– REMPI 34–35
– THz 692–694, 696, 699–700, 704
– transient 648
absorption coefficient / module
– EXAFS 232–233, 236–240
– THz 692–697, 699, 700–705, 708
– X-ray 279
adsorbates see substance and sample index
adsorption
– UPS, 503–505
– STM 607–609, 613–614
– SERS 438–439
– DRIFTS 463–470
– PEEM 526–537, 543–544
– EQCM 593–594
– LEED 634–640
– surface stress 744
adsorption layers 529, 639
AFM see atomic force microscopy
alignment of molecular ensembles 13–15
alternating current (AC) method, SQUID magnetometers 778–780
alternating-gradient deceleration 18
alternating-gradient focusing 17
analytical techniques 515–517, 548, 549, 751
analyzer
– electron energy 479–481, 484, 487, 507–509, 518, 519, 522–524, 530, 632
– impedance 600
– mass see mass spectrometer
– multi channel 355, 359
– polarization 659–660
angular correlation 327–332
angular motion, see also molecular motion
– control 4
– of molecules 13, 15, 102
anisotropy see orientational anisotropy, see transient anisotropy
anodic stripping 590–591
anomalous dispersion 291, 292
anti-bunching 721–723
antiferromagnetism 774–775
apodization 455, 460
Arrhenius dependence 133, 135, 207, 218, 219, 788
asymmetric double-well potential (ADWP) 220–222
asymptotic Curie temperature 777
atomic force microscopy (AFM) 603–605, 738–739
atomic scale resolution 621
atomic scattering factor 808, 809
attosecond dynamics 4
Auger process 236–237, 359, 394, 481–483, 494, 520, 799
autocorrelation function
– current density 193, 205–206
– electric dipole 696, 697
– photon-pair 723, 724
– velocity 214
automated diffraction tomography (ADT) 283

\textit{Index}

\textbf{b}
- band gap, HOMO-LUMO gap 398, 492–501, 536, 688
- band structure 393, 408
- Beer’s law 693, 695
- binding forces and off-rates 746–749
- biomolecules see substance and sample index
- biosensors 752, 753
- bird navigation 169
- Bleaney–Bowers equation 771
- blocking temperature 175, 784, 788, 790
- Bohr magneton, μ_B 764
- Bragg
 - direction 659, 662,
 - law 236, 273–274, 277, 288, 298, 412, 627, 631, 810
- Bravais lattices 276
- Brillouin function 767
- broadband conductivity spectroscopy 191–229
 - complex conductivities 197–204
 - first universality 212–213
 - Fourier transform infrared spectroscopy 202–204
 - frequency-dependence techniques 197–198
 - hopping 204, 206, 210–216, 223–224
 - linear response theory, current density and conductivity 204–207
 - mismatch generated relaxation for the accommodation and transport of ions (MIGRATION) 213–216
 - nearly constant loss (NCL) effect 211
 - non-Arrhenius DC conductivities 217–218
 - random vs. correlated jump diffusion 193–194
 - second universality 211–227
 - side bottom time 210
 - self diffusion 208, 216
 - Sommerfield scaling 207
 - time-dependent double-well potentials 221–223
 - waveguide spectroscopy 199–202

\textbf{c}
- calorimetry 744–745
- cantilever 605, 738–745
- carbon see substance and sample index
- CARS see coherent anti-stokes Raman scattering (CARS)
- catalysis
 - bio-catalysis 262–266
 - electro-catalysis 533–537
 - gas-phase models 79, 80
 - heterogeneous catalysis 250–258, 447, 463–470, 526–533
 - homogeneous catalysis 258–262
 - ion catalysis, mass spectrometry 68, 71, 79–81
- catalysts see substance and sample index
- CBED see convergent beam electron diffraction
- C-H bond activation 79
- characteristic decay length 581
- characteristic X-ray lines 277, 507
- charge flipping (CF) 281, 289–290
- charge-tagging methods 78–79
- chemical oscillations 592–593
- chemical shifts
 - anisotropic, solid state NMR 99, 101, 127, 145
 - core level binding energy shifts, XPS 493–495, 501–503
 - energy-loss near-edge structure, ELNES 406
 - g-factor, EPR 161
 - isotropic, solid state NMR 90, 96, 100–108, 113–119, 132–139
 - chemical waves 526–533
 - chromatic aberrations 802, 803
 - classical pump–probe interactions 648, 649
- clusters see substance and sample index
- coherence
 - EPR 170, 185–187
 - solid state NMR 91, 100, 106, 109–118
 - vibrational 647–649, 653–657, 661
 - coherence transfer techniques 109–110
 - coherent anti-stokes Raman scattering (CARS) 653–657
 - Boxcars geometry 654, 658, 659
 - coherence (vibrational coherence) 648, 654
 - diagrammatic representation 648
 - free induction decay (FID) (Raman-FID) 91, 92, 654, 658
 - heterodyne detection 660
 - population (vibrational population) 651, 654
 - Stokes field 658
 - time-ordered diagram 653, 659
 - wave vector 655
- collision-induced dissociation (CID) 72–73
- commensurate 630
- composition analysis 272, 489–491
- conductivity 125, 175, 191–229, 605–607, 691–693, 779
- conductivity spectra 207–212
- confocal microscopy 434, 437, 657, 715–723
conformers see isomers
conformer selection 7, 19–21, 39–40
constant analyzer energy (CAE) mode 508
constructive interference 456, 457
contact mode, SPM 740–741
contrast mechanism, PEEM 525–526
contrast variation, SAXS and SANS 311–312, 321, 323
continuous wave EMR 164–168
convergent beam electron diffraction (CBED) 807–808
core-loss edges, EELS 402–407
corrosion
– EQCM 587–589
– MBS 380–382
corrosion studies 380–381, 586–589
Coulomb explosion 16, 22
critical points, electron density 281–282
crystalline solids and symmetry 275–277
crystal systems 274, 276
Curie’s law 767–773
Curie paramagnetism 766
Curie temperature, T_C 771
Curie–Weiss’ law 771, 775, 782
current-density autocorrelation function 205
cyclovoltammogram 592
cyclotron resonance 68, 175, 184
d
DQC see double-quantum coherences
de Broglie wave length 309, 626, 798,
Decelerator
– alternating gradient 18
– Stark 11, 12
Deflector
– electric 15, 16, 18, 19
– magnetic 18, 19
DEER see double electron electron resonance
deflection technique 9
degenerate four-wave mixing (DFWM) 658, 659
density functional theory (DFT) 88, 96,
134–135, 137, 272, 324, 348, 393, 408, 680
density of states (DOS) 393, 402, 493
– partial DOS 387, 403–407, 491–492
– local DOS 623
– vibrational 697–699
deposits on electrodes 536
destructive interference 456–457
detectors
– delay line detector (DLD) 539
electron detectors, photoelectron spectroscopy 509
charge-coupled devices 278, 309, 395, 431,
433, 509, 524, 717, 719–720, 800, 816
image plate (IP) 278, 309
mercury cadmium telluride detectors,
DRIFTS 455
multi-channel plate (MCP) 16–17, 509,
524, 539, 633
neutron detection 277–278, 314
PAC detection 227, 229
Raman spectroscopy 431, 433–434
THz detection 690
X-ray detection 277–278, 308–309
diamagnetic materials 781
diagrammatic representation 648
diamagnetism, SQUID magnetometers 766
‘Diesotto’-engines 463
differential optical density (ΔOD) 650, 652
differential thermogravimetry (DTG) 752
diffraction aberrations 802
diffraction limit 716
diffraction methods 271–295, 806–813
automated diffraction tomography (ADT) 283
Bragg’s law 273–274
crystalline solids and symmetry 275–277
electron diffraction 213, 806–813
experimental set-up and data treatment 278–279
Le Bail fit and structure solution 287–289
maximum entropy method (MEM) 290
micro-and nano-crystal structure
determination 283
neutron powder diffraction (NPD) 291, 293
non-ambient diffraction and anomalous
dispersion 291, 392
pair distribution function (PDF) analysis 290–291
point groups/crystal classes 276
powder diffractometry 284–293
Rietveld structure refinement and phase
corrections 285–287
scattering form factor 274
single crystal analysis 278–283
space groups 276
structure refinement residuals 280–281
structure solution, histogram matching and
charge flipping (CF) 289–290
diffuse reflectance infrared Fourier transform
spectroscopy (DRIFTS) 445–475
adsorbate identification 464–467
Index

diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (contd.)

- adsorbate kinetics 466–467
- experimental set-up 455
- in situ measurements 466
- interferometry and Fourier transformation 456–460
- Kubelka–Munk model 449–453
- Lambert–Beer’s law 449–450
- NSR-technology 463–464
- quantification of surface groups 470, 471
- principles 448–449
- reflectance 452, 453
- transmission and scattering on thin layer 451
- transmittance and reflectance spectrum 454
- temperature programed desorption (TPD) 471
- reactor cell, heterogeneous catalysis 463–464

diffusion

- cation diffusion 562–566
- depth profile 562, 563
- diffusion equation 558, 571–573, 729–731
- diffusive motion 249, 651
- dissipation theorem 713
- Fick’s law 572, 730
- first universality 209–210, 212–220
- ionic diffusion 194
- mathematics of diffusion 571–573
- mean square displacement 216–217
- oxygen 557–561, 571
- nuclear probes 345–347
- second universality 210–212, 220–227
- single-molecule tracking 729–732
- tracer diffusion coefficients 564
diffusion coefficient 216–217, 557, 562, 565, 571–573, 730
dipolar couplings 101–102, 105, 109–120, 131, 147, 150
direct current (DC) method, SQUID magnetometers 778–780
direct methods, single crystal analysis 279
disordered ionic materials 192–196
distance measurement 170, 187
double electron electron resonance (DEER) 170–172
double-quantum coherences (DQC) 110–118
double-quantum NMR 134, 139
DRIFTS see diffuse reflectance infrared Fourier transform spectroscopy
dynamical hydration shell 701, 705, 706
dynamical vs. kinematic diffraction 812
dynamic SIMS 555, 563
e
EDS see energy-dispersive X-ray spectroscopy
EELS see electron energy-loss spectroscopy
effective Bohr magneton number, μ_{eff} 768
effective dipole moment see Stark effect
elastic recoil detection analysis (ERDA) 548–549
ELDOR see electron electron double resonance
electric deflection 8, 9, 15–19
electric double layer 607–608
electric fields
- ac 14, 19
- dc (static) 13–15, 576–577
- homogeneous 9, 10
- induced forces 40
- inhomogeneous 9, 10
- laser 12–15, 43
electric field gradient (EFG) 97–99, 151, 334, 341–343, 362
electric permittivity 692
electric quadrupole moment 94, 97, 99, 123–124, 332 362
electrochemical cell 583
electrochemical interface 487
electrochemical nanostructuring 618
electrochemical polarization 533–536
electrochemical potential 543
electrochemical promotion of catalysis (EPOC) 534
electrochemical quartz crystal microbalance (EQCM) 575–601
electrocrystallization 614
electrode potential 592, 593, 609, 612, 613, 616
electrode surface 607
electroless deposition 590
electron diffraction 213, 806–811, 813
electron electron double resonance (ELDOR) 163, 164
electron energy-loss spectroscopy (EELS) 391–418, 798–799
- composition determination 409
- coordination fingerprint 405, 410–412
- core-loss edge fine structure 402–407
- core-loss region 398–399
- density of states (DOS) 393, 394, 402–408
- dipole approximation 406
- dipole region 397
- elastic scattering 394
– electronic transitions 399–400
– energy-loss near-edge structure (ELNES) 402–408
– elemental analysis 392, 401, 409
– experimental vs. calculated spectra 412–414
– generalized oscillator strength (GOS) 396
– high resolution electron energy loss spectroscopy (HREELS) 392
– inner-shell excitation 394
– instrumentation 395
– oxidation state 406, 410
– physical background 395–397
– solid state chemistry 393–394
– valence electron energy loss spectroscopy (VEELS) 398
– white lines 399–400
– zero-loss peak (ZLP) 397
electron filtering transmission electron microscopy (EFTEM) 401
electron magnetic resonance (EMR) 164–174
electron paramagnetic resonance (EPR) 159–189
– basic Principles 160–163
– continuous wave EMR 164–168
– cyclic electron motion 177
– cyclotron resonance and Landau levels 184–185
– double electron electron resonance (DEER) 170, 172
– electron nuclear double resonance (ENDOR) 162, 172–173
– electron electron double resonance (ELDOR) 164
– effective spin Hamiltonian 183–184
– electron spin echo envelope modulation (ESEEM) 185–186
– frequency-domain zero field 175–176
– hyperfine interactions 161
– hyperfine sublevel correlation spectroscopy (HYSCORE) 170–171, 180, 187
– periodic-orbit resonance 175
– pulsed EMR 168–174
– pulsed ENDOR 172–173
– site-directed spin-labeling (SDSL) 180–181
– van Hove singularities 167
– Zeeman effect 182–183
– zero-field-splitting (ZFS) 162, 167–168, 174–179
electron nuclear double resonance (ENDOR) 162, 172–173
electron spectroscopy for chemical analysis (ESCA) 480, 521
electron spectroscopic imaging (ESI) 401
electron spin echo envelope modulation (ESEEM) 185–186
electron spin resonance see electron paramagnetic resonance
electron-transfer
– mass spectrometry 77–79
electron tunneling 622–623
electrospray ionization (ESI) 70–71
electrostatic deflector 20, 21
elemental analysis
– EELS 401, 409
– SIMS 556
– XPS 488, 521
– XRF 382, 568
ELNES see energy-loss near-edge structure
Emission
– γ-rays 332
– stimulated 649
EMR see electron magnetic resonance
ENDOR see electron nuclear double resonance
energy band diagrams 393, 501, 502, 520, 622
energy-dispersive X-ray spectroscopy (EDS) 797, 798
energy level diagram 393, 660
– CARS 655, 656
– continuous wave EMR 167–168
– ELNES 402
– EPR 167–168
– fluorescence 714
– ion-dip spectroscopy 38
– MBS 360
– molecular magnets 174
– PAC 334
– Raman 423
– structural isomers 7–8
– solids 393
– solid state NMR 150
– spin crossover 371–372
– STM 622
– vibrational 670, 675
– vibronic 371–372
– XAS 236
– XPS 483, 496, 520
– Zeeman interaction 90, 182–183
energy-loss near-edge structure (ELNES) 402–408
energy shift analysis, XPS 493–495, 501–503
EPOC see electrochemical promotion of catalysis
EPR see electron paramagnetic resonance
ESR see electron magnetic resonance
EQCM see electrochemical quartz crystal microbalance
ergodic theorem 712, 732
ESEEM see electron spin echo envelope modulation
Ewald sphere 278, 284, 807, 810–811
excited state absorption 671
EXAFS see extended X-ray absorption fine structure
exchange spectroscopy (EXSY) 105–106, 111
EXELFS see extended energy-loss fine structure
EXSY see exchange spectroscopy
extended energy-loss fine structure (EXELFS) 407
extended X-ray absorption fine structure (EXAFS) 121, 232–246
extinction 277, 449–457, 692, 806, 810–812, 816
extinction coefficient 449, 453, 692
Eyring equation 746–747
Faradaic current 609–610
femtosecond laser mass spectrometry 48, 49
femtosecond EELS 415
femtosecond time-resolved vibrational spectroscopies 645–686
– applications 663–682
– coherent anti-stokes Raman scattering (CARS) 653–657
– infrared pump–probe spectroscopy 647–653
– impulsive stimulated Raman scattering (ISRS) 657–662
– optical Kerr effect (OKE) 667–669
– Raman-induced optical Kerr effect (OKE) 657–662
– vibrational dynamics 678–682
– vibrational relaxation 669–677
Fermi’s golden rule 233, 402, 682
Fermi level 95, 393–394, 403, 479–502, 520–521, 543–544, 609, 622, 688
Fermi resonance 426, 669–670, 674
Fermi surface 163, 175, 497–498
ferrimagnetism 776–777
ferroelectric material 177
ferromagnetism 773–774
Fick’s law 572, 730
fixed analyzer transmission (FAT) mode 508
– correlation spectroscopy 718
– fluctuations 720
– quantum yield 720
fluorescence lifetime 713, 720–721, 723–725
fluorescence microscopy 713, 717–721
focuser
– AC 12
– dynamic 17
force spectroscopy 741–743, 746–749
form factor 274–275, 302–305, 320, 396
Förster resonance energy transfer (FRET) 726–727
forth rank tensor 175
Fourier transform infrared spectroscopy (FTIR) 202–204, 445–475
Fourier transformation
– OHD-OKE 660–661, 668
– DRIFTS 456–460
– EPR 170, 186
– EXAFS 237, 239–243
– FTIR 203
– NMR 91–92
– PAC 333
– XRD 281
fragmentation 20, 33, 39–53, 59–60, 69, 557
Franck–Condon transition 36, 41, 53, 72
free electron laser 32, 267–268, 307, 537–538, 693
free induction decay (FID) 91, 93, 106–107, 648, 654
Fresnel reflection 448–449
Fresnel zone plate 522, 542
FRET see Förster resonance energy transfer
FTIR see Fourier transform infrared spectroscopy
galvanic deposition 589
Galvani potential 543
gas-phase molecules
– manipulation 8–13
– rotation 13–15
– translation 13, 14
g-factor, g value 160–162, 166, 183, 765, 766
Gibbs energy 65, 744, 746–747
Gibbs-Helmholtz equation 65
glasses see substance and sample index
grain boundaries 492, 505, 540, 559–565
gravimetry 575–601, 750–752
ground-state bleach 649
Guinier approximation 304–305, 323
<table>
<thead>
<tr>
<th>h</th>
<th>774</th>
</tr>
</thead>
<tbody>
<tr>
<td>hard ferromagnetic material</td>
<td>67</td>
</tr>
<tr>
<td>hard ionization methods</td>
<td>index</td>
</tr>
<tr>
<td>H-bond systems see substance and sample</td>
<td>774</td>
</tr>
<tr>
<td>Heisenberg uncertainty principle</td>
<td>30, 354</td>
</tr>
<tr>
<td>Helmholtz plane (IHP, OHP)</td>
<td>487, 607–608</td>
</tr>
<tr>
<td>hemispherical energy analyzer</td>
<td>522</td>
</tr>
<tr>
<td>HETCOR see heteronuclear correlation</td>
<td>104–105</td>
</tr>
<tr>
<td>hetero- and homonuclear decoupling</td>
<td>110–111</td>
</tr>
<tr>
<td>high-field-seeking states</td>
<td>11</td>
</tr>
<tr>
<td>high resolution electron energy loss spectroscopy (HREELS)</td>
<td>392</td>
</tr>
<tr>
<td>high resolution imaging, TEM</td>
<td>816–820</td>
</tr>
<tr>
<td>high resolution transmission electron microscopy (HRTEM)</td>
<td>289, 816–820</td>
</tr>
<tr>
<td>hole-burning spectroscopy</td>
<td>712</td>
</tr>
<tr>
<td>homodyne detection</td>
<td>657</td>
</tr>
<tr>
<td>homoenergy transfer</td>
<td>727</td>
</tr>
<tr>
<td>hopping motion</td>
<td>193, 194, 204–216, 223–224, 347</td>
</tr>
<tr>
<td>Howie Whelan equations</td>
<td>815, 816</td>
</tr>
<tr>
<td>HREELS see high resolution electron energy loss spectroscopy</td>
<td></td>
</tr>
<tr>
<td>HRTEM see high resolution transmission electron microscopy</td>
<td></td>
</tr>
<tr>
<td>Hund’s rules</td>
<td>371, 768</td>
</tr>
<tr>
<td>hybrid materials</td>
<td>745</td>
</tr>
<tr>
<td>hydrodynamic focusing</td>
<td>716, 717</td>
</tr>
<tr>
<td>hyperfine (hf) interactions</td>
<td>161, 333, 357, 377–378</td>
</tr>
<tr>
<td>hyperfine sublevel correlation spectroscopy (HYSCORE)</td>
<td>170–171, 180, 187</td>
</tr>
<tr>
<td>HYSCORE see hyperfine sublevel correlation spectroscopy</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td></td>
</tr>
<tr>
<td>image contrast, TEM</td>
<td>813–816</td>
</tr>
<tr>
<td>impedance analysis</td>
<td>597–599</td>
</tr>
<tr>
<td>impedance spectroscopy</td>
<td>192, 197–198, 226–227</td>
</tr>
<tr>
<td>impulsive stimulated Raman scattering (ISRS)</td>
<td>657–662</td>
</tr>
<tr>
<td>indexing, powder diffractometry</td>
<td>287</td>
</tr>
<tr>
<td>indirect magnetic dipolar interactions</td>
<td>94</td>
</tr>
<tr>
<td>inelastic mean free path</td>
<td>480, 489</td>
</tr>
<tr>
<td>inelastic scattering</td>
<td></td>
</tr>
<tr>
<td>– SANS</td>
<td>310</td>
</tr>
<tr>
<td>– MBS</td>
<td>353, 387</td>
</tr>
<tr>
<td>– EELS</td>
<td>392–399, 799</td>
</tr>
<tr>
<td>– Raman</td>
<td>423–425, 715</td>
</tr>
<tr>
<td>– XPS</td>
<td>481, 489, 495, 519</td>
</tr>
<tr>
<td>– TEM</td>
<td>808</td>
</tr>
<tr>
<td>infrared (IR) pump–probe spectroscopy</td>
<td>647–653</td>
</tr>
<tr>
<td>infrared (IR) spectroscopy</td>
<td>202–204, 445–475</td>
</tr>
<tr>
<td>IR spectroscopy of solid samples</td>
<td>446–447</td>
</tr>
<tr>
<td>insulator-to-metal transition</td>
<td>338</td>
</tr>
<tr>
<td>inter-band transition</td>
<td>394, 399</td>
</tr>
<tr>
<td>intensity versus voltage (IV) curve</td>
<td>631</td>
</tr>
<tr>
<td>interface analysis, XPS</td>
<td>501–503</td>
</tr>
<tr>
<td>interfaces</td>
<td></td>
</tr>
<tr>
<td>– metal/electrolyte</td>
<td>604, 607, 608, 623</td>
</tr>
<tr>
<td>– metal/semiconductor</td>
<td>344, 499–502</td>
</tr>
<tr>
<td>– semiconductor/electrolyte</td>
<td>487</td>
</tr>
<tr>
<td>– semiconductor/semiconductor</td>
<td>501, 502</td>
</tr>
<tr>
<td>– solid/liquid</td>
<td>487, 488</td>
</tr>
<tr>
<td>– solid/solid</td>
<td>486, 487</td>
</tr>
<tr>
<td>interference</td>
<td></td>
</tr>
<tr>
<td>– FTIR</td>
<td>203, 456–458</td>
</tr>
<tr>
<td>– EXAFS</td>
<td>243</td>
</tr>
<tr>
<td>– X-ray</td>
<td>273–274</td>
</tr>
<tr>
<td>– SANS, SANS</td>
<td>298, 300, 301</td>
</tr>
<tr>
<td>– EELS</td>
<td>407, 408</td>
</tr>
<tr>
<td>– SIMS</td>
<td>558–560</td>
</tr>
<tr>
<td>– LEED</td>
<td>626–627, 631–632</td>
</tr>
<tr>
<td>– vibrational pump–probe spectroscopy</td>
<td>654, 660</td>
</tr>
<tr>
<td>– THz</td>
<td>695</td>
</tr>
<tr>
<td>– SQUID</td>
<td>763</td>
</tr>
<tr>
<td>– TEM</td>
<td>810–812</td>
</tr>
<tr>
<td>interferometry</td>
<td>202–204, 456–460</td>
</tr>
<tr>
<td>intermolecular interactions</td>
<td>661, 670</td>
</tr>
<tr>
<td>internal interactions, NMR</td>
<td>94</td>
</tr>
<tr>
<td>intersystem crossing (ISC)</td>
<td>376, 714, 718</td>
</tr>
<tr>
<td>inverse photoelectron spectroscopy (IPES)</td>
<td>520, 549</td>
</tr>
<tr>
<td>ion-dip spectroscopy</td>
<td>38–40</td>
</tr>
<tr>
<td>ion dynamics</td>
<td>192</td>
</tr>
<tr>
<td>ion energetics, mass spectrometry</td>
<td>72–77</td>
</tr>
<tr>
<td>ionic conductivity</td>
<td>193</td>
</tr>
<tr>
<td>ionic liquids see substance and sample</td>
<td></td>
</tr>
<tr>
<td>ionic solids see substance and sample</td>
<td></td>
</tr>
<tr>
<td>ionization</td>
<td></td>
</tr>
<tr>
<td>– above threshold ionization</td>
<td>42</td>
</tr>
<tr>
<td>– anion photodetachment</td>
<td>72</td>
</tr>
<tr>
<td>– electrospray (ES)</td>
<td>70–71</td>
</tr>
<tr>
<td>– methods</td>
<td>64–65, 67, 71</td>
</tr>
<tr>
<td>– multiphoton ionization</td>
<td>32–38</td>
</tr>
<tr>
<td>– single-photon ionization</td>
<td>31–32</td>
</tr>
<tr>
<td>– strong-field ionization</td>
<td>41–45</td>
</tr>
<tr>
<td>– threshold ionization</td>
<td>30–31, 39–42, 72–75</td>
</tr>
<tr>
<td>– tunneling ionization</td>
<td>43</td>
</tr>
</tbody>
</table>
Index

ionization energy 31–32, 40–43, 53–56, 64, 75–76, 399, 479
isomers
– populations 371
– selection 49
– structural 7–8, 45–48
isomerization 75, 133–134, 262, 263
ion milling 803–805
ion sputtering 485, 550–551
ion structures, mass spectrometry 69–72
ion transfer reaction 607
IPES see inverse photoelectron spectroscopy
irreversible photobleaching 714
IR spectroscopy see Fourier transform infrared spectroscopy
isomer shift, MBS 359–362
ISRS see impulsive stimulated Raman scattering

J
Jablonski diagram, fluorescence 713, 714

K
Kikuchi lines 811
kinetic method 64–65
kinetic THz absorption spectroscopy (KITA) 706–708
KITA see kinetic THz absorption spectroscopy
Knight shift 95
Kossel–Möllenstedt diagrams 808
Kubelka–Munk model 449–453

L
Lambert-Beer’s law 232, 449–454, 693, 695, 702
Lamb–Mössbauer factor 355
Landau levels 163, 184–185
Landau–Teller theory 676, 677
Landau quantization 163
laser ionization spectroscopy
– collisional and rotational energy effects 54
– conformer selection 39–40
– femtosecond and nanosecond pulses 46–47
– femtosecond laser mass spectrometry 48–50
– fragmentation pattern 47
– ion-dip spectroscopy 38–39
– principles 30–31
– pulsed-field ionization 39–41
– resonance enhanced multiphoton ionization (REMPI) 32–38
– single-photon ionization 31–32
– state-selected ions 51–54
– strong-field ionization 41–45
– trace analysis 50–51
– zero electron kinetic energy (ZEKE) spectroscopy 41–42
laser induced fluorescence 18
lasers
– femtosecond 30, 42, 46, 48–49, 691, 692
– gas lasers 429
– Nd:YAG laser 32, 429
– p-Ge laser 689–690, 702
– quantum cascade lasers 689
lattice vectors 275, 627–630, 634–637
Laue
– classes 277, 279
– equation 627–631, 810
– zones 807
Laue condition 631
Le Bail method 287–290
LEEM 531
LEED see low-energy electron diffraction
lens aberrations 802–803
ligand field 371–379, 412–413, 769–770
ligand-field effects 769–771
light-induced excited spin state trapping (LIESST) 371, 376
light sources
– femtosecond 30, 42, 46, 48–49, 691–692
– gas lasers 429
– p-Ge laser 689–690, 702
– globar 455
– Nd:YAG laser 32, 429
– quantum cascade lasers 689
– Raman spectroscopy 429–430
– γ radiation 356
– THz sources 688
linear response theory 204–207
Lippincott–Schroeder potential 664, 665
Lorentz contrast microscopy 526
low-energy electron diffraction (LEED) 625–642
– adsorbates 634–636
– disordered layers 639–640
– energy conservation 629
– Laue equation 627–631
Index

– LEED-IV structure determination 637–639
– instrumentation 632–633
– intensity versus voltage (IV) curves 630–631
– reciprocal lattice vectors 627–629
– spot profile analysis 631–632, 636–637
– superstructures 630
– surface periodicity 627
– unit cells 627, 628
– low-field-seeking states 11

m
magic angle
– infrared pump–probe spectroscopy 651–652
– spinning (MAS) 100–101, 117
magnetically condensed systems 771–773
magnetically dilute systems 768–771
magnetic dipole–dipole interactions 93–96, 100–104, 110–120, 123, 125, 128–131, 147–148
magnetic dipole moment 332, 363–364, 764–766
magnetic dipole splitting 364–366
magnetic materials see substance and sample index
magnetic quantities and units
– magnetic dipole moment 764–766
– magnetic field 766
– magnetic susceptibility 766, 778–780
– magnetization 766
magnetic screening 93–96, 145–146
magnetic shielding anisotropy 145
magnetism
– antiferromagnetism 774–776
– Curie paramagnetism 766
– diamagnetism 766
– ferrimagnetism 776–777
– ferromagnetism 773–774
– magnetically condensed systems 771–773
– magnetically dilute systems 768–771
– metamagnetism 781–783
– nuclear 89
– Pauli paramagnetism 767
– paramagnetism 766–767
– single-molecule magnets 173–175, 788–790
– superparamagnetism 783–785
– temperature-independent paramagnetism (TIP) 767
magnetometry 763–795
magnetron sputtering 484, 490, 498, 503
manipulating the molecular motion of complex molecules 3–28
manipulation of polar molecules 9–10
mass analyzers 66
mass of monolayers 581
mass spectrometer 66–68
– quadrupole 12, 68, 555, 556
– time-of-flight (TOF) 16–17, 45, 58–59, 68, 75, 552, 555, 570–571
mass spectrometry (MS) 48–49, 63–84, 547–574
– charge-tagging methods 78–79
– collision induced dissociation (CID) 72–73
– electrospray ionization (ESI) 70–71
– electron-transfer reactions 77–78
– femtosecond-laser mass spectrometry 48–49
– gas-phase basicities 65
– ion catalysis 79–80
– ion chemistry 69
– ion energetics 73–77
– ionization methods 67, 71
– ion structures 69–72
– kinetic method 64–65
– neutral molecular reactions
– neutralization–reionization mass spectrometry (NRMS) 77–78
– secondary ion mass spectrometry (SIMS) 547–574
– thermochemistry of gaseous ions 76–77
– threshold ionization 73–76
maximum entropy method (MEM) 290
MBS see Mössbauer spectroscopy (MBS)
mean square displacement 216–217, 274, 557, 729–731
mechanical shear impedance 598
MES see Mössbauer emission spectroscopy (MES)
metal deposition 582–583, 589–591, 614–620
metamagnetic materials 781–783
MFP see molecular force probe
Michelson interferometer 202, 456
microbalance 575–600
micromanipulating the molecular motion of complex molecules 3–28
microcrystal structure 283
micro-electromechanical system (MEMS) 750, 752, 757
micro-LEED 641
micromechanical cantilever 605, 738–745
micro-Raman spectroscopy 434, 436–438
microscopy
– confocal 434, 437
microscopy (contd.)
– fluorescence 718, 720
– optical resolution 713
microspectroscopy 516, 517
MIGRATION see mismatch generated relaxation for the accommodation and transport of ions
mismatch generated relaxation for the accommodation and transport of ions (MIGRATION) 213–216
molecular alignment and orientation 13–15
molecular beams 4–8, 11, 15–21, 50, 484, 750, 754
molecular dynamics simulation 102, 249, 667, 680, 695
molecular ensemble alignment and orientation 13–15
molecular force probe (MFP) 741–743, 746–749
molecular-frame photoelectron angular spectroscopy 22–23
molecular motion of complex molecules 3–28
molecular motion
– alignment and orientation, molecular ensembles 13–15
– alternating-gradient deceleration 18
– alternating-gradient focusing 17
– cluster and biomolecules deflection 18–19
– conformer selection 19–21
– controlled molecules 4
– deflection 15–17
– large neutral molecules, gas phase 6–8
– molecular beams 4–8
– high-field-seeking quantum states 11–12
– low-field-seeking quantum states 11
– molecular-frame photoelectron angular distributions 22–23
– three-dimensional orientation 20–22
Mössbauer emission spectroscopy (MES) 377–379
Mössbauer isotopes 353–354
Mössbauer spectrometer 355–356
– transmission geometry 358
– backscattering geometry 358
Mössbauer spectroscopy (MBS)
– Doppler effect 357–358
– electric monopole interaction 359–362
– electric quadrupole interaction 362–363, 365–368, 375
– high spin / low spin complexes 361–362, 371–373
– hot atom chemistry 380
– hyperfine interaction 357, 364, 377–378
– isotopes and periodic table 353–354
– industrial applications 380–381
– ligand electronegativity effect 370
– magnetic dipole interaction 364–366
– nuclear decay-induced excited spin state trapping (NIESST) 379
– nuclear decay scheme 356–357
– portable miniaturization 382–387
– principles 353–356
– resonant excitation and de-excitation modes 358–359
– switchable molecules, spin crossover 371–376
– thermal spin transitions 377, 379
multicolor REMPI schemes 32
multi-dimensional NMR 105–109
multiplex FT EMR spectroscopy 169
multivariate curve resolution (MCR), Raman spectrum 440
n
nano-diffraction 283, 807
nanosystems see substance and sample index
NCL see nearly constant loss
nearly constant loss (NCL) effect 211–212, 224–227
Néel temperature, T_N 771
NEMCA see non-Faradaic electrochemical modification of catalysis
Nernst potential 615
neutralization-reionization mass spectrometry (NRMS) 77–78
neutron diffraction 272, 291–293
neutron scattering 291, 293, 309–314
neutron sources 277–278, 313–314
NMR see nuclear magnetic resonance
non-ambient diffraction 291, 292
non-Arrhenius depedence 217–218, 669
non-classical light, SMFS 723–725
non-Faradaic electrochemical modification of catalysis (NEMCA) effect 534–535
nonlinear dynamics 527
NOx storage reduction (NSR) technology 463–464
NRMS see neutralization-reionization mass spectrometry
NSR see NOx storage reduction
nuclear decay-induced excited spin state trapping (NIESST) 379
nuclear electric quadrupolar interaction
nuclear magnetic resonance (NMR) spectroscopy 87–158
nuclear magnetism 89
nuclear reaction analysis (NRA) 549
nuclear Zeeman effect 90, 94, 99, 148–149, 170, 185–186, 363–365
numerical aperture (NA) 434, 766, 798

O
OHD-OKE see optically heterodyne detected optical Kerr effect
OKE see optical Kerr effect
optical Kerr effect (OKE) 658–662, 667–669
optical beam deflection 739–740
optical density 650–653
optical electronic rectifier 689
optically heterodyne detected optical Kerr effect (OHD-OKE) 660–662
orientation of molecular ensembles 13–15, 20–22
oscillating electrochemical reactions 592–593
oxidation state
– ELNES 406, 410
– MBS 359–361, 363
– XANES 244–246
– XAS 264–265
– XPS 493–494, 506

P
PAC see perturbed \(\gamma-\gamma \) angular correlation
pair distribution function (PDF) 290–291
paramagnetism 766–767
partial density of states 491–492
pass energy 507
Patterson method 279
Pauli paramagnetism 767
PEEM see photoelectron emission microscopy
PEM see photoelectron microscopy
periodic table
– NMR 88, 94, 97–99, 149
– PAC 333–334, 339–345
perturbed \(\gamma-\gamma \) angular correlation (PAC)
– diffusion studies 345–347
– \(\gamma \) ray emission 329–332
– instrumentation 335–336
– isotope selection 326, 328
– local magnetic fields 337–338
– magnetic interactions 334–335
– nuclear decay 326–327
– PAC isotopes 328
– quadrupolar interactions 333–334
– spin transitions 338–340
– structural refinements 340–341
– surface studies 341–342
– thin film reactivity 343–344
– phase matching 654, 655
phonon scattering 394
photoelectric effect 237, 479, 517, 543
photoelectron emission microscopy (PEEM) 523–526
photoelectron microscopy (PEM) 513–546
– chemical waves 526–533
– dark field imaging 533, 534
– electrode reactions 534–538
– electrochemical spill-over pumping 537, 538
– electrochemical promotion of catalysis (EPOC) 534
– free electron laser 537–538
– low energy electron diffraction (LEED) 531, 532
– instrumentation 522, 524
– non-Faradaic electrochemical modification of catalysis (NEMCA) 534–535
– photoelectron emission microscopy (PEEM) 523–526
– potentials and work function 543–544
– principles 515–517
– scanning photoelectron microscopy (SPM) 522–523
– surface analysis 515, 516
– synchrotron radiation 541, 542
– time-of-flight (TOF) PEEM 538–539
– ultraviolet photoelectron spectroscopy (UPS) 504–505, 519–520
– X-ray photoelectron spectroscopy (XPS) 521
photoelectron spectroscopy 477–512, 515–521
– adsorption, UPS 503–505
– Auger transitions 482, 483
Index

photoelectron spectroscopy (contd.)
– core level binding energy shifts (chemical shift) 493–495, 501–503
– composition analysis 488–491
– binding energy 481
– elemental analysis 488, 521
– kinetic energy, of photoelectrons 481
– inelastic mean free path, of electrons 480–481
– instrumentation 479, 480, 506–508
– interfaces analysis 486–488
– sample preparation 483–488
– surface potential changes 495–500
– surface sensitivity 481
– ultraviolet photoelectron spectroscopy (UPS) 504–505, 519–520
– valence band spectra 504–505
– X-ray photoelectron spectroscopy (XPS) 483–486, 492–501
photo-excited radicals 169
photo-induced electron transfer (PET) 169, 727–728
photoionization see ionization
photon-pair autocorrelation function 723, 724
photon sources 506–507
photostability/photobleaching 714, 720
photosynthetic reaction centers 169
photovoltaic 497, 499–501
piezoelectricity 576–578
plasmon excitations 398, 439, 481, 489, 495
plasmon scattering 394
point spread function (PSF) 719, 817
Porod’s law 306
population (vibrational population) 651, 654
potential energy surface 6–8, 65, 665, 747
powder diffractometry 278–280, 283–293
power-law 209, 213, 698–699
Praying Mantis system 460, 461
precession 89–96, 145, 163
precession electron diffraction technique 283, 813
pressure gap 539
principle component analysis (PCA), Raman spectrum 440
probe-pulse 652
proton induced gamma-ray emission (PIGE) 549
pulsed EMR 163, 168–172
pulsed-field ionization (PFI) 39–41
pulsed-field ionization-zero electron kinetic energy spectroscopy (PFI-ZEKE) 41
pump-induced absorption / emission 647–653, 681
pump-probe spectroscopy, see also infrared
pump-probe spectroscopy; vibrational
pump-probe spectroscopy, femtosecond (time-resolved) vibrational spectroscopy
– anisotropy (orientational anisotropy, transient anisotropy) 652–653
– coherence (vibrational coherence) 647, 648, 653, 654, 656, 659
– diagrammatic representation 647
– differential optical density (ΔOD) 650, 652
– energy level diagram 654, 656
– excited state absorption 671, 676
– ground state bleach 649, 650, 653
– magic angle 651, 652
– optical density 651, 652
– population (vibrational population) 651, 654
– probe-pulse 652
– pump-probe time trace 650
– pump-pulse 652, 659
– stimulated emission 649–650, 680–681
– time-ordered diagram 647, 653, 659
– transient absorption 648–640
– transient spectrum 680
pump-probe time trace 650
pump-pulse 652, 659
q
q-bit 182
quadrupole splitting
– NMR 88, 94, 97–99, 149
– PAC 333–334, 339–345
quantitative analysis 392, 401, 426–427, 453, 471, 488
quantum-level structure of large molecules 7–8
quantum numbers
– electron spin 58, 160–161, 165, 169, 175, 182–183
– electron orbital momentum 56, 58
– Landau 177, 184, 185
– photon 332
– principal 56
– rotational 8–11, 35, 53–57
– vibrational 36, 648
quantum states 8–10
– electronic states 7
– energy level structure 8–10
– high-field-seeking 11–12
scanning probe microscopy (SPM) (contd.)
– imaging in solution 745–746
– micromechanical cantilever 738–745
– resonance frequency 740, 743, 751
– scanning force microscopy (SFM) 738, 745–746
– surface stress 743–744
– thermochemistry 754–756
– (un)binding forces and off-rates 741–743, 746–749
– working principle 739–740
scanning tunneling microscope (STM)
603–624
– adsorption 607–608
– electron potential 609
– electron / ion transfer 607
– electric double layer 607–608
– electron tunneling 622–623
– experimental methods 609–610
– instrumentation 606
– history 621–622
– principles 605–606
– ordered adlayers 613–614
– reconstruction of surfaces 611–613
– surface nanostructuring 618–620
– underpotential deposition 615
scattering
– coherent anti-stokes raman scattering (CARS) 653–657
– electron 625, 631, 637, 799, 820
– impulsive stimulated raman scattering (ISRS) 657–662
– multiple, EXAFS 243–244
– neutron 291, 293, 309–314
– nuclear, MBS 352, 387
– phonon and plasmon scattering 394
– resonant 291, 438
– Raman 423, 715
– Rayleigh-wing scattering 658
– Rutherford back-scattering (RBS) 548, 549
– X-ray 273–275
scattering coefficient / module 449–453
scattering length 274–275, 301–311, 319, 320, 323
scattering form factor 274–275, 302–305, 320–321, 396
scattering vector 279, 291, 299–305, 316, 396–397, 636, 689–810
Scherzer defocus value 818–819
Schottky barrier 498, 502
secondary electron yield 523, 525, 536
secondary ion intensity 552–555
secondary ion mass spectrometry (SIMS)
– capabilities 550–551
– diffusion studies 556–565
– depth profile analysis 558–560, 563–568
– elemental distribution 568
– instrumentation 554–556
– ion sputtering 550–551
– mathematics of diffusion 571–573
– nuclear reaction analysis 549
– principles 548–553
– proton induced gamma-ray emission 549
– Rutherford back-scattering 548–549
– secondary ion mass spectrum 552, 557, 563
– time-of-flight (TOF) mass spectrometer 570–571
– vacuum conditions 569–570
selected area electron diffraction (SAED) 801, 806–808, 813–814
selection rules
– magnetic dipole transitions 364
– nuclear transitions 329, 332
– optical transitions 33–36
– parity allowed/forbidden transitions 245, 376
– Raman scattering 426
– spin transitions 165, 175, 185, 376
self-assembled monolayers (SAMs) see substance and sample index
semiconductors see substance and sample index
SEM see scanning electron microscopy
SERS see surface-enhanced Raman spectroscopy
SFM see scanning force microscopy
shear mode oscillator 578, 596, 597
SIMS see secondary ion mass spectrometry
single crystal analysis, diffraction 278–283, 806–808, 813–814
single crystals see substance and sample index
single-molecule detection (SMD) 712, 713
single-molecule fluorescence spectroscopy (SMFS) 711–713
– background and noise 715–716
– blinking 718
– confocal microscopy 715–723
– fluorescence lifetimes 720
– fluorescence microscopy 713, 717–721
– fluorophor and photophysical processes 713, 714
– Fick’s second law 729–730
– Förster resonance energy transfer (FRET) 726–727
– history 712–713
– Jablonski diagram 713–715
– instrumentation 716–721
Index

– non-classical light 723–725
– photoelectron transfer (PET) 721, 727–728
– photophysics 725–729
– random walk, single molecules 731
– single-molecule tracking 729–732
– single quantum systems 721–723
– time-correlated single-photon counting (TCSPC) 720–721, 724

single-molecule magnets see substance and sample index

single-molecule microscopy 711
single-molecule tracking, SMFS 729–732
single quantum systems, SMFS 721–723
site-directed spin-labeling (SDSL) 180–181
small-angle neutron scattering (SANS) 298–306, 318–322
small-angle scattering (SAS) 297–324
– basic assumptions 300
– contrast variation, SAXS and SANS 311–312, 321, 323
– Guinier approximation 304–305, 323
– interference pattern calculation 301–306
– length scales, SANS and SAXS 298–299
– microemulsions 317–322
– nanopores 314–317
– Porod’s law 306
– SAXS instrumentation 306–309
– SANS instrumentation 309–314
– scattering geometry 300
– scattering length 306–307, 310–311
– scattering vector 300–301
– small-angle neutron scattering (SANS) 298–306, 318–322
– small-angle X-ray scattering (SAXS) 298–306, 315–317
– theory of small-angle scattering 300–306
– Zimm approximation 305–306
small-angle X-ray scattering (SAXS) 298–306, 315–317
SMFS see single-molecule fluorescence spectroscopy

Snell’s law 719

soft ferromagnetic material 774
soft ionization methods 67
solar cells 169, 478, 491, 492, 501, 805
solid state chemistry 393–394
solid state nuclear magnetic resonance (NMR) spectroscopy 87–158
– chemical shift 90
– coherence transfer techniques 109–110
– cross-polarization 109
– double-quantum coherences (DQC) 110–118
– free induction decay 90–92
– glasses 120–131
– heteronuclear correlation (HETCOR) spectra 110
– hetero- and homonuclear decoupling 104–105
– internal interactions 94–99
– Larmor frequency 89
– Lee–Goldburg sequence 105–106
– magic-angle spinning (MAS) 100–101
– multi-dimensional NMR 105–99
– multiple-quantum correlation (HMQC) 119–120
– radio frequency driven recoupling (RFDR) sequence 112
– reconversion rotor encoding (RRE) 115, 117
– recoupled polarization transfer (REPT) 119–120
– recoupling of magnetic dipole–dipole interactions 110–120
– relaxation phenomena 92–94
– rotational echo double resonance (REDOR) 116–119
– sample spinning techniques 100–103
– signal excitation and detection 90–92
– spin echo decay methods 103–104
– supramolecular systems 131–144
– surfaces 142–144
– two-dimensional exchange spectroscopy (EXSY) 105–106
– Zeeman interaction 89
– zero-quantum (ZQ) coherences 110
solvation dynamics 702–706
space focusing condition 59–60
spallation sources 313–314
specific anion adsorption 604
spectromicroscopy, PEM 516, 517
specular reflection, DRIFTS 448, 449
SPEM see scanning photoelectron microscopy
spin and charge recombination 169
spin crossover, MBS 370–376
spin echo 93, 99–107, 123–125, 145–148, 162, 172, 185–186
spin echo double resonance (SEDoR) 124–126, 147, 148
spin echo decay 103–104
spin echo formation 93, 99
spin–orbit coupling 161–163, 376, 481–482, 766, 768
spin transition 162, 170, 185, 338–340, 371–379
SPM see scanning probe microscopy
spot profile 631–632, 636–637
spring constant 740, 747–748
SQUID see superconducting quantum interference device
Stark decelerator 11
Stark effect 9–10
– electromagnetic high-frequency AC fields 12–13
– electrostatic deflector 20, 21
– high-field-seeking quantum states 11–12
– low-field-seeking quantum states 11
static SIMS 555–557
sticking coefficient 483, 570
stimulated emission 429, 649, 650, 680, 681, 689
STM see scanning tunneling microscope
Stoney’s formula 744
stroboscopic detection 647
strong-field ionization 41–45
structural disorder 192, 213
structure refinement residuals 280–281
sublattice 174, 274, 347, 774–777
Summerfield scaling 207, 211, 218
superconducting quantum interference device (SQUID) 763
superconducting quantum interference device (SQUID) magnetometers 763–795
– alternating current (AC) method 778–780
– Brillouin function 767
– Curie’s law 768
– description 763–764, 777
– direct current (DC) method 777–778
– magnetometry at high fields 780–781
– magnetic materials 773–776
– magnetic quantities and units 701–768
– magnetic dipole moment 764–766
– metamagnetic materials 780–783
– single-molecule magnets 787–790
– spin glasses 785–787
– superparamagnets 783–785
superconductivity 247–249, 293, 412, 764, 781
superconductors see substance and sample index
superparamagnets 783–785
supersonic expansion see molecular beam
superstructure matrix 630
superstructures (commensurate or incommensurate) 630
supramolecular organization 137, 139
supramolecular systems see substrate and sample index
surface analysis 341, 484, 515–516, 556, 626
surface core level binding energy shifts 493
surface crystallography 627, 640
surface-enhanced Raman spectroscopy (SERS) 438–440
surfaces and thin films see substance and sample index
surface lattice 627, 630
surface nanostructuring, STM 618–620
surface periodicity and reciprocal lattice 627–629
surface potential 495–503, 505, 543
surface potential, XPS 495–503, 543
surface reaction 462, 513–544
surface reconstruction 493, 611–612
surface roughness 316, 582, 585–586
surface sensitivity 325, 478–481, 486, 490, 519, 547, 711
surface stress 743–744, 752–753
surface structure determination 638, 641
surface topography contrast, UV-PEEM 525
synchrotron induced X-ray photoelectron spectroscopy (SXPS) 487
T
TCSPC see time-correlated single photon counting
TEM see transmission electron microscopy
temperature independent paramagnetism (TIP) 767
temperature programed desorption (TPD) 471
terahertz radiation 169
thermochemistry
– ion energetics, mass spectrometry 72–77
– formation energies 754–755
– solid–solid phase transitions 756
– state selected ions 53
tree phase boundary 535–537
THz-pump–THz-probe spectroscopy 658
THz spectroscopy 687–710
– absorption coefficient 696–697, 702–705
– applications 708–709
– Beer’s law 693, 695
– biomolecule solvation 699–702
– dipole moment autocorrelation function 696–697
– dynamical reorientation 699–702
– hydration shell 701, 705, 706
– kinetic THz absorption spectroscopy (KITA) 706–708
– instrumentation and technology 687–691, 702
– solvated proteins 705–706
– THz gap 688
– THz time domain spectroscopy 669, 691–694
– vibrational density of states 697–699
time-correlated single photon counting (TCSPC) 720–721, 724
time differential perturbed angular correlation (TDPAC) 331
time-of-flight mass spectrometry (TOF-MS) 16–17, 45, 58–59, 68, 75, 552, 555, 570–571
time-of-flight photoelectron emission microscopy (TOF-PEEM) 538–539
time-ordered diagram 647, 653, 659
time correlation functions 192, 213
time-resolved ion dynamics 192
TIP see temperature independent paramagnetism
TOF-MS see time-of-flight mass spectrometry
TOF-PEEM see time-of-flight photoelectron emission microscopy
trace analysis 30, 46, 50–51
tracer diffusion 556–559, 562–564, 571–572
transient absorption 648–650
transient spectrum 680 see also pump-induced (femtosecond) infrared spectra
transition state see potential energy surface transmission electron microscopy (TEM) 797–821
– Abbe resolution limit 798–799
– atomic scattering factor 808–809
– Bragg’s law 810
– bright field (BF)/dark field (DF) imaging 814–815
– components 799–802
– convergent beam electron diffraction (CBED) 807–808
– dynamical theory 812
– electron diffraction 806–813
– high resolution transmission electron microscopy (HRTEM) 816–820
– history 798
– Howie Whelan equations 815, 816
– Laue criterion 810
– lens aberrations 802–803
– intensity distribution 811–812
– image contrast 813–816
– numerical aperture (NA) 798
– Scherzer defocus value 818–819
– selected area electron diffraction (SAED) 801, 806–808, 813–814
– specimen Preparation 803–806
– scanning electron microscopy (SEM) 797–798
– structure factor 809–810
tunneling spectra
– DRIFTS 447–451
– EMR 175–176
– MBS 358, 368, 367, 373–381
– THz 695
turnover number (TON) 80

u
ultra-high vacuum (UHV) conditions 483, 569–570
ultraviolet photoelectron spectroscopy (UPS) 479, 504–505, 518–520
ultraviolet–visible (UV-VIS) spectroscopy 261–263, 374–375
unbinding force 741–743, 746–749
underpotential deposition 615–616, 621
undulator 307, 522, 542
unimolecular dissociation reaction 75, 78–79, 746–747
unit cell 178, 274–279, 289, 415, 529, 532, 576, 611, 627–641, 774, 798, 809–811
universals in diffusion
– first 209–210, 212–220
– second 210–212, 220–227
UPS see Ultraviolet photoelectron spectroscopy
UV-VIS see ultraviolet–visible

v
vacuum level 497, 502, 518, 543
valence electron energy loss spectroscopy (VEELS) 398, 409
van Hove singularity 167, 177
van Vleck equation (NMR) 147–148
valence electron energy loss spectroscopy (VEELS) 398
van’t Hoff isotherm 744
van Vleck paramagnetism 767
van Vleck formula 104, 147, 151–152
VEELS see valence electron energy loss spectroscopy
velocity correlation function 193, 207, 213–214
vibrational density of states 697–699
vibrational dynamics 678–682
vibrational energy relaxation (VER) 666, 669–677, 713–714
vibrational pump–probe spectroscopy
 – coherent anti-stokes raman scattering (CARS) 653–657
 – degenerate four-wave mixing 654, 658, 659
 – diffusive motion 651
 – homodyne detection 654–655, 657, 659
 – hydrogen bonding 663–667
 – impulsive stimulated raman scattering (ISRS) 657–662
 – infrared (IR) pump–probe spectroscopy 648–653
 – phase matching 654, 655
 – optical Kerr effect (OKE) 667–669
 – optically heterodyne detected Kerr effect (OHD-OKE) 660–662
 – Raman-induced optical Kerr effect (OKE) 657–662
 – Rayleigh-wing scattering 658
 – time-ordered diagrams 647, 653–654, 659
 – vibrational dynamics 678–682
 – vibrational energy relaxation (VER) 666, 669–677
voltamogram 591–592
volta potential 543

w
water see substance and sample index
waveguide spectroscopy 199–202
weak phase object approximation (WPOA) 817
Weiss constant 772
Wood notation 634
work function contrast, PEEM 525, 544
Wyckoff symbol 277

x
XANES see X-ray absorption near edge structure
X-ray absorption near edge structure (XANES) 238, 244–246, 253–254, 258–259, 526
XAS see X-ray absorption spectroscopy
XPS see X-ray photoelectron spectroscopy
X-Ray absorption spectroscopy (XAS) 231–269
 – extended X-ray absorption fine structure (EXAFS) 232–246
 – absorption edge 232
 – absorption coefficient 233
 – X-ray absorption fine structure (XAFS) 231
 – catalysis 233–262
 – energy level diagrams 236
 – experimental design 236–237
 – Fourier transformation 239–241
 – initial and final state 234
 – multiple scattering 243–244
 – oxidation state 244–246, 264–265
 – radial distribution function (RDF) 239
 – schematic representation 232, 234
 – structural parameters 235
 – X-ray absorption near edge structure (XANES) 238, 244–246, 253–254, 258–259
X-ray diffraction (XRD) 271–295
X-ray magnetic circular dichroism (XMCD) 526
X-ray photoelectron spectroscopy (XPS) 22–23, 483–486, 492–501, 518, 521
X-ray fluorescence (XRF) 236–237, 382
X-ray sources 277–278, 308, 479, 506–507
XRD see X-ray diffraction
XRF see X-ray fluorescence

z
Zeeman effect 182–183, 769
 – electronic 163–165, 175, 178, 182–183, 769, 791
 – nuclear 90, 94, 99, 148–149, 170, 185, 186, 363–365
ZEKE see zero electron kinetic energy
zero electron kinetic energy (ZEKE) spectroscopy 41–42
zero-field-splitting (ZFS) 162, 167–168, 174–179
zero order Laue zone 807
Zimm approximation 305–306