Index

a	affinity-selected material analysis 943-944
abstract shape analysis	Affymetrix Integrated Genome Browser 724
– applications 583–584	AFM. See atomic force microscopy imaging
– comparative	Agilent eArray system 796
– from aligned sequences 587–588	Ago2 immunoprecipitation, Western blot
– from unaligned sequences 588–592	analysis 1090
– definition 580–582	ALIFOLDZ algorithm 727
- functions 580	aliphatic isocyanates synthesis 160–161
– general caveats 582–583	altritol 1251
 probabilistic shape analysis 585–587 	AMBER (Assisted Model Building with Energy
 RNA folding space 579–580 	Refinement) program, MD simulation
 RNAlishapes parameter 593 	687, 695
- RNAshapes parameter 592-593	2'-amino approach
 shape representative structures computing 	– with aromatic isothiocyanates 158–159
581	– postsynthetic modification 156–158
acetal levulinyl ester (ALE) 130	 with aliphatic isocyanates 159
ADE2 gene 1071, 1080	– with succinimidyl esters 158
ADH1 promoter 1073	2'-amino-modified RNA postsynthetic labeling
3'-adapter	161–164
- ligation 862-863, 889-890	aminoglycosides 493-494
 preadenylated, for Illumina sequencing 	 as functional and structural probes
864-865	401-403
5'-adapter	amino-propyltriethoxy silane (APTES) 534
- ligation 869, 890-891	analytical crosslinking 246-247
 oligoribonucleotide, compatible with 	anion-exchange. See chromatography
Illumina sequencing 865	antibodies testing, for immunoprecipitation
Advanced Photon Source (APS) 409,	882
411–412	antifading agents 510–520
affinity matrices, for RNA binding proteins	antipeptide antibodies generation 958–962
isolation 921–924, 948–952	antisense (AS)
– applications	 accessible sites in target RNA/RNP, by
 – nuclear tRNase Z purification from wheat 	SELEX 1165-1166, 1169-1170,
germ 927–930	1180-1181
 – tRNA-splicing ligase purification from 	– binders, in SELEX 1100
wheat germ 930	– cis-AS RNAs 794
– materials 924–925	 kinetics of AS RNA:target RNA pairing
- methods 925-927	 low-abundance cis-antisense transcripts to
affinity purification. See chromatography	protein-coding genes 728

Handbook of RNA Biochemistry, Second Edition.
Edited by R.K. Hartmann, A. Bindereif, A. Schön, and E. Westhof.
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.

antisense (AS) (contd.) - ncRNA sequence alignment 789 - Northern blot probes 729, 747 oligonucleotide, phosphorothioate-modified - primer extension on RNA 774-776 - primer PCR 38-39, 755, 757-758, 760-761, 763, 768, 772, 1173-1174, 1177-1178 - regulation by sRNAs 739, 743 -- RybB-*ompC* interaction 767 - RNA elements favorable for AS pairing 740 - rRNA capture by AS oligonucleotides 722 - sRNA-mRNA interaction 719-720 - strand, e-shRNA, 1230 - strand, lhRNA 1226-1227, 1230 b - strand, shRNA 1225-1227 - strand, siRNA 1243-1245, 1249-1251, 1253-1255, 1263-1264 - strand of genome, microarrays 720 - strand transcription 1169 - to miRNAs, oligonucleotides 837 - to protein-coding genes, long ncRNAs 814 - to RNA/RNP, biotinylated oligonucleotides 178-180, 936-948, 957 – displacement DNA oligonucleotide 940, 945-948 - true and false AS transcripts 795 APART (Automated Pipeline for Analysis of RNA Transcripts) 1194-1196 aptamers 735-736 aptamer selection, against biological macromolecules 1097-1098 – general strategy 1098–1100 – carbohydrate targets 1101–1102 – library design and preparation 1103-1104 -- protein targets 1100-1101 - - selection arrays 1103 178 - 179- - suitable target choosing 1100-1102 - - target immobilization 1102-1103 - in vitro selection cycle 1104-1106 941-945 - protocols 1108-1131 selection outcome analysis 1106 3D architectures 667 S2S and Assemble 2668–673 -- installation 673-684 – semi-automatic architectures 672–673 - cell extracts 938 aromatic isothiocyanates 158-159 - methods arylazide photocrosslinking agent attachment, to 5'-terminal phosphorothioate 236-238 – nuclear extract depletion 951–952 - 3'-addition of arylazide photocrosslinking - - RNA-protein complexes affinity agent 238-240 purification 939-948

ASH1 gene 1080, 1082 Assemble 2671-672 - S2S 668-671 -- installation 673-684 – semi-automatic architectures 672–673 atomic force microscopy (AFM) imaging 527 - example protocol 537-538 - force spectroscopy 540-543 - of RNA structures - - experiment example for salt-dependent RNA folding 535-537 - - general preconditions 528-531 - - imaging in liquid 535 - - surface preparation conditions 531, 533-535 bacterial aging 743 bait 1067-1068, 1073, 1078, 1188 barcoded cDNA libraries for miRNA profiling, by next-generation sequencing 861-862 - method overview 862-863 -- materials 863-866 -- procedure 866-872 base-labile protecting groups deprotection BED sequence alignment format 823, 826 bimolecular transitions 452 - absorbance parameters temperature dependence 455 - basic equations about melting curves 454 entropic considerations 452–453 - fitting or shape method 456-457 - half-width method 456 higher order transitions - results 457-458 - slope method 455-456 binning 505-506 3'-biotinylated deoxyoligonucleotide biochemical studies and RNP affinity selection biotin attachment 120-121 biotin-based affinity purification of RNA-protein complexes 935-937 - affinity matrices 937-938 - biotinylated probes 937 - buffers and solutions 938-939

- specific RNA binding proteins affinity purification 948-951
- BLASTN program 598, 600-602, 623-624, 736, 808
- BLAST program 596, 598, 620, 625, 627, 726, $-\beta$ -galactosidase activity assay 788-789

Boltzmann weighting 433

BOWTIE sequence read alignment program 823, 826, 1196-1197

breathing 449

burst mode (smFRET) 500

BWA sequence read alignment program 823, 826

calf intestinal alkaline phosphatase (CIAP) 56-57, 172

CAN1 gene 1074

cantilever 528-529, 535, 538,

540-542

capillary electrophoresis (CE) 206-207, 220-221, 265

carbohydrate targets 1101-1102

CASP (Critical Assessment of techniques to protein Structure Prediction)

catalytic RNA 29, 33, 261, 304, 308

- cDNA library of ncRNAs. See also barcoded cDNA libraries for miRNA profiling, by nex-generation sequencing
- computational analysis of ncRNA sequences 811, 816
- construction and screening 804-808
- - exclusion of cDNAs for abundant known RNA species 808
- - Northern blot analysis 808
- sequence analysis 807–808
- specialized library 808-811
- RNA sample enriched by immunoprecipitation 809
- RT-PCR procedure with specialized primers 809-811
- PAR-CLIP 882-883
- preparation from recovered RNA fragments 889-893
- RNP-derived construction 814
- RNA preparation and construction of library 815-816
- - RNP extracts and glycerol gradient centrifugation preparation 814-815 cell lysate/extract
- affinity purification of RNA binding protein with immobilized RNA 735

- affinity purification of snRNPs and CA-repeat RNA binding factor with biotinylated antisense oligonucleotides 940-952
- crosslinking of RNA 241
- endogenous RNase activity 902
- EMSA 981
- immunoprecipitation/immunoaffinity chromatography of RNA binding proteins and RNPs 805, 882, 884, 986, 988-990, 1020-1021, 1090, 1093
- - formaldehyde-crosslinked 1017-1018, 1021-1022
- isolation of proteins associated with in vivo expressed tagged RNAs 736, 963, 966,
- magnetic beads for RNP affinity purification 938
- preparation 938
- ribosome-free (S100) 176

cell-penetrating peptides (CPPs) 1260

CHARMM (Chemistry at HARvard Molecular Mechanics), MD simulation 688, 695

- chemical RNA synthesis, purification, and analysis 129-132
- deprotection 136-138
- purification 138–139
- - anion-exchange HPLC purification 139 - 140
- -- desalting by HPLC 142-143
- trityl-on RNA detritylation 142
- - trityl-on RNA reversed-phase HPLC purification 140-142
- purified RNA analysis 143–144
- RNA solid-phase synthesis 132-136
- -- automated RNA synthesis 136
- -- manual RNA synthesis 134-136
- chemical sequencing 187-189
- chromatography
- affinity 921, 1191
- biotinylated antisense 2'-O-methyl RNA oligonucleotides to select RNPs via immobilization to streptavidin agarose 941-943, 976
- - 3'-biotinylated DNA oligonucleotides to affinity-purify RNAs via immobilization to streptavidin agarose 178-180
- -- Cibacron Blue, HighTrap Blue 927-931
- -- heparin 927-931
- - immunoaffinity using antipeptide antibodies specific to snRNPs 957-962, 976

chromatography (contd.)

- immunoaffinity using 5'-cap-specific antibodies 986
- - Ni-NTA agarose, proteins 1110-1111
- purification of RNA binding proteins (depletion of cell extracts) via biotinylated RNA and streptavidin agarose 948-952
- -- RNA aptamer-based affinity purification 963-971, 976, 986-993, 1006, 1008
- - SELEX, covalent target immobilization 1140-1146
- - SELEX, non-covalent target immobilization, biotinylated target captured via (strept)avidin matrix 1147
- -- tRNA-sepharose 927-931
- fast-performance liquid chromatography (FPLC) 21-23, 107, 112, 482, 976
- flash column (CH_2Cl_2), synthesis of aromatic isothiocyanates and aliphatic isocyanates 160
- gel (exclusion, permeation) chromatography, gel filtration 114-115, 121, 213, 320, 509, 927-929, 1110
- -- NAP columns 19, 80, 142, 146, 512
- -- Sephadex G-25 19, 142, 744, 1046, 1091
- -- Sephadex G-50 122, 323, 350, 403, 537,
- - Sephadex G-75 122
- -- spin column 122, 323, 350, 402-403, 744, 1046, 1091
- -- Superdex 200 930-931
- ion-exchange 235, 921, 930, 932, 1110
- - weak anion-exchange, diethylaminoethyl (DEAE) sepharose 18, 105, 107, 111 - 115
- -- DEAE, snRNP enrichment 938, 941, 945
- - strong anion-exchange 138-140, 928
- -- strong cation exchange 22-23, 930-931
- -- MonoQ 213, 976
- isocratic competitive affinity chromatography 1161-1162
- high-performance liquid chromatography (HPLC) 18, 132, 138-147, 162-166, 195, 290-291, 361, 471, 948, 1098, 1108, 1110, 1143
- - Dowex 50 cation-exchange, conversion of sodium to ammonium salt of RNA 146 - 147
- - oligoribonucleotide desalting with Sephadex G-25 142-143
- separation of peptides 929–930
- HPLC, anion-exchange 132, 138-140, 142-144, 146

- -- DEAE 235-237
- -- Dionex 471, 482-483
- HPLC, reversed-phase 132, 138, 140-145, 147, 162, 164-165, 512
- - analysis of ribonucleosides 893-896
- - of trityl-on RNA 138, 140-142
- - phosphorothioate stereoisomers 290-291
- ion-pair reversed-phase liquid chromatography (IP-RPLC) 142-143, 213
- thin-layer (TLC)
- cellulose acetate strips/DEAE cellulose 175. 190-194
- -- cellulose 195-197, 200-201
- - polyethyleneimine (PEI) 196, 201, 236
- ultra performance liquid chromatography (UPLC) 143-144
- circular potato spindle tuber viroid (cPSTVd)
- cleavage reactions by Tb³⁺ 256-258 click reaction 509
- between alkyne-containing RNA oligonucleotide and azide-functionalized fluorophore 511-512
- CLIP (crosslinking-immunoprecipitation) 899, 1088, 1199
- cloverleaf structure 76
- CLUSTALW program 598, 620
- COLORES program (SAXS) 418-419
- comparative genomics 836-837
- concatenation method 737
- concentration calculation, of RNA 60.
 - 1279 1281
- Cordycepin 182-183, 337-339. See radioactive labeling methods
- Coulombic field 319, 322
- coupling chemistries 119, 121-122
- covalent coupling of antibodies, to protein A sepharose 1047-1048
- covalent immobilization
- epoxy-activated matrices 1143-1145
- NHS-activated matrices 1145
- pyridyl disulfide-activated matrices 1146 covariance model (CM). See INFERNAL cross-correlation function (CCF) 419 crosslinking 8, 50, 1199. See also PAR-CLIP
- RNA-RNA crosslinking
- - disulfide crosslinking 156-160
- -- photocrosslinking for probing of RNA structure 231-233, 236, 238-244, 246-249
- RNA-matrix crosslinking 1048

- - EDC [1-ethyl-3-(3-dimethylaminopropyl)diethyl pyrocarbonate (DEPC). See also carbodiimide] crosslinking 89, 91-92, probing RNA structure 95-97, 100, 1091, 1094 - RNase-free water preparation 20, 59, 305, - RNA-protein crosslinking 736, 977 309-310, 313, 744, 803, 1107, 1173 – formaldehyde crosslinking 1017–1019. differential melting curve (DMC) 448, 450. 1021, 1026 451-452, 454, 456-457, 471-474 -- iCLIP 899-902, 904, 908 differential scanning calorimetry (DSC) -- UV 91, 363, 746, 883, 899-901, 905, 999, 453-454, 457-458, 462, 472 1003-1005, 1008-1009, 1026, 1029, diffusion elution 19 5'-digoxygenin (DIG)-labeled probes 89, 91, 1030-1038, 1040-1042, 1191 946, crude transcription reaction 105, 107, 114 cryo-electron microscopy (cryo-EM) structures - detection 95, 101-102 - DIG Easy Hyb Granules 97, 101, crystallization of RNA 481-482 - probe generation by T7 transcription using - assays evaluation 488-489 DIG-11-UTP 89, 92, 100-101 - complexes with organic ligands dimethylsulfate (DMS) modification. See 493-494 probing RNA structure optimization process 489, 491 divalent metal ion binding sites, in nucleic - purification 482 acid-metabolizing enzymes 397-398 - - gel electrophoresis 483-484 - probing 398 - - aminoglycosides as functional and -- HPLC 482-483 -- recovery 484 structural probes 401-403 - renaturation 485 - - Fe(II)-mediated hydroxyl radical cleavage - RNA constructs designing, with improved 398-399 crystallization capabilities 491-493 -- mapping 399-401 - search for conditions 485-488 DNAMAN sequence analysis program 811 CURVES+ program (conformational analysis DNase treatment 18, 53, 59-60, 67, 80, 83, of nucleic acids) 688, 703 213, 278, 745, 752, 769, 908, 980, 1009, 1111-1112, 1153, 1167-1168, 1172, 1176, 1179, 1190, 1216-1217 d 3DNA program (nucleic acid structure DAMAVER/DAMFILT/DAMMIF/DAMMIN analysis, rebuilding, and visualization) programs (SAXS analysis) 416-417 688, 703 DAp Goldstar[®] Polymerase (Eurogentec) DNA splint 49-52, 57-59, 66-70, 75, 78, 80, 1120 82-83, 286, 291-293, 338, 362 Dashboard 633, 636-639, 641, 650, 652, 657, DNAzyme 35, 380, 1166 659, 661-663 donor substrate. See ligation Debye-Hückel approximation 462 dot plot folding comparisons 565 decoy 636, 659-661, 1082, 1235 double-stranded RNA (dsRNA) 527, 530, deep sequencing. See next-generation 534, 537, 1221, 1254, 1256-1257 sequencing (NGS) dRNA-seq approach 722-724, 732 dephosphorylation protocols 180 dynamic programming 222, 552, 554-555, - DNA 5'-ends 110 572, 586, 604 - ribonucleoside preparation for HPLC analysis 895 - RNA 5'-ends 64, 181, 337-338, 350, 885, EDC crosslinking. See crosslinking 980 - RNA 3'-ends 39-40, 56-57, 121, 909 Edman degradation 929 deprotection 136-138 electroelution 19, 41, 223, 886, 888, 897, 1178 desalting, by HPLC 142-143 electron paramagnetic resonance (EPR) 319 detritylation 132, 138, 141-142, 145 - active probes 156 Diels-Alderase ribozyme 501 spin labeling reagent 4-isocyanato TEMPO diethylaminoethyl (DEAE) 107, 112-114, 176, 190–192, 235, 938, 941–943, 945, 1127 - spin probe/label TEMPO 159

electrophoretic mobility shift assay (EMSA) 924, 976-978, 981-985, 996, 998, 1005, 1010, 1067, 1103, 1106, 1124-1128, 1199

- method 977-978, 981-986

protein identification in RNP

- supershift method 983-984

Elutrap® 19

emacs (text editor system) 621, 625

EMSA. See electrophoretic mobility shift assay end heterogeneity of RNA 6, 29, 45, 54, 57, 84, 121, 223, 338

end-labeling of RNA 257, 346, 1130. See also radioactive labeling methods

- at 3'-end 33, 73, 181-182, 213, 378-379, 382-383, 385, 389, 980

- - with fluorescent dye 121, 509

-- with biotin 119-121

- at 5'-end 5-7, 10-11, 32, 92, 180-181, 213, - bacterial genome browser 602 380-381, 383, 389, 774, 883, 886, 980, 995

-- with fluorescent 2-aminopurine 73

- - with 3'-amino ATP (for biotinylation) 73

– with 5′-biotin-GMP

-- with GMPS 7, 233-234

-- with 6-thio-GMP 7, 235, 242

3'-ends 6, 33, 53-54, 182-183

 addition of arylazide photocrosslinking agent 238-240

- generation by autocatalytic ribozyme cassettes

– cassettes construction 36–37

 – cis-cleaving 30 - 31

 – dephosphorylation protocols 39 - 40

-- PCR protocols 37-39

- - removal of 2',3' cyclic phosphate 32-33

-- trans-cleaving 33

- generation by RNase P 33-35

 – protocol for RNase P cleavage 40 - 41

- RNase H approach to generate homogeneous transcript 3'-ends 54-56

5' ends 5-6, 35, 183-184, 195, 199

- generation by cis-cleaving autocatalytic ribozyme cassettes 30-31

– cassettes construction 36–37

- modification by transcription priming 6-7, 11-12, 17-18, 51, 61, 233-234

 – 5'-monophosphorylation of nucleosides 234 - 236

- PCR protocols 37-39

- radioactive labeling, of RNA termini 64-65, 180-183, 337-339, 909-910

endogenous RNAs associated with RNA binding proteins, immunopurification 1017

methods 1017–1022

- microarray analysis of immunopurified RNA 1022-1024

- - next-generation sequencing of immunopurified RNA 1025

 – RT-PCR analysis of immunopurified RNA 1024

 – critical points and common problems 1025 - 1026

- - microarray data analysis 1026-1027

- - uncrosslinked or crosslinked RNA immunoprecipitation 1026

endothermic process 451

energy dot plot 558-561, 563, 567 enhanced green fluorescent protein (eGFP) 1234

ENSEMBL database and genome browser 620, 623-624, 629, 816, 851

entropic considerations 452-453

enzymatic hydrolysis 184-187, 191, 224, 226, 895

enzymatic probing 205-206, 214-215, 224, 243, 435, 462, 602, 634-635, 998

enzymatics 1150-1151

- in vitro transcription 1153

- polymerase chain reaction 1152-1153

- reverse transcription 1151-1152 epoxy-activated matrices 1143-1145 EPR. See electron paramagnetic resonance

equilibrium dialysis 320, 323-325, 1159-1160

equilibrium filtration analysis 1160-1161 ERPIN program (RNA motif identification) 597-599, 609-616

ethanol (EtOH) precipitation

- protocols for DNA 1176, 1215, 1218

- protocols for RNA 19, 61-62, 98, 120, 142, 162, 177, 213–214, 219–221, 223, 226, 248, 258, 278, 306, 309-310, 336, 350, 355, 381-382, 385, 752, 769, 775-776, 806, 810, 867-868, 871-872, 888, 890, 897, 944, 962, 971, 998, 1021, 1044, 1060-1061, 1064-1065, 1114, 1217

EUROSCARF (Saccharomyces cerevisiae database, strain and plasmid collection)

EvoFold (RNA structure identification in multiple-sequence alignments) 572, 788-789

exonic splicing enhancers (ESEs) 1207-1208, 1210, 1212 exonic splicing silencers (ESSs)

1207-1208

exothermic process 451 extended shRNA (e-shRNA) 1224, 1226-1227, 1229-1230, 1233 FASTA (format) 556-557, 566, 598, 600-602, 608, 611-612, 616, 623, 625, 650, 674-675, 678-679, 681 fast-performance liquid chromatography (FPLC). See chromatography Fe(II)-mediated hydroxyl radical cleavage 301-312, 397-401. See also Fenton reaction/cleavage FeBABE reagent 302 Fenton chemistry 308, 314 Fenton cleavage - mapping divalent metal ion binding sites in proteins 397-401 – methods description 402-404 - - aminoglycosides as functional and structural probes 401–402 - of RNA 301, 303, 310, 312-313 – methods description 305–312 - - drug-directed (tetracycline) 310 Fenton footprinting 304 Fenton reaction 301, 306, 398 flow cytometry 738, 756-757, 764 protocol 764–766 fluorescence resonance energy transfer (FRET) 50, 66, 68, 263, 499-503 - dye pairs 504 -- choice of 507-508 - initial spectrometric characterization by bulk measurements 513-514 - smFRET. See single molecule fluorescence resonance energy transfer fluorescent labeling 121, 123, 796-797 5-fluoroorotic acid (5-FOA) 1074, 1081 footprinting 207, 214, 219, 225, 255-257, 259-261, 302, 304, 636, 660, 662, 739, 977-978, 981, 991, 1067, 1106, 1199. See also terbium(III) footprinting - semi-automated footprinting analysis (SAFA) software 221 forced dialysis 320-324, 326 force spectroscopy AFM, of RNA 527, 540-543 Förster radius 502-504, 507 Freiburg RNA Tools 620 FRET. See fluorescence resonance energy transfer Friedel law 472 fusion protein (FP) - MS2-MBP 957, 966, 969, 989-990, 992 - preparative 84

- in the yeast three-hybrid system 1067 -- FP1 with DNA binding domain 1068 - 1070- FP2 with transcriptional activation domain 1068-1070 - - FP1, LexA fused to MS2 coat protein 1069, 1073 – FP2, activation domain of yeast Gal4 fused to RNA binding tester protein 1069-1070, 1073-1074 GAL4 activation 1069–1070, 1073–1075, 1077-1078 β-galactosidase 738, 1076, 1078–1079, 1081 filter assay 1079 gel electrophoresis, of DNA 220, 889, 902, 916, 1108, 1120, 1153 gel electrophoresis, of RNA 722, 1192 - denaturing polyacrylamide (denaturing PAGE) 6, 15, 18-20, 29, 31, 39, 41, 53, 59, 61-64, 67, 69-70, 80-84, 92, 105, 113-114, 123-124, 142-143, 162-164, 183, 207, 212-213, 216, 223, 226, 244-245, 248, 257, 261, 292-294, 306, 324, 372, 377, 379-384, 389, 392, 422, 471, 483-484, 495, 520-521, 537, 740, 768, 770, 774, 862, 899-901, 942, 944, 961, 967-968, 980, 992, 1005, 1036, 1047, 1059-1060, 1063-1064, 1112, 1123-1124, 1130, 1153, 1187 - native polyacrylamide (native/non-denaturing PAGE) 18, 31, 99, 224, 344, 352, 481, 948, 982-986, 1123-1126, 1181 - temperature-gradient (TGGE) 427-433, - two-dimensional 176, 192-193 gel exclusion (permeation) chromatography, gel filtration 114-115, 121, 213, 320, 509, 927-929, 1110 – NAP columns 19, 80, 142, 146, 512 - Sephadex G-25 19, 142, 744, 1046, 1091 - Sephadex G-50 122, 323, 350, 403, 537, 1046 Sephadex G-75 122 - spin column 122, 323, 350, 402-403, 744, 1046, 1091 - Superdex 200 930-931 gel fractionation 221, 996 gel purification, of RNA 15, 21, 52, 56, 65, 122-123, 242-243, 247, 257, 331, 361, 379, 482, 740, 770, 914, 969, 1176

gel purification, of RNA (contd.) - NGS read alignment 826-827 - kit 751, 880 - of lentiviral vector 1232-1233 gel running buffer - organellar 620 - 1 x TBE 19 - phage T4 46 - 5 x TBE 59 - phage T7 4 GenBank 433, 556, 560, 563, 566, 569, 571, - probe complementarity 93 595, 619, 622, 624, 808, 821 - PSTVd 434 gene expression profiling computational - (nc)RNA cDNA read mapping 816, 916, methods. See next-generation sequencing 1195-1197 - SELEX (genomic) 1185 general buffers and procedures (GBP) 59 - sequence(s) 175, 595, 604, 624, 726, 1185 gene silencing methods 1221 - sequencing 1081 - background information 1221-1223 - shuffled database 609 - extended shRNA (e-shRNA) and long - specific primer 1187 hairpin RNAs (lhRNAs), construction - transcriptome analysis 732-733, 825-826 1229-1230 - vertebrate 620, 623 - wallaby 627 - lentiviral vectors, production 1230–1234 miRNA vectors, construction 1228–1229 - whole genome oligo microarrays, mouse - shRNA vectors, construction 1223-1228 1023 genome(s) 625–628, 667, 719–720, 731, 736, – yeast 1069, 1187 787-791, 794, 811, 822, 829, 1165-1166, genome mapping, of cDNA reads 723, 1168, 1185-1186, 1193, 1202 1195-1197 - annotation 628, 787, 794, 1197, 1223 genome screening, for RNA genes/motifs - APART pipeline 1196-1198 595-596 - search for bacterial sRNA homologs 600 Arabidopsis thaliana 929 - assembly 623-624, 628, 829 - - alignment and structure prediction - avian 626, 628 602-604 - bacterial 595, 600, 602, 616, 726-727, 787, -- BLASTN 600-602 790-791, 1187 -- ERPIN 609-614 -- HMMER 604-605 BLAST search 623 - browser 602, 620, 623, 625, 628, 722-724, -- INFERNAL 614-615 823, 826, 829 -- RNAMOTIF 606-609 – Affimetrix integrated 724 RNA search procedure overview -- UCSC 620, 625, 823, 826, 829 597-598 - comparative analysis 721, 787-788 - search program choice 596-597 - coverage 1188 - search specificity assessment 598-600 - coverage by tiling microarray probes genomic aptamer(s) 1185-1186, 1188, 1192, 795-796 1194, 1196 - database 596, 599, 608, 614, 624, 726 - biochemical analysis 1199-1202 encoded aptamers and regulatory sequences – RNA-protein interaction validation 1185, 1199 – expression analysis 1199-1200 - eukaryotic projects 620 - - size of native transcript 1200 - gene copies 622 - - function of RNA-protein interaction - HIV-1 206 - human, mammalian 623-625, 627-628, genomic SELEX 720, 728, 1165-1166, 1171, 801, 849, 864, 877, 1168, 1170, 1187 1185-1186 – Illumina Genome Analyzer 902, 904, 916 - bait choice 1188 - invertebrate 623 - computational analysis of sequences - lizard 625 1194-1198 - low complexity region 598 - library construction 1186-1188 - mitochondrial 583 - procedure 1188-1194 - mRNA profiling on microarrays, - specialized SELEX method to identify genome-wide 729, 733 antisense and protein target sites in RNA - ncRNA prediction, genome-wide 787-791 or hnRNPs 1165-1166

- generation of RNA 20-mer library using Mme I 1166-1169
- natural RNA substrates for proteins. identification 1171
- optimal antisense sites identification 1169-1170
- procedure and protocols 1171–1182 gloxy-oxygen-scavenging enzyme stock 515-516
- glycerol gradient (centrifugation) 802, 813-816, 940, 948, 960-962, 964, 966-968, 970, 976, 986, 1056-1061

graph theory 552

- green fluorescent protein (GFP) 732, 1228-1229
- affinity tag 1017-1019
- anti-GFP antibody 768-769, 771, 1018,
- enhanced GFP (eGFP) 1234
- flow cytometry 764-767
- GFP-based reporter system for sRNA target validation 755-757
- lentiviral vector encoding Emerald Green Fluorescent Protein (EmGFP) 1228-1229
- read out approaches 763-764
- translational GFP fusion, cloning 759
- -- pXG-10 759-761
- -- pXG-20 761-762
- -- pXG-30 762-763
- GROMACS package, MD simulation 688,
- GROMOS (GROningen MOlecular Simulation computer program package)
- GSNAP sequence read alignment program 823, 826
- guanosine 5'-monophosphorothioate (GMPS) 7-8,233-238
- guide strand. See small interfering RNA (siRNA)
- Gwyddion software (AFM) 530

- hammerhead ribozyme 6, 30-33, 36-39, 75, 79-80, 121, 123-124, 152, 158, 264, 286-287, 337, 374, 500
- HaMMY software package, smFRET analysis
- hepatitis delta virus (HDV) ribozyme 6, 30-39, 261-264, 337
- heterogeneous nuclear ribonucleoprotein (hnRNP) 900, 950-952, 975-976,

- 984-986, 998-1000, 1003-1007, 1055, 1072, 1165-1182
- Hfg 719-720, 725, 728-729, 731, 734-738, 740-743, 770-771, 1197
- Hfq coimmunoprecipitation. See immunoprecipitation
- Hidden Markov Model (HMM) 507, 604-605
- high-performance liquid chromatography (HPLC). See chromatography
- high-throughput RNomics 794-799
- high-throughput sequencing (HITS) 89, 206, 720-723, 742, 802, 812, 877, 899, 901-902, 904, 916, 1106, 1186, 1194. See also RNA-seq
- HTSeq, high-throughput sequencing data analysis software 823, 829

Hill equation 297

HIS3 gene 1069, 1075, 1078, 1080

histidine-tag (His-tag) 56, 372-373, 865, 1030, 1050, 1128-1129

HMMER program (search for RNA homologs) 596-599, 604-605, 614-616

holoenzyme 289, 292, 294, 326, 375, 387, 492 - reaction 294

homogeneous 5'- and 3'-ends. See T7 RNA polymerase

homology-based programs 596-597

homology search 596-597, 602, 604, 811

- for small structured ncRNAs 619-621
- mascRNA example 621-629
- initial BLAST search 622–624
- - initial secondary structure model 624-625
- structure-based searches 625–629
- web-service-independent software
- web services 620
- RsaE RNA test case 600
- alignment and secondary structure prediction using LOCARNA 602-604
- -- BLASTN first training set 600-602
- descriptor- vs. homology-based programs 596-597
- - RNA motif search specificity and protocol 598-600
- RNA motif search with sequence and secondary structure constraints
- - searching with ERPIN 609-614
- - searching with INFERNAL, covariance models 614-615
- - searching with HMMER 604-605
- -- searching with RNAMOTIF 606-609
- program versions and download sites 616

Hooke's law 528

hot phenol method 90, 94 in-line probing 206, 210-211, 213, 216, 218, - RNA extraction from cells 98 225-226, 417, 1106 HQS. See 8-hydroxyquinoline-5-sulfonic acid inner-sphere coordination, cation: RNA 319, HTSeq, high-throughput sequencing data 370, 373 analysis software 823, 829 interference suppression 330-332, 361, 363, hybridization 117, 352, 527, 555, 648, 650, 375, 378 intergenic region (IGR) 719-720, 722, 724, 836, 871, 936, 1000, 1018-1019, 1248 - cross-hybridization 827, 861 726-728, 748, 788, 790-791, 793-796, 1195 - experimental RNomics 803, 807-808, 816 - Intergenic Sequence Inspector (ISI) 726 - identification of small non-coding RNAs intermittent contact mode (tapping), AFM 725, 729, 737, 744, 746-749, 768 529 - immunopurification 1018-1019, intron ribozyme activity (group II) 1022-1023 339 - 344- microarray hybridization 796-799 in vitro evolution 442, 1099-1100 - Northern blot 89-92, 94, 96-102, 794, in vitro probing. See probing 1091-1092, 1094 in vitro selection 16, 442, 1097, 1099-1101, 1104-1107, 1116. See also SELEX - oligonucleotides 179, 427, 434-435, 437-438, 952 against proteins and carbohydrates - primer extension 220, 223, 226, 280, 310, 1097-1131 995, 1046 - against small targets: 1139-1162 - selection cycle: 1099, 1104-1106, 1141 - to DNA splint 58, 67-68 hybrid RNA 1068-1075, 1077-1081 in vivo SELEX. See SELEX hydroxyl radicals 206, 209, 225, 301–302, iodine cleavage (iodine-induced hydrolysis) 330-331, 341-342, 344, 346-347, 354-355, 304, 313-314, 398, 421, 740, 1007. See also 385-386, 391-393 Fenton chemistry/cleavage/footprinting/ reaction ion-exchange chromatography. See 8-hydroxyquinoline-5-sulfonic acid (HQS) chromatography isocratic competitive affinity chromatography. 320, 324-325, 327 hyperchromism 446, 449 See chromatography hypochromism 446, 449, 464 isopycnic ultracentrifugation 1056, 1061. See also ultracentrifugation isopropanol precipitation iCLIP (individual-nucleotide resolution - of plasmid DNA 110-111 crosslinking and immunoprecipitation. See - of RNA 99, 752, 1157-1158, 1180, 1217 crosslinking isothermal titration calorimetry (ITC) 453 ImageJ software 530, 536, 744, 747, 774 k ImageSXM software (AFM) 530 immunoprecipitation 725, 805, 809, 840, Klenow polymerase (Klenow Pol/Klenow 963, 1008-1009, 1020-1027, 1030, fragment/large fragment of E. coli DNA polymerase I) 1037 - 1038, 1040 - 1044, 1046 - 1048, 1171- 3'-32P-end-labeling of RNA 337-338, 341 - coimmunoprecipitation 720, 1073, 1075, 1119 - Fe(II)-mediated hydroxyl radical cleavage – Hfq coimmunoprecipitation 397, 399-403 722-725, 728, 734 - fill-in reaction, in vitro selection/SELEX – RNA coimmunoprecipitation 1149-1150, 1168, 1171, 1174-1176 1017, 1020 - 1027- genomic SELEX 1186-1188, 1193 - iCLIP 899-902, 905-909 K-Means Clustering 661-662 - identification of miRNA targets knockdown (KD) 837, 839, 851, 902, 908, 1087-1095 911, 922, 1200 - PAR-CLIP 877, 882, 884-887 - gene silencing 1221, 1223-1224, 1228 - RISC components 838-839 - chemical modifications to enhance siRNA INFERNAL program (structural RNA performance 1243, 1247, 1252-1253, sequence alignment based on covariance 1260, 1262 models) 597-599, 614-616, 621, 626-628 "K-turn" (structure/motif) 501, 671, 975, 982 1 - separation of free Mg²⁺ from RNA-bound Mg^{2+} 320-324 3'-labeling. See end-labeling of RNA 5'-labeling. See end-labeling of RNA – equilibrium dialysis 323-324 lacZ (gene) 735, 738-739, 756, 762, – forced dialysis 321-323 1068-1070, 1075 - - size exclusion chromatography 323-324 lanthanide (ion) 255 - Mg²⁺ concentration determination using lentivirus/lentiviral HQS 324-326 vector production 1230–1235 - affinity and stoichiometry of Mg²⁺ binding LEU2 gene 1070, 1073, 1080-1081 322-323 Lewis -- RNase P holoenzyme 326 - acid 270, 286, 370 magnetic bead(s) - base 286, 370 - aptamer selection 1099, 1116, 1120-1121 lhRNA. See long hairpin RNA - capture of rRNA using antisense ligand coupling (in vitro selection) oligonucleotides 722 1144-1146 - immunoprecipitation ligation of RNA 6, 29, 33, 45-84, 152, 521, - - PAR-CLIP 882-886 801 – iCLIP 900 - acceptor substrate 46, 49, 70-73, 75-76, -- miRNA targets 1088-1089, 1094 78 - 80- streptavidin-coated 937-938 - donor substrate 46, 49, 70-73, 75, 78-80 MALAT-1 RNA/transcript 622, 625, 628 - ligation efficiency 46, 54, 70, 72, 75-76, maltose-binding protein (MBP) 293, 736, 78, 82, 1169, 1172, 1179, 1214, 1216 935, 957, 963, 966-970, 976, 987-993, 1006, ligation site accessibility 78 1008-1009 - reaction mechanism 46, 48-49 mascRNAs 621-629 simultaneous splint ligation of RNA - BLAST search 623-624 fragments for FRET experiments 66-70 secondary structure model 624–625 - T4 DNA ligase (T4 Dnl) 47, 49-66. See also - structure-based searches 625-629 T4 DNA ligase mate-pair reads, next-generation sequencing - - dephosphorylation and phosphorylation 825 56 - 57MC-Tools, RNA 2D and 3D structure – homogeneous acceptor 3'-ends, prediction 633-634 generation 53-54 equipment and input 634 - - large-scale transcription and purification - MC-Cons 636, 651-654 53 - MC-fold 635, 637-651 – RNA ligation 57–58 - MC-Sym 636, 654, 657-661, 663 - - RNA ligation substrates generated with menRNA 627-629 RNase H 54-57, 63-64 metal ion coordination interactions with RNA T4 polynucleotide ligase 46–47 - identification and characterization - T4 RNA ligase(s) 47, 70-84. See also T4 285 - 286RNA ligase(s) – thiophilic metal ion rescue of RNA LOCARNA program (alignment and folding of phosphorothioate modifications RNA sequences) 573, 598-599, 602-604, 286 - 290616, 620, 624-625 - - purification of phosphorothicate Locomotif tool (abstract shape analysis) 583 stereoisomers by RP-HPLC 290-291 long hairpin RNA (lhRNA) 1224, - - phosphorothioates incorporation into 1226-1227, 1229-1230 RNA, techniques 291-293 – kinetic analysis of thiophilic metal ion 293-297 m rescue magnesium (Mg²⁺) ions bound to RNA, - NAIM/NAIS analyses 329-332, 370-374 quantification 319-320 metal ion-induced cleavage/hydrolysis 256, - Mg²⁺ complexes with 270-271, 275, 1104. See also probing 8-hydroxyquinoline-5-sulfonic acid (HQS) metalloenzyme 287, 397-398, 401

MICROB Express kit 722

320

Micro Bio-Spin® chromatography column

microRNA (miRNA) targets 833-836. See also barcoded cDNA libraries for miRNA profiling

- comparative genomics 836-837

- experimental identification 1087-1088

- - Ago2 immunoprecipitation, Western blot analysis 1090

– cell culture and transfection 1089

 – gene expression array analysis of Ago2-associated mRNAs 1092-1093

 – Northern blot analysis for miRNA 1091-1092 detection

 – qRT-PCR of Ago2-associated mRNAs 1092-1093

-- RNA precipitation 1090-1091

 – sample preparation and immunoprecipitation 1089-1090

- functional binding site properties

 – data set type, quality and reproducibility 839-840

- - evolutionary conservation 841

– miRNA-mRNA duplex stability

– seed binding criterion 840-841

– sequence composition

– spatial effects 842–843

– structural accessibility 841–842

– targeting prediction 843–847

- perturbation and omics 837-838

- RISC components, immunoprecipitation

838-839 translation repression inferred from

polysome profiles 839 microRNA (miRNA) expression vector for

gene silencing 1221-1223 - miRNA polycistron 1224

vector construction 1226–1229

minimum free energy (MFE), definition 549-555

Mme I restriction enzyme/site 1167-1170, 1173-1174

– cleavage protocol 1178

digestion 1170, 1172

mobility shift analysis

 terminal RNA sequence identification 184, - equilibration 699 190 - 194

 electrophoretic mobility shift assay (EMSA) 166, 540, 899, 924, 976, 1067, 1103, 1124-1126, 1199

modified nucleotides

 incorporation by phosphoramidite chemistry 153-154, 359, 361

- T7 transcription 6-8, 16-18, 61, 231-234

-- in NAIM/NAIS 333-336, 371-372 modified nucleotides determination, by postlabeling methods 194-201

- position and identity determination 198 - 201

- total nucleotide content analysis 195-198 modified nucleotide incorporation techniques

modified RNAs 151-152

- 2'-amino approach 156-158

- 2'-amino groups reaction

– – with aliphatic isocyanates 159

– with aromatic isothiocyanates 158–159

- - with succinimidyl esters 158

- experimental protocols 159-166

- - 2'-amino-modified RNA, postsynthetic labeling 161-164

- - 4-thiouridine-modified RNA, postsynthetic labeling 164

 – aromatic isothiocyanates and aliphatic isocyanates, synthesis 160-161

- - label incorporation verification 164-165

- phosphoramidite method 152-154

- postsynthetic labeling strategy 154-156

molecular barcodes 825

molecular dynamics (MD) simulations of RNA systems 304, 687-704

comparison with experimental data 702

- conformational parameters 703

- consistency checks 702

convergence issues

- data analysis 704

- validation based on structural databases 703

- visualization 702

- methods 689

- setups

- - box size 693

- - clustering artifacts and ion parameters

-- conformational checks 690-691

- - divalent ions 694

- - duration of simulations 699-701

– electrostatic interactions treatment 697

– environment and ion types 693

-- force fields 695

– hydrogen atoms addition 693

– initial solute and solvent configurations

- - minimal salt conditions 694

-- monovalent ions 693-694

- - multiple molecular dynamics (MMD) simulations 701

- - parameterization of modified nucleotides, - - output and viewing 828-829 - - read alignment 826 ligands, and ions 696 -- programs 688, 695 -- sequencing 825 - of immunopurified RNA 1025 – protonation issues 692 -- associated with RBPs 1018 – rare non-covalent interactions 691–692 - - shake, time steps, and non-bonded pair sequencing platforms – 454 SequencingTM (Roche Diagnostics) list update 698 721-724, 812, 825, 1025 -- solvent 692-693 - - starting structure selection 689-690 - - SolexaTM (Illumina) 721, 812, 822, 825, 861-862, 864-866, 872, 887, 889, 893, – temperature and pressure - - thermodynamic ensemble 697-698 902, 904, 916, 1025 -- SOLiDTM (ABI) 721, 807–808, 812, 1025 - - water models 696-697 NF- κ B transcription factor 1073, 1082 – water molecules 694 mRNA analysis N-hydroxysuccinimide (NHS) enzymatic and chemical probing 213–227 acetal-PEG-NHS coupling to tip, AFM 542 - gene-expression-array analysis 1092–1093 activated sepharose matrices - qRT-PCR analysis 1092 -- tRNA coupling 922, 924-927, 929-930 mRNAs (short) and dual-function RNAs 794 – tobramycin coupling 987–988 – small ligand coupling for SELEX MS2 aptamer/tag, for the phage MS2 coat protein 735-736, 1071-1073, 1075 1144-1145 - MS2-LexA fusion in three-hybrid analysis - biotin-NHS 542 1069-1070, 1080 - - for AFM - MS2-MBP affinity chromatography 736, - - for SELEX experiments 1102, 1147 935, 957, 963-971, 976, 987-993, 1006, - maleimide-PEG-NHS, AFM 543 1008-1009 - esters, for RNA modification 67, 156, 508 multi-FASTA format 598, 600 nitrocellulose (NC) - filter assay 1079 multiple molecular dynamics (MMD) simulations 701 - filter binding 1101-1102, 1116, 1125-1127 - membrane transfer 1090 NAIM. See nucleotide analog interference -- iCLIP 900, 910-911 mapping - - EMSA coupled to SDS-PAGE and Western 984-986 NAIS. See nucleotide analog interference blot suppression NMR (nuclear magnetic resonance NAMD program, MD simulation 418, 688, spectroscopy) - isotopically labeled nucleotides, NcDNAlign program (genome-wide incorporation by in vitro transcription alignments of non-protein-coding 34, 106 sequences) 788–789 - spectroscopic analysis 119, 164, 166, 286, ncRNAs. See non-coding RNAs 301, 407 – 19 F NMR of nucleic acids 165 neutravidin 937, 946-947, 951 next-generation sequencing (NGS). See also – of mutant RNAs 439 – RNA analysis and purity RNA-seq 29, 132, 143 - cDNA library preparation 889–893 – RNA-metal ion interactions computational methods for gene expression - - structural dynamics of RNA profiling 821-822 structure(s) – association of reads with transcripts -- RNA 211, 263, 503 827-828 - - RNA/protein 409 – data generation: experimental background – – in MD simulations of RNA, 688 - 690,information 823-825 – expression determination and uncertainty non-canonical base pairs 596 in NAIM analyses 340

– library generation 823–825 -- normalization 828

- in RNA structure prediction 560, 633-635,

645-648

- non-canonical base pairs (contd.)
- in sRNA-mRNA interaction 736
- in tRNAs 34
- in UV spectroscopy 446
- non-coding RNAs (ncRNAs) 595, 667, 671, 1197. See also "small non-coding RNA (sRNA)" and "homology search"
- characterization and prediction of miRNA targets 833-834
- dual-function RNAs 794
- experimental identification of miRNA targets 1087-1088
- experimental RNomics 794-799, 801-802
- cDNA library construction and analysis 804-811
- -- computational analysis 811, 816
- expression verification of cloned ncRNAs
- immunoprecipitation of ncRNA-protein complexes 809
- laboratory protocols 744-776, 797-799, 804-811, 813-816
- identification and characterization in bacteria 719-720, 787-788
- - expression-based discovery 720-726
- computational search/prediction 726-728, 787-794
- computational searches for ncRNA targets 736-737
- Hfq coimmunoprecipitation 724-726
- high-throughput sequencing (RNA-Seq) 721-724
- -- microarray 720-721, 794-797
- mRNA target validation 737–742
- - laboratory protocols 744-776, 797-799
- strategies to decipher the biological role 728-737
- miRNA profiling, barcoded cDNA libraries for NGS 861-872
- Pb²⁺-induced cleavage 275
- purely computational approaches. See also homology search
- - computational methods for expression profiling based on RNA-seq data 821-823, 827
- - homology search for small structured ncRNAs 595-616, 619-621
- – mascRNA 621-629
- RsaE RNA 600
- shape analysis, ncRNA consensus structure prediction

- - screening for RNA genes and motifs 595-596
- - identification via APART 1197 non-coding RNP (ncRNP) 801-802
- ncRNP transcriptome 814 non-radioactive labeling of RNA 89, 92, 100-101, 1103-1104
- digoxigenin, internally 92, 100-101
- biotin 8, 66, 117-125, 937
- fluorescent dye 117-125, 152, 158, 238, 796-797
- phosphorothioates and iodine cleavage 329-364, 369-393
- Northern blot analysis 89-102, 744-747, 808, 816, 1199. See also small RNAs, Northern blot detection
- aptamer detection 1199
- laboratory protocols 98-102, 744-747, 808
- mRNA targeted by miRNA 835
- miRNA detection 1091-1092, 1094
- ncRNA verification 789, 808, 816
- of RNA fragments crosslinked to protein 1030 - 1031
- probe with digoxigenin label 89, 95, 101 - 102
- radioactively labeled probe 744-747, 1094
- sRNA expression profile 729, 816 nuclear extract depletion, with biotinylated RNA 951-952
- nucleation zone, RNA crystallization 485-486, 489
- nucleic acid libraries 1148-1150
- design 1148-1149
- pool preparation 1149-1150 nucleic acid library preparation 1108-1109 nucleoside analog. See also modified RNAs
- photoreactive 900
- -- 4-thiouridine 7, 151-166, 231-250, 878-897, 999
- - 6-thioguanosine 7-8, 231-250, 333-334, 878-882
- thiotriphosphate 329, 333-334 nucleotide analog interference mapping (NAIM) 207, 232, 285-286, 329-330, 369 - 371
- experimental protocols 333-355, 380-386
- - denaturing PAGE of analog-modified RNA pools 336, 381-383
- nucleoside analog thiotriphosphates
 333
- incorporation by transcription 335 - 337, 371-372, 380-381
- - iodine cleavage 354-355, 385-386
- - radioactive labeling of RNA pool 337-339, 383-384

- method description 330-332, 369-373
- NAIM results
- analysis and interpretation 355-358. 373 - 375
- data evaluation 386-387
- - influencing factors 372-373
- selection step/assay
- - analysis of bacterial RNase P function 369 - 372
- - cis-cleaving RNase P RNA-tRNA conjugates 375-380, 384-385
- group II intron transesterification 339 - 344
- - group II intron folding, Mg²⁺-induced 344-347
- - Rho-dependent transcription termination 347 - 351
- - Rho helicase unwinding 351-354 nucleotide analog interference suppression (NAIS) 329-332
- applications 332-333
- elucidating tertiary contacts in group I and II ribozymes 332-333
- - to the RNase P system 375, 378-379
- data analysis and presentation 363-364
- experimental protocols 358-364
- functional analysis of RNA mutants
- RNA mutants, design and construction 358-362
- - RNA molecules, preparation with single-atom substitutions 361 - 362
- − − selection step 362−363
- selection assay, trans-branching 339-341 nucleotide blast. See BLASTN

- OligoCalc (oligonucleotide properties calculator) 60
- oligonucleotide, DNA
- biotinylated (bait) oligonucleotide 178-179, 735
- biotinylated oligonucleotide for affinity purification of RNA-protein complexes
- - complementary biotinylated DNA oligonucleotide 948
- - chimeric 2'-O-methyl RNA/DNA oligonucleotide 940
- displacement oligonucleotides 937, 940, 945-948
- circularization of linear RNA 75
- complementary DNA oligonucleotide for Tb(III)-footprinting 259-260

- DNA splint for RNA ligation 51, 57-70, 77-79, 293, 362, 501
- DNAzyme 35-37
- microarray for detection of small ncRNAs 720
- microarray for HT-RNomics 795, 802, 804-808, 809-812
- microarrays for gene expression profiling using RNA-seq 821, 827-828
- Northern blot probe 745-747, 944
- -- for miRNA detection 1091
- primer extension 207, 220, 278-279, 1033, 1045-1046
- randomized, in SELEX 16, 1103, 1108-1109, 1148, 1172-1173, 1186, 1208-1209, 1215
- RNA ligase substrate specificity 72
- RNase H cleavage 54-56, 967, 1166
- RNase H mapping of crosslinked RNA 248
- splint labeling 183
- template for T7 transcription 4-5, 10, 12
- unwinding of RNA-DNA hybrids by Rho helicase 351-354
- oligonucleotide LNA, LNA/DNA, LNA/RNA 153, 729, 1088, 1098, 1247-1254, 1258-1265
- LNA-ATP/UTP, for T7 transcripts 7
- LNA/DNA mixmers as probes for Northern blotting 92-94, 96-97, 100-101
- - 5'-digoxygenin (DIG)-labeled 89, 91-97 oligonucleotide, RNA
- adaptor RNA 724
- analysis of synthetic RNA 143
- atomic force microscopy (AFM) 528
- biotinylated antisense oligonucleotides for affinity purification of RNP complexes 957, 976
- - 2'-O-methyl RNA oligonucleotide 936-941, 945-947, 949, 952-953
- -- chimeric 2'-O-methyl RNA/DNA oligonucleotide 940
- calibrator oligoribonucleotide 863-864, 866-867
- cDNA libraries for miRNA profiling 863-864, 871
- chemical RNA synthesis 130, 137, 139 - 147
- crystallization of RNA 482, 493, 495
- enhancing siRNA performance 1248, 1261
- homooligonucleotide stretch (NAIM) 372
- iCLIP 900-904, 915
- initiator oligonucleotides for T7 transcription 8

oligonucleotide, RNA (contd.)

- labeling of alkyne-containing RNA for smFRET 509-511
- oligo-U stretch 789
- PAR-CLIP 878, 890, 895
- purification of phosphorothicate stereoisomers 290-293
- RACE 747-750, 753
- Rho helicase interaction (NAIM) 351-354
- RNA ligation using T4 DNA ligase 45-70
- RNA ligation using T4 RNA ligase 75–76
- -- RNA donor oligonucleotide 81
- RNA molecules containing single atom substitutions 359
- RNA sequencing 192-194
- - oligonucleotides derived from alkaline hydrolysis or nuclease P1 digestion 191 - 192
- separation of oligomeric and monomeric RNA 108, 115
- smFRET experiments 509
- synthesis of modified oligonucleotides 151 - 166
- temperature-gradient gel electrophoresis (TGGE) 427, 430, 434-435, 438
- vector-encoded siRNA and miRNA 1228-1234

oligoribonucleotide. See oligonucleotide, RNA Open BABEL utility, MD simulation 702 OPLS force field, MD simulation 695-696 optical density 446-447, 765 osmolytes 463 outer-sphere coordination, cation: RNA 319 overlapSelect algorithm, next-generation

Packmol package, MD simulation 694 PAGE (polyacrylamide gel electrophoresis). See gel electrophoresis

paired-end reads, next-generation sequencing 825-826

PAR-CLIP

sequencing 827

(photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation) 877-897

- cDNA library construction outline 882
- cDNA library preparation, from recovered RNA fragments 889-893
- crosslinking and immunoprecipitation procedure 882-888
- determination of 4SU incorporation levels 893-897

- materials 878-881
- protein-binding sites on RNA, transcriptome-wide identification 877-878

particle mesh Ewald (PME) summation method 697

partition function 550, 555, 566-570 pattern-recognition receptors (PRRs) 1256

Pb2+-induced cleavage. See probing RNA structure

P_{BAD} promoter. See promoter

PCR. See polymerase chain reaction

PDB (Protein Data Bank) 688-693

- imprecision and errors in PDB structure files 690-692
- refinement error 691
- NMR structures 690
- nucleic acid structures 689
- PDB REDO database/web site 688
- - automatic refinement of PDB structures 691

PDB2SAX program (SAXS) 419 PDB2VOL program (SAXS) 417-419 periodate oxidation

- 3'-terminal ribose of RNA 49, 73, 117-119, 124, 863
- nucleosides and nucleotide-5'-phosphates
- nucleotides 124

peripheral blood mononuclear cells (PBMCs) 1256-1257

Pfu (DNA) polymerase

- 3'-5' proofreading activity 37

phenol, phenol/chloroform extraction. See RNA extraction

phosphoramidites 45, 129, 131–134, 152-154, 156, 359, 509

phosphorothioate 156, 231, 285-286, 333,

- analogs and transcripts preparation 335 - 337
- incorporation techniques, into RNA 291-293
- metal ion rescue of phosphorothioate modifications 285
- stereoisomers purification, by RP-HPLC 290-291

photocrosslinking/UV crosslinking 159, 231-249. See also crosslinking and PAR-CLIP

- UV crosslinking of 4SU-labeled cells 883 probing RNA solution structure 231–232
 - techniques for modified nucleotide incorporation 232-233

 – transcription priming with GMPS – reaction with succinimidyl esters 233-234 - - reaction with aromatic isothiocyanates – aryl azide photocrosslinking agent, 158 - 161attachment to 5'-terminal – reaction with aliphatic isocyanates phosphorothioate 236-238 159 - 161− 3′-addition of aryl azide photocrosslinking - at 4-thiouridine 164 agent 238-240 potato spindle tuber viroid (PSTVd) – 4-thiourindine (4SU) and 6-thioguanosine 431-440, 532-537 (6SG) 240-243 prey – photocrosslinking of RNase P RNA and - (target) RNA 179 6SG-modified precursor tRNA - protein prey plasmid 1076, 1078 244-247 primer extension 56, 206-207, 210, 212, 217, – primer extension mapping of crosslinked 220-224, 226, 231, 241-243, 245, 247-249, nucleotides 247-249 259, 265, 276, 278-279, 304, 308-311, 635, plasmid DNA sonication 1172 644, 747, 773, 900, 944, 953, 977, 991, 993, PLEXY (prediction of box C/D snoRNAs) 995-996, 998-1000, 1002, 1009, 1030, 1033-1038, 1040-1042, 1045-1047, 1050, Pme I restriction enzyme/site 864-865 1108, 1166, 1213 - digestion 871-872 primer walking 740, 1200-1201 poly(A) polymerase 398, 401 probabilistic shape analysis 585-587 3'-³²P-end-labeling of RNA using probability dot plot 567, 570 $[\alpha^{-32}P]$ -Cordycepin-triphosphate probing divalent metal ion binding sites of 182-183, 337-339 proteins by hydroxyl radicals 397-404 - C-tailing of ncRNAs for cDNA library probing RNA structure. See also RNase construction in experimental RNomics (ribonuclease) and RNPomics 803-806, 812, 814-815 in vitro with enzymes and chemicals poly(A)-specific ribonuclease (PARN) 224, 422, 435, 462, 563-564, 572, 397-403 602-603, 634-635, 740-741 polyacrylamide gel electrophoresis (PAGE). – backbone-specific chemical probes 211 See gel electrophoresis – base-specific chemical probes 210 polymerase chain reaction (PCR). See also -- CMCT 208-210, 212, 217-218, 635, RACE 740, 991-995, 1006 - melting point lowering agents -- DEPC 188-189, 208, 210-212, - - betaine 1150 218-220, 225-226 – dimethyl sulfoxide (DMSO) -- dimethylsulfate (DMS) 188-189, 206, – MasterAmp PCR Enhancer 1150 208, 210-212, 217-218, 220, 224, 226, – Qiagen Q-Solution 1150 310, 359, 635, 642, 644, 740, 992–999, - gRT-PCR 89, 861, 1092-1093 1002, 1007 - RT-PCR 809-811, 1107, 1118, 1181-1182 -- ENU 209-210 – – inhibition by DTT 1119 -- enzymes 207, 992-993, 995-1000, 1130 - - double-nested 1210, 1213-1214, - - in-line probing 206, 210-211, 213, 216, 1217-1218 218, 225-226, 417, 1106 - - kit, one-step 305, 310 -- kethoxal 212, 740, 992, 994-996 -- lead(II) = Pb²⁺ 206, 225, 277–278, 740, polystyrene - chemical RNA synthesis 131, 133, 1130 – – Pb²⁺-induced cleavage of RNA 269–271, 135-136, 145 paramagnetic beads 938 1006 − Pb²⁺-induced cleavage to probe metal ion – tubes in flow cytometry 764 postsynthetic RNA labeling 151-152, binding sites, RNA structure and ligand 155-157, 164-166 interactions 271-275

- - primer extension 220, 1037

244 - 249

– probing RNA solution structure by

photocrosslinking 231-232,

- fluorophore 509

introduction of EPR nitroxide spin label

152, 157, 159-160, 164-166

at 2'-amino groups 156–164

probing RNA structure. See also RNase (ribonuclease) (contd.)

 – probing RNA structure and ligand binding sites on RNA by Fenton cleavage 301 - 314

– ribose acetylation 219

 – RNA helicase, NAIM 354

– RNA preparation

– RNase hydrolysis

– SHAPE, 2'-hydroxyl acylation 206, 635,

 – structure-specific chemical and enzymatic probes 208-210

– Terbium(III)-footprinting 255–267

 – tertiary contacts, NAIS 332

 – 2'-hydroxyls involved in tertiary contacts, NAIM 370

- in vivo 226-227, 314

- - dimethylsulfate (DMS) 206, 208, 222-223, 225, 314, 978, 999, 1002

-- kethoxal 206, 314

- - Pb²⁺-induced cleavage of RNA 275-279

- RNP probing 981, 991-992, 996-1000, 1005 - 1007

promoter 726-731, 761, 1072, 1074, 1081, 1147, 1212, 1228

- ADH1 1073

- HIS3 1069

- istR sRNA 729

- lacZ 1068-1069

 $-\lambda P_L$ 733

- lexA operator 1068-1069

- miRNA vector 1228

- ompC 731

- P_{BAD} (araC) 731, 733, 735, 738–739, 755

- P_{Lac} 733

- P_{LlacO-1} 731-732, 755-758

- P_{LtetO-1} 755-757

- P_{tac} 733

- RPR1 1071

shRNA vector 1223–1225, 1232

- SP6 4, 1167-1169, 1173

- sraC 748

- T7 promoter(s) 4-9. See also T7 RNA polymerase

- T3 promoter 3-4

proteinase K digestion 888

PURESYSTEM[®] 742

- in vitro translation 766, 768-772 PURExpress[®]. See PURESYSTEM[®]

PyMOL program 418, 657-659, 688, 693, 702

pyridyl disulfide-activated matrix/support 1144, 1146

QPALMA sequence read alignment program 823, 826

QRNA software (comparative genome sequence analysis to detect conserved RNA secondary structures) 726, 788-789

qRT-PCR. See polymerase chain reaction. quantification plots 311

QuB software package, smFRET analysis 507

RACE (rapid amplification of cDNA ends) 75, 184, 731, 738, 759, 761

- 5'-RACE protocol 747-755

radioactive labeling (radiolabeling) methods

-5'-32P-end-labeling of RNA 64, 180–181, 198-199, 213, 337-338, 350, 383, 866-867, 883, 885-886, 909-910, 980

– – 5′-³²P-labeling of nucleoside 3'-phosphates 195-196

-3'- 32 P-end-labeling of RNA 73, 181–183, 213, 337-339, 383-384

 – with Klenow polymerase, [α-³²P]dNTP and DNA splint 337-338, 341

- - with poly(A) polymerase and $[\alpha^{-32}P]$ -Cordycepin-triphosphate 182-183, 337-339

 – with T7 DNA polymerase, [α-³²P]dATP and DNA splint 182-183

- DNA primer/probe 5'-32P-end-labeling 774, 1045-1046, 1091

- iCLIP RNA 5'-labeling 909-910

- internal ³²P labeling of RNA by in vitro transcription 14, 16, 980-981, 1003. 1112, 1153, 1179, 1190

- NAIM 369

- - 5'-32P-end-labeling of analog-modified pool RNA 383

 – 3′-³²P-end-labeling of analog-modified pool RNA 383-384

- NAIM/NAIS 329

- − ³²P-labeling of an RNA pool 337-339

 - ³²P-labeling of recombinant polypeptide 403

- probing RNA structure in vitro with enzymes and chemicals 213

- radiolabeling of RNA segments crosslinked to immunoprecipitated proteins 885-886

- radiolabeling of RNA size markers 866-867, 883

radius of gyration 407, 416-417 RALEE, RNA alignment editor 572, 621, 625 randomized exon cassette

- design 1210–1211
- ligation 1216
- preparation 1215

Rapidshapes heuristics 586

- parameters 592-593

reads. See RNA-Seq

reads per kilobase per million (RPKM) units

recombinant polypeptide, radioactive labeling

renaturation 224, 312, 429, 431, 436, 980-981, 1005

reporter gene 738-739, 769, 1067-1069, 1075-1076, 1078, 1080-1081

respiratory syncytial virus 1212, 1261 reversed-phase HPLC (RP-HPLC) 132

- analysis of purified RNA 143-147

- analysis of ribonucleosides 893-896
- click reaction 512
- ion-pair reversed-phase liquid chromatography (IP-RPLC) 142-143,
- postsynthetic labeling of 2'-amino-modified RNA 162-165
- purification of phosphorothioate stereoisomers 290-291
- purification of trityl-on RNA 138, 140-142 reverse transcription 211, 280, 313, 753, 772-773, 804-807, 809-811, 813-816, 869-870, 891-892, 900-904, 913-914, 1017, 1024, 1099, 1118, 1141, 1151–1152,
- 1189, 1192-1193, 1208-1210 SuperScriptTM plasmid system 802–804, 806-807
- SuperScript II reverse transcriptase 279, 753, 773, 775, 806, 811, 813-815, 1118, 1120, 1151
- SuperScript III reverse transcriptase 224, 260-261, 305, 310, 750, 753, 865, 869, 879, 881, 892, 913, 1120

Rfam database 583, 619, 629, 667, 789 Rho

- Rho helicase 351-354
- Rho-independent transcription termination 347-351, 595, 604, 726-727, 789-791 rhodamine 159
- tetramethylrhodamine 504
- sulforhodamine 1139 ribonuclease. See RNase

- ribonucleoprotein (RNP). See also RNA binding proteins and RNA-protein interaction
- analysis of RNA-protein interaction using iCLIP 899
- affinity purification 957
- immunoaffinity purification
- - RNA aptamer-based affinity purification 963-971
- biotin-based affinity purification of RNA-protein complexes 935
- experimental identification of microRNA targets 1087
- identification and characterization through three-hybrid analysis 1067
- immunopurification of endogenous RNAs associated with RNA binding proteins (RBPs) in vivo 1017
- isolation of RNA binding proteins using RNA affinity matrices 921
- PAR-CLIP 877
- protein-RNA crosslinking in native ribonucleoprotein particles 1029
- -- UV crosslinking 1031-1033
- - identification by primer extension analysis 1033-1037
- identification of crosslinked proteins 1037-1040
- -- protocols 1042-1050
- RNA-protein interactions and RNA structure 975
- -- RNP reconstitution 978-981
- -- EMSA 981-986
- purification of RNPs reconstituted in complex cellular extracts 986-987
- tobramycin-sepharose or MS2-MBP affinity chromatography 987-991
- - RNA structure probing 991-999
- - UV crosslinking and immunoselection 999-1005
- RNPomics 801-802, 812-817
- sedimentation analysis of RNP complexes
- - glycerol gradient centrifugation 1056-1060
- fractionation of RNPs by cesium chloride density gradient centrifugation 1061-1064
- specialized SELEX method to identify antisense and protein target sites in RNA or hnRNPs 1165-1166
- generation of RNA 20-mer library using Mme I 1166-1169

- ribonucleoprotein (RNP). See also RNA binding proteins and RNA-protein interaction (contd.)
- natural RNA substrates for proteins, identification 1171
- procedure and protocols 1171-1182 riboregulation, riboregulator 96, 724, 743 ribosomal RNA (rRNA) 93, 95, 118, 175, 206, 220, 232, 302, 304, 308, 310, 481, 493, 501, 549, 677-678, 719-722, 724, 787, 791, 802, 807, 816, 823, 921, 975, 999, 1002, 1029, 1258
- competitor RNA 924
- rRNA extraction protocol 309
- 5S rRNA 95, 269, 551, 571, 746, 1060
- - temperature-gradient gel electrophoresis
- -- endogenous standard 89, 94-95, 732
- abstract shapes 583
- -- structure prediction 642-644
- - glycerol gradient centrifugation 1059-1060
- 16S rRNA 90, 95, 269, 278, 302, 304, 746, 791-794, 1057
- Fe²⁺-mediated hydroxyl radical cleavage 310, 311
- crystallization 494
- high-throughput sequencing 722
- 18S rRNA 90, 95
- 23S rRNA 90, 95, 278, 302, 746, 1057
- high-throughput sequencing 722
- 28S rRNA 90, 95, 637, 640
- structure prediction 646, 657, 659
- ribozyme 6, 53-54, 75, 78-79, 106-107, 124, 129, 152, 158, 176, 223-224, 241, 244, 248, 416, 442, 492, 500-501, 527, 535, 549, 595, 1098, 1140, 1166
- folding 245-246
- NAIM/NAIS: application to the RNase P system 372, 375, 378, 380-381, 384,
- NAIM/NAIS: group I and group II ribozymes 332, 339, 344
- primer extension analysis of crosslinks between photoagent-modified precursor tRNA and RNase P 248-249
- probing RNA structure and ligand binding sites by Fenton cleavage 301
- protocol for RNase P cleavage 40–41
- ribozyme cassettes 30
- - cis-cleaving 5'-cassette 30
- -- cis-cleaving 3'-cassette 30-31
- trans-cleaving for generation of homogeneous 3'-ends 33-35
- construction 36–39

- terbium (III) footprinting of HDV ribozyme 261 - 264
- thiophilic metal ion rescue of RNA phosphorothioate modifications 286 RISC. See RNA-induced silencing complex rmprune utility program 607 RNA Affinity in Tandem (RAT) method 935 RNA backbone correction (RNABC) program 688, 691
- RNA binding proteins (RBPs) 244, 373, 440, 527, 579, 842, 852, 976, 1041, 1166, 1171, 1188, 1207, 1222. See also ribonucleoprotein and RNA-protein interaction
- analysis of RNA-protein interaction using iCLIP 899
- biotin-based affinity purification of RNA-protein complexes 935
- RNPomics 801-802, 812-817
- identification and characterization of small ncRNAs in bacteria 722
- -- RNASeq 721
- Hfq coimmunoprecipitation 724–726
- - genomic SELEX 728
- - finding sRNA-associated proteins 735 - 736
- identification and characterization through three-hybrid analysis 1067
- basic strategies 1068-1070
- components 1070-1075
- protocols 1075-1079
- additional applications 1081-1082
- immunopurification of endogenous RNAs associated with RBPs in vivo 1017
- - RNA coimmunoprecipitation 1020-1025
- isolation of RNA binding proteins using RNA affinity matrices 921
- -- method 921-927
- - applications 927-931
- PAR-CLIP 877
- RNABOB, fast RNA motif/pattern search software 93, 621, 626, 811
- RNA extraction 222, 225, 280, 724, 744, 901, 911, 1037, 1044-1045
- phenol, chloroform, phenol/chloroform 5, 15, 18–19, 20, 31, 35, 61–66, 69, 80, 90, 94, 98-99, 105, 107, 112, 121, 125, 183, 213-214, 219, 223, 238, 247, 278, 305, 309, 338, 350, 381, 482, 537, 744-745, 750, 752-753, 768-770, 774-775, 804-806, 809-810, 812-813, 815-816, 866, 880-881, 888, 912, 939, 944, 962, 971, 995, 998-999, 1018, 1021, 1026,

1044, 1057, 1059-1062, 1064-1065,

- 1090-1091, 1094, 1112-1114, 1116, 1130, PAR-CLIP 883-888, 894 1157–1158, 1181, 1192, 1216–1217, 1231 – Pb²⁺-induced cleavage in vivo 277–279
- (diethyl)ether 69, 1116, 1130
- elution from gels 62-63, 806, 1180-1181
- hot phenol method 90, 94
- in vivo SELEX 1216–1217
- kits 90
- recovery/extraction from membranes 901, 910-913, 1192
- rRNA extraction 309
- TRIzol reagent/method 90, 744, 750–751, 803, 806, 808, 812, 866, 894
- RNAfold 42, 84, 92, 438, 579, 620, 673, 675, 681, 740, 811, 1073, 1106
- secondary structure prediction 549
- formal background 552
- internet addresses
- RNAfold 565
- output from the RNAfold Server RNAforester, structure alignment program 572, 592, 624-625
- RNA fragments, simultaneous splint ligation, for FRET experiments 66-67
- construct design 68-69
- RNAhybrid algorithm, RNA:RNA interaction prediction 737, 759, 767
- RNA interference (RNAi) 845, 1166, 1210. See also small interfering RNA
- gene silencing using vector-encoded siRNAs or miRNAs 1221
- background information 1221-1223
- construction of shRNA vectors 1223-1228
- construction of miRNA vectors 1228-1229
- construction of extended shRNAs (e-shRNAs) and lhRNAs 1229-1230
- production of lentiviral vectors encoding anti-HIV-1 shRNAs or e-shRNAs 1230-1234
- RNA-induced silencing complex (RISC) 833, 841-842, 843, 1087, 1221-1223, 1232
- - immunoprecipitation of RISC components 838-839
- using chemical modification to enhance siRNA performance 1243
- RNA isolation. See also RNA extraction, RNA preparation and RNA purification
- 5'-RACE 751-752
- crosslinked RNA 246-247
- iCLIP 911-913
- miRNA profiling by next-generation sequencing 866
- Northern blot detection of small RNAs 89

- pure RNA species from biological material 176 - 180
- - single RNA species with partially known sequence 178-179
- single unknown RNA species following a functional assay 176-178
- size-fractionated RNA 176
- RNAlishapes program 580, 583, 587
- parameters 588, 593
- RNAMOTIF, RNA secondary structure definition and search algorithm 596-599, 606-609, 615, 811
- program versions and download site 616 RNA preparation. See also RNA extraction, RNA isolation, RNA purification and T7 RNA polymerase
- Atomic Force Microscopy (AFM) 537-538
- in vitro transcription and purification of milligram quantities of RNA 12-13, 111 - 113
- weak anion-exchange chromatographic purification 113-115
- Northern blot detection of small RNAs 89
- preparation from gradient fractions 1059-1060, 1064
- preparation for RT-PCR 1114
- RNA ligation 80-81
- RNA molecules containing single-atom substitutions 359-362
- RNA-protein interaction and RNA structure 980 - 981
- RNA sample enriched through immunoprecipitation 809
- RNA structure probing 213, 223
- RNomics and RNPomics 801
- cDNA library construction 804–808
- specialized cDNA library construction 808-811
- RNP-derived cDNA library construction 814-816
- simultaneous preparation of RNA and protein 1060
- transcripts containing phosphorothioate analogs 335-336, 378-384
- RNA-protein crosslinking 975-978, 999-1005, 1008, 1009, 1191, 1199
- aptamer target selection 1100-1101
- iCLIP 900-902, 905-906
- in vivo 1021-1022
- native RNP particles 1031-1033, 1042-1044
- PAR-CLIP 877-878, 882-884

- RNA-protein interaction. See also ribonucleoprotein and RNA binding proteins
- affinity purification 935, 945, 949, 953
- aptamer-tagged sRNA 736
- atomic force microscopy (AFM) imaging and force spectroscopy 527, 536, 541
- coimmunoprecipitation 724
- deep sequencing 742
- fluorescence techniques 8, 117, 501
- genomic SELEX 1199-1200
- NAIM/NAIS 333, 347-350, 351-354
- RNA ligation methods 50
- study by crosslinking 232
- study in RNPs 975
- temperature-gradient gel electrophoresis (TGGE) 439-441
- three-hybrid analysis 1067–1068, 1070-1071, 1074-1076, 1080-1083
- RNA purification. See also RNA extraction, RNA isolation and RNA preparation
- anion-exchange chromatography 111–115
- HPLC purification 482-483
- polyacrylamide gel electrophoresis (PAGE) 483-484
- denaturing (PAGE) 18, 61-63, 83-84, 381 - 383,770
- - diffusion elution 19, 484
- electroelution 19-20
- RNA downstream purifications 122
- gel chromatography 122
- purification on denaturing polyacrylamide (PAA) gels 122–123
- chemical RNA synthesis 138–139 - - anion-exchange HPLC purification
- 139 140- - reversed-phase HPLC purification of
- trityl-on RNA 140-142
- detritylation of trityl-on RNA 142
- - desalting by HPLC 142-143
- isolation of pure RNA species from biological material 176
- preparation of size-fractionated RNA 176
- isolation of a single unknown RNA species following a functional assay 176
- comments on electrophoretic purification 178
- purification of a single RNA species from 1 mg crude small RNAs 179–180
- purification of phosphorothioate stereoisomers by RP-HPLC 290-291
- immunopurification of endogenous RNAs associated with RBPs in vivo 1017

- - RNA coimmunoprecipitation 1020-1022
- RNA recognition motif (RRM) 958, 975-976 RNase (ribonuclease) 210, 224-225, 325, 921, 945, 984, 1008-1009, 1025, 1280
- activity of T7 RNAP 9
- cleavage susceptibility to derive base-pairing constraints (MC-Tools) 635
- complete hydrolysis of RNA for UV spectroscopy 1281
- - 3'-exonuclease ERI-1 1253
- from plants 434
- nuclease P1 190-192, 195-196, 198-199, 1281
- - identification of terminal nucleotides 184, 190
- poly(A)-specific ribonuclease (PARN) 397-402
- ribonuclease recognition sites 738
- RNase I
- – iCLIP 900, 902, 906-909, 911-912
- RNase III 975, 1087
- -- Dicer 833, 852, 1087, 1222-1223, 1227-1228, 1232, 1235, 1243-1244, 1249, 1263
- – Drosha 833, 1087, 1222-1223, 1228, 1232, 1235
- probing RNA structure 740
- RNase A 1000, 1003, 1253, 1281
- analysis of nucleotide content
- probing RNA structure
- -- RNA 3'-ends 124
- tissue activity
- RNase CL3
- enzymatic sequencing 185–187
- RNase contamination 20, 59, 70, 84, 146, 175, 226, 280, 324, 327, 389, 495, 520, 536, 897, 921, 979, 987, 1003, 1025-1026, 1041, 1093, 1107, 1113
- RNase D 397
- RNase E 742-743
- RNase H 750
- cDNA library construction 804, 807
- engogenous activity
- generation of homogeneous ends 35, 54
- - generation of RNA ligation substrates 51-52, 57
- site-directed cleavage 51-56, 64, 967, 970
- site-directed cleavage protocol
 63
- -- mapping 248, 937, 939, 1030, 1166
- - reverse transcription 753, 1151

- RNase inhibitor 10, 13-14, 17-18, 20, 60-61, 63-65, 70, 81-82, 234, 293, 305, 310, 336, 362, 536, 750, 752-753, 812, 815, 906, 938, 952–953, 1019, 1020–1021, 1026, 1113, 1153, 1174, 1179, 1181–1182, 1190
- RNase P (RNA) 80, 922, 924, 927, 1055, 1280
- bioinformatic studies 595, 619, 622, 628, 678
- - cleavage protocol 40-41, 293-294
- - crystallization 481, 492
- - deletion of gene for RNA subunit 730
- - generation of homogeneous 3'-ends 33 - 35
- − − in vitro T7 transcription 8, 13−14
- mascRNA processing 622
- menRNA processing
- metal ion coordination interactions 287-290, 292
- Mg²⁺-probing 277
- -- NAIM 369-393
- -- Pb²⁺-probing 271-273, 275-276
- - RNA ligation 77
- -- SAXS 411, 417, 422
- single molecule FRET 500
- stoichiometry of Mg²⁺ ions bound to RNA
- structure probing by photoaffinity crosslinking 231-232, 241-242, 244-246, 248-249
- terbium (III) footprinting
- three-hybrid analysis 1068, 1071, 1075, 1082
- RNase protection assay 1199, 1213
- RNase S1
- - probing RNA structure 635, 1130
- RNase T1 1003-1004, 1281
- -- RNA 3'-ends 124
- enzymatic sequencing 185-187, 192, 1108-1109
- probing RNA structure 207–208, 212, 214-217, 224, 226, 635, 740, 992-993, 995, 998-1001, 1130
- - terbium (III) footprinting 258, 263
- sequencing ladders 306–307
- - PAR-CLIP cDNA library construction 879, 882, 884-887
- RNase T2 1281
- identification of terminal nucleotides 184, 190-191
- analysis of nucleotide content 195–196, 198

- - probing RNA structure 207-208, 212, 214-215, 635, 740, 992-993, 995-998
- RNase U2
- enzymatic sequencing
- probing RNA structure
- RNase V1
- probing RNA structure 207-208, 210, 212, 214-215, 217, 224, 635, 740, 992-993, 995-998, 1130
- RNase Z (tRNase Z)
- -- menRNA processing 628
- purification using RNA affinity matrices 922, 924-925, 927-929
- siRNA stability 1248, 1253-1255, 1261
- Staphylococcus aureus nuclease 185
- RNase-free water preparation 8, 59, 175, 280, 389, 512-513, 744, 803, 1143, 1173
- RNA-Seq (high-throughput sequencing)
- aptamer selection 1099, 1106, 1109, 1122
- barcoded cDNA libraries for miRNAs 861-872
- cDNA reads
- iCLIP 901
- microRNAs 861-863
- -- PAR-CLIP 878
- computational methods for gene expression profiling 821-826, 829
- expression-based discovery of bacterial sRNAs 720-726
- differential RNA sequencing (dRNA-seq) approach 722-724, 732
- genomic SELEX 1186, 1194-1195, 1197
- iCLIP 899-900, 901, 916
- immunopurification of endogenous RNAs associated with RBPs 1018, 1025-1026
- PAR-CLIP 877, 886-887, 889, 892-893
- protein-RNA crosslinking in native RNP particles 1029
- RNA sequencing
- chemical 187–189
- enzymatic 184-187
- identification of modified nucleotides 194 - 201
- terminal RNA sequence determination 190 - 194
- RNAshapes program 580-581, 584-586, 588, 590, 624
- parameters 585, 592–593
- RNA tester sequence (RTS) 1069, 1071–1073
- RNAz program, conserved secondary
- structure identification 620, 624, 788-790
- RNomics 794, 801
- library construction and analysis protocols 804-811

complexes

RNomics (contd.) - cesium chloride density gradient 1055-1056, 1061-1064 - materials 802-804 - glycerol gradient centrifugation 802, ncRNA sequence, computational analysis 813-816, 940, 948, 960-962, 966-968, 970-971, 976, 986, 1056-1059, 1061 **RNPomics** - sucrose gradient 839, 1061 - library construction protocols 813-816 SELEX (Systematic Evolution of Ligands by materials 812–813 EXponential enrichment) RPR1 promoter 1071 - database 1098 - genomic 720, 728, 1165-1166, 1171, 1185 - 1186S2S 572, 667-675, 677-681 - identification of antisense and protein target - interactive RNA alignment viewer and editor sites in RNA or hnRNP complexes 668-671 1165 - 1182- Assemble 2 667-668, 671-677, 680-684 - in vitro selection 16, 442, 1097, 1099-1101, – interactive RNA 3D modeler 671–672 1104-1107, 1116 – installation of S2S and Assemble2 – against proteins and carbohydrates 673-674 1097-1131 SAM (S-adenosylmethionine) 1174, 1178 - - against small targets 1139-1162 - SAM riboswitch 501 - - selection cycle 1099, 1104-1106, 1141 SAM format (computational tool for RNA-Seq) - in vivo strategies 1207-1218 823, 826, 1197 – – minigene design 1212–1213 SAMs (self-assembled monolayers) of - - monitoring for enrichment of exon alkanethiols on gold surfaces 543 sequences that function as splicing SAXS. See small-angle X-ray scattering enhancers 1213-1214 S-domain (RNase P RNA) 272, 388-389, - - procedure overview 1208-1210 408, 411-416, 418-419, 421 -- protocols 1215-1218 folding intermediate – randomized exon cassette design – global conformation 412–414 1210-1211 – stable and extended conformation – RT-PCR amplification 1213 414-416 - subtractive 1098 SDS-PAGE. See SDS-polyacrylamide gel Semi-Automated Footprinting Analysis electrophoresis (SAFA) software 221 SDS-polyacrylamide gel electrophoresis sense strand (SS) (SDS-PAGE) 23, 114, 399-404, 729-732, - DNA cleavage by Bse RI and Bsg I 761 881-882, 886-887, 897, 901, 908, 910-911, - genome 928-931, 942-943, 949-950, 961, 968-969, - - coverage in microarrays 720 971, 977, 980, 984-986, 990-992, – ncRNA-coding 789 1003-1005, 1042, 1057, 1060, 1090, - lhRNA 1226-1227, 1230 1100-1101, 1110-1111 - shRNA 1225-1227 - NuPAGE 880, 910, 968-969, 971 - siRNA 1243-1245, 1249-1251, 1253, secondary structure prediction, of RNA 549 1255, 1257, 1263-1265 - mfold (UNAfold web server) 92, 549, Sephadex, Sepharose. See chromatography 555-565 sequence reads. See RNA-seq – energy dot plot 560–561 sequencing. See also next-generation -- p-num 561-564 sequencing (NGS), RNA-seq and RNA -- ss-count 561-564 sequencing - thermodynamics 550-552 - direct RNA sequencing 175, 183-184, - RNAfold (Vienna RNA server) 92, 549, 565-571 -- enzymatically 184-187, 725 – mountain plot 571 – chemically 187-189 – probability dot plot 569–570 – determination of terminal RNA sequences sedimentation analysis, of ribonucleoprotein by two-dimensional mobility shift

190 - 194

- - identification of modified nucleotides 194-201
- phosphorothioate-modified RNA by iodine RNA immobilization 519 341, 350
- DNA sequencing reaction/ladder, dideoxy 217, 221, 223, 226, 245, 248, 259-261, 311, 741, 774, 807, 995-997, 1000-1002, 1034, 1046-1047, 1108
- - additive betaine 1234
- - DNA sequencing kit 772, 804, 1224, 1227
- of PCR products 754–755
- of 5'-RACE products 748–749
- Sanger method 720–721, 802, 816, 833
- SEQUEST, tandem mass spectrometry data analysis program 929-930
- ShapeFinder software, analysis of nucleotide reactivity 221, 265
- short hairpin RNA (shRNA) 1222, 1243-1244. See also extended shRNA (e-shRNA)
- construction of vectors 1223-1228
- Dicer-dependent short shRNA 1244
- lentiviral vectors encoding anti-HIV-1 shRNAs 1230-1235
- long shRNA 1244
- shreps (shape representative structures) 581, 586-591
- computing 584-585
- shRNA. See short hairpin RNA
- shuffle program 599-600, 608, 616
- Simulaid package, MD simulation 694, 704 single-end reads, next-generation sequencing
- 825
- single molecule fluorescence resonance energy transfer (smFRET) 499-500
- antifading agents 510-511, 515-516
- "click reaction" between RNA-alkyne and dye azide 509-510
- confocal microscopy 500
- - "burst mode" vs. measurements with immobilized RNA molecules 500
- donor-only populations 521
- dye labeling of RNA construct 508–509
- dye pairs 504
- choice of pair 507-508
- Förster theory of FRET 502-503
- instrumental setup 505-507
- protocols 511-521
- bulk FRET measurements 513–515
- measurement chambers and sample preparation 516-520
- removal of unbound fluorophore 520–521
- RNA construct design 503–505

- RNA dynamics addressed by smFRET 500-502
- - biotin-streptavidin-biotin interaction 519
- surface coverage 521
- surface passivation
- RNase contamination 520
- sample drying 521
- single-stranded DNA-binding protein (SSB), in T7 transcription 21
- SIPHT web interface, prediction of bacterial intergenic loci 790-791
- siRNA. See small interfering RNA
- SITUS suite for SAXS analysis 417–419
- Sma I restriction enzyme/site 532-533, 537, 1071 - 1072
- 7SK RNA 628, 827
- 7SK polymerase II promoter 1225
- small-angle X-ray scattering (SAXS) 407-409
- application example bacterial RNase P RNA 411
- folding intermediate of Bacillus subtilis RNase P RNA S-domain 412-416
- experimental setup 410-412
- RNA modeling, low-resolution real-space reconstruction 416-421
- small interfering RNA (siRNA) 129-130, 142, 301, 842, 976, 1221-1223, 1227-1228, 1230, 1232, 1235, 1243. See also gene silencing methods
- architectures, siRNA designs 1243-1244
- helix stability asymmetry 1245
- aiRNA, asiRNA, bulge-siRNA, blunt fork-siRNA, blunt siRNA, 27 bp-siRNA, Dicer-independent short shRNA, dumbbell siRNA, long shRNA, sisiRNA, ss-siRNA 1244
- chemical modification 1244-1245
- backbone modification 1246–1248
- - base modifications 1252
- - ribose 2'-OH substitutions 1248-1251
- ribose backbone alteration
- guide for in vivo studies 1261-1265
- guide strand = antisense strand (AS) 1243
- passenger strand = sense strand (SS) 1243
- potency improvement 1252-1253
- stability against ribonucleases 1253
- stabilization strategies 1254-1255
- silencing duration enhancement 1255-1256
- immunogenicity
- abrogation by chemical modification 1257-1258

small interfering RNA (siRNA) (contd.)

- – cellular responses 1256-1257
- off-target effects, reduction 1258–1259
- pharmacokinetics, improvement by chemical modification 1259
- biodistribution, altering by conjugation 1261
- cellular delivery enhancement by conjugation 1260
- tolerance toward modification 1244-1245 small non-coding RNA (sRNA), bacterial 89, 301, 600, 719-720
- biological role deciphering 728–729
- associated proteins, identification 735-736
- biocomputational approaches to find targets 736-737
- deletion of sRNA gene (knockout strain) 729-731
- - expression profile 729
- libraries (collections) of sRNA deletion strains or overexpression plasmids 734 - 735
- overexpression 731–732
- pulse expression combined with transcriptome analysis 733-734
- experimental target validation 737–738
- in vitro characterization of function 741-742
- - in vitro RNA-RNA footprinting 739-741 automated RNA synthesis 136
- - reporter gene fusions and sRNA chimera 738-739
- expression-based discovery 720
- Hfq coimmunoprecipitation 724–726
- high-throughput sequencing and RNA-seq 721-724
- -- microarray 720-721
- expression-independent searches 726
- - biocomputational prediction, of sRNAs 726-728
- - biocomputational prediction, of sRNA targets 736-737
- - genomic SELEX 728
- protocols
- 30S ribosome toeprinting assay
 772–776 quality control of modified RNA
- − − flow cytometry 764−767
- green-fluorescent protein (GFP)-based reporter system for target validation 755-764
- – Northern blot protocol 744–747
- PURESYSTEM in vitro translation 766, 768-772
- − − 5′-RACE protocol 747−755 small RNAs, Northern blot detection 89

- application example 6S RNA-derived pRNAs 96
- DIG-labeled probes for detection 95, 101 - 102
- hybridization with complementary probe
- DNA/LNA mixmer probe design
- method limitations 96-97
- native versus denaturing gels 90-91
- Northern hybridization protocols 98–102
- probe generation by T7 transcription using DIG-11-UTP 89, 92, 100-101
- RNA isolation 89-90
- RNA transfer and fixation to membranes
- - 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) crosslinking 91-92, 95-97, 100
- smFRET. See single molecule fluorescence resonance energy transfer
- SnoReport (computational identification of snoRNAs with unknown targets) 811
- snRNP (small nuclear ribonucleoprotein). See spliceosomal small nuclear ribonucleoproteins
- SOAP sequence read alignment program 823, 826
- solid-phase synthesis of RNA 132-136, 151 - 152
- chemistry variants
- - 2'-ACE method 129
- − − 2′-O-TBDMS method 129
- TOM method 129
- deprotection protocol 136-137
- desilylation protocols 137–138
- detritylation of trityl-on RNA 142
- HPLC purification 138-142
- anion-exchange 139 - 140
- desalting 142 - 143
- -- reversed-phase 140-142
- manual RNA synthesis 134-136
- modified nucleoside phosphoramidites 117, 152-155, 359, 509
- 164-166
- product quality and purity analysis 143 - 147
- SP6 linker 1169, 1173, 1180
- - dimer 1170
- - ligation 1167, 1170, 1172
- - preparation and ligation protocol 1178-1179
- spatial resolution of AFM 528, 530-531

- Sph I restriction enzyme/site 1071–1072 spliceosomal and small nuclear ribonucleoprotein complexes, affinity purification 957
- anti-m₃G cap antibodies
- biotin-based 935-937
- immunoaffinity purification using antipeptide antibodies 958-962
- RNA aptamer-based affinity purification 986-993
- isolation of native spliceosomal complexes 963-971
- spliceosomal small nuclear ribonucleoproteins (snRNPs) 957, 986, 996, 1029, 1040-1043, 1055-1056, 1061, 1063-1064
- affinity purification using biotinylated antisense 2'-O-methyl RNA oligonucleotides and streptavidin agarose 940-948
- enrichment by DEAE chromatography
- immunoaffinity purification using antipeptide antibodies 958-962
- reconstitution 981
- U1 type 945-948, 960-961, 963, 986, 1031, 1034, 1036, 1038, 1040, 1042
- U2 type 957, 960–963, 986, 1043, 1064
- U4 type 963
- U4/U6 941-942, 986, 1031, 1063-1064
- U4/U6.U5 tri-snRNP 963, 986, 996-997, 1031, 1043, 1055
- U5 type 961, 963, 986, 1041-1043, 1064
- RNA aptamer-based affinity purification 963-971
- splint labeling, of RNA 3'-end 182-183 spring constant, of cantilever in AFM 528, 535, 538, 541
- sRNA. See small non-coding RNA
- sRNATarget web server (bacterial sRNA target prediction) 737
- ss-count (mfold) 561-564
- staining
- cells with Trypan blue 1021
- DNA 1121
- ethidium bromide (EtBr)
- proteins
- -- Coomassie (Brilliant Blue) 114, 176, 943, 946, 950, 959, 961-962, 968-969,
- – – silver 953, 1043, 1048, 1110
- RNA 430, 768, 770
- toluidine blue
 15, 112, 114, 177–178
- - ethidium bromide (EtBr) 15, 24, 41, 59, 90, 95, 471, 1060

- - silver 178, 180, 427, 433-434, 437, 439, 942, 944, 946, 962, 967-968, 971, 1059, 1063
- -- SYBR Gold 41, 768
- statistical RNA hydrolysate 190-192
- stem-loop RNA structure 595, 992-993
- binding to MS2 coat protein 992-993, 1069, 1071, 1073
- binding to PP7 coat protein 935
- 3'-extension recognized by trans-acting VS ribozymes 33
- miRNA 1227-1228
- qRT-PCR of miRNAs 89
- Rho-independent transcription termination 347, 350-351, 588, 604
- stem-loop binding protein (SLBP) 951,
- tRNA 76, 692
- U1 snRNA 1034, 1036, 1039
- U4 snRNA 1031
- yeast U3 snoRNA 1002
- yeast U5 snRNA 996-997
- streptavidin 117, 947
- alkaline phosphatase conjugate 118
- aptamer 735, 935, 1108
- gel retardation/shift of biotinylated RNA 123, 125
- (agarose) beads/resin/matrix 178-179, 372, 936-937, 940-941, 949-950, 1147, 1154, 1157-1158
- in smFRET 519-521
- magnetic beads 937-939, 1147
- RNP affinity selection/chromatography 936, 976, 1088
- sensor/cantilever functionalized with, in AFM
- neutravidin agarose 947
- structural RNA alignment 598-599, 667, 669
- INFERNAL 614
- LOCARNA 602
- S2S 668-669, 673, 678-680
- visualization 573
- 2D and 3D structure prediction, over the internet 633-634
- equipment and input 634
- MC-Tools 633-634
- MC-Cons 636, 651-654
- 635, 637-651
- – MC-Sym 636, 654, 657-661, 663
- 4SU, 6SG. See 4-thiouridine and nucleoside
- succinimidyl ester 156, 158. See also N-hydroxysuccinimide (NHS)

SuperScript. See also reverse transcription - 3'-labeling by ligation of 5'-32 P-pCp SuperScriptTM plasmid system 802–804, 181-183, 213, 337-338, 383-384, 980, 1130 surface and sensor functionalization, AFM - ligation of large RNA molecules 76-79 542-543 - mechanism and substrate specificity surface passivation, AFM 519 46-49, 71-73 surface plasmon resonance (SPR) 1106, - properties 46 1126, 1128-1130 - protocols 80-84, 817 Survival of Motor Neuron (SMN) protein - site-specific 3'-terminal modification 233 - T4 RNA ligase 1 (T4 Rnl1, RnlA) 46-50, synchrotron 409 70-73, 75-76, 78-82, 862, 865, 869, 879 - beamline 411 - T4 RNA ligase 2 (T4 Rnl2) 46-47, 49, 68 - generation of hydroxyl radicals 304, 314 - T4 Rnl2 "Truncated K227Q" 46-47, - SAXS expriments 409-411, 421-422 862-863, 865, 868, 872, 879, 889 X-ray beams 301 T7 DNA Polymerase Systematic Evolution of Ligands by -3'- 32 P-labeling with $[\alpha$ - 32 P]dATP 182–183 EXponential enrichment (SELEX). See T7 RNA Polymerase (T7 RNAP) **SELEX** - bacteriophage promoters (T3, T7, SP6) - conformational heterogeneity – analyzed by TGGE 436–437 T4 DNA ligase (T4 Dnl) 293, 361–362, 757, - - RNA renaturation to generate 1174, 1224 homogeneous conformers 213, 224, - advantages 49 412, 485, 980-981, 989-990, 1005, - DNA ligation 110, 759-760, 807, 1121, 1008, 1124 1178, 1216 endogenous DNase and RNase activity - protocols 60-61, 65-66, 68-69 - in vitro transcription - reaction mechanism 46, 48-49, 54 - - annealed oligonucleotides as template - RNA ligation method 50-52, 12 57 - 58, 78 – for AFM studies 537 – simultaneous splint ligation of five RNA - - for RNA probing 213 fragments 66-69 -- for SAXS studies - substrate specificity 47 -- for SELEX studies 1099, 1108, T4 polynucleotide kinase (PNK) 70, 180, 182, 1112-1113, 1153, 1179 772, 803, 865, 879, 979, 1094, 1174 - - homogeneous 5'-/3'-ends and 5'-end - 5'-end-labeling with $[\gamma^{-32/33}P]ATP$ 32-33, groups 5-6, 29-42 57, 64-65, 68-69, 80-81, 181, 195, – homogeneous 5'-/3'-ends, RNase H 198-199, 213, 337-338, 350, 383, 404, approach 54-56, 63 774, 808, 810, 866-867, 883, 885-886, - - homogeneous 3'-ends by 2'-O-methyl 902, 909-910, 923, 980, 1045-1046, 1091, residues at 5'-end of template strand 1130, 1176-1177 – 5'-end-labeling by phosphate exchange 181 – incorporation of phosphorothioate analogs 5'-³²P-labeling of nucleoside 335-337, 369-372, 380-381 monophosphates 196 – internally digoxygenin-labeled - 3'-dephosphorylation, removal of 2',3' cyclic (DIG-11-UTP) 100-101 phosphate 33, 39-40, 121 - - internally ³²P-labeled 14, 16, 747, 980, T4 polynucleotide ligase 46, 51. See also T4 1179 DNA ligase and T4 RNA ligase - - large RNA amounts for structural studies T4 RNA ligase(s) 182, 212, 750, 757, 803, 813, 865, 879, 979 12-13, 111-113 - - low or no product yield 20-21, 1107 - adapter ligation 752-753, 804-805, - - nucleotide analogs for internal and 809-811, 814-815, 862-872, 886-887, 889-891, 901, 903-904, 909-910, 1037 5'-terminal incorporation 6–8 - applications 73-76, 79-80 - - purification of transcripts 18-20, comparison to T4 DNA ligase 61-63, 336, 381-382, 1179-1180

- RNAs with biased nucleotide composition application example HDV ribozyme 14 - 15
- - transcripts initiated with guanosine, 5'-GMP or 5'-ApG 11-12
- with 5'-cap structures 17–18, 51 - 52, 61
- - with 5'-terminal GMPS modification 233-234, 240
- with 2'-fluoro-modified nucleotides 16 - 17
- - with unmodified nucleotides 9-15, 60-61,980
- mutant T7 RNAP
- -- Y639F 7-8, 16-17, 21, 335-336, 348-349, 351, 371
- -- Y639F/H784A 7-8, 349, 371
- NAIM analysis of T7 RNAP termination 347 - 351
- rapid T7 RNAP preparation 21-25
- -- procedure 22-24
- template types 4-5
- - plasmid template preparation 108 - 111
- TagIt-affinity purification 935
- Tag (DNA) Polymerase 37, 750, 753-754, 768, 772, 803, 811, 813, 816-817, 865, 870, 879, 892, 1118, 1120-1121, 1149, 1152, 1173-1174, 1179, 1218
- TargetRNA2 algorithm (bacterial sRNA target identification) 737
- TBDMS (2'-O-) RNA synthesis chemistry 129-132, 136
- temperature-gradient gel electrophoresis (TGGE) 427, 462
- application examples 433-443
- analysis of RNA mixtures in a single TGGE experiment 432-435
- mutant RNA analysis 438–440
- - protein-RNA complex detection 439 - 441
- structure transition analysis 435–438
- experimental conditions optimization 430-431
- - electric field 430
- − − gel matrix pore size 430
- ionic strength and urea 431
- handling 429-430
- instruments 429
- interpretation rules 431, 433
- principle 428-429
- template-stripped gold (TSG) method (force spectroscopy AFM) 543 terbium(III) footprinting 255-256

- 261 264
- of long RNAs by primer extension 259-261
- of short RNAs 256-259
- 3'-terminal attachment of fluorescent dyes and biotin 117-125
- background and chemistry 118–120
- protocols
- - biotin attachment 120-121
- - fluorescence labeling 121
- labeled RNA purification and quality control 122-123
- RNA 3'-dephosphorylation 121 terminal (deoxynucleotidyl) transferase (TdT)
- tertiary (3D) structures. See also crystallization of RNA, NAIM, NAIS and SAXS
- probing, RNA
- enzymatic 205-206
- -- Tb(III) 255-266
- $- Pb^{2+}$ 269-280
- -- Fenton cleavage 301-314
- -- NAIM/NAIS 333, 375
- temperature-gradient gel electrophoresis 427-442
- UV melting 462, 466
- RNA crystallization 492
- FRET 501.507
- AFM 531
- prediction/modeling 633, 667. See also 3D architectures, Assemble2, S2S and molecular dynamics (MD) simulations of RNA systems
- molecular dynamics 687
- RNA-protein interaction 975-976, 978,
- aptamers, in vitro selection 1130, 1148, 1150, 1155, 1171
- proteins, Fe(II)-mediated cleavage 400 tetracycline, mapping of binding sites on RNA by drug-directed Fenton cleavage 310-312 thin-layer chromatography (TLC) 62, 175,
 - 184, 190, 192, 194-199, 201, 236
- thiophilic metal ion rescue
- kinetic analysis 293-294
- RNA phosphorothioate modifications 286-290
- 6-thioguanosine. See nucleoside analog
- 4-thiouridine. See also nucleoside analog, PAR-CLIP and photocrosslinking/UV crosslinking
- postsynthetic labeling of modified RNA 152, 157, 160, 164

- 4-thiouridine. See also nucleoside analog, PAR-CLIP and photocrosslinking/UV crosslinking (contd.)
- UV crosslinking of 4SU-labeled cells 883-884
- three-way ligation 51-52, 58
- tiling (micro)arrays 720-721, 725, 787, 795-796
- T-jump technique 468
- 2'-thionocarbamate (TC) chemistry method 130
- TLC. See thin-layer chromatography tobramycin 957, 963, 987-989, 991-992, 1006, 1117
- aptamer 735, 935, 957, 963, 987-989, 1006, 1008
- tobramycin-sepharose 987–989, 991–992, 1006, 1008
- toeprint assay, 30S ribosomes 741–742, 772-776
- toll-like receptor (TLR) 1257-1258, 1265
- TOPHAT sequence read alignment program 823, 826
- total internal reflection fluorescence microscope, prism-based (prism-TIRF) 500, 511, 517
- transcription elongation complex (TEC) 3,
- transcription priming 17, 61, 231, 233-234 priming of reverse transcription 901, 903,
- transcriptome 789, 794, 853
- biocomputational analysis 727, 821, 823, 826, 830
- (d)RNA-seq 724, 821, 823, 826, 830, 1025
- experimental RNomics/RNPomics 801,
- genomic SELEX 1202
- meta-transcriptome data 727
- microarray 720, 796
- miRNA targeting 853
- sRNA pulse expression and transcriptome analysis 733-734
- transcriptome-wide identification of protein binding sites on RNA (PAR-CLIP) 877
- transduction 730, 1233-1235
- transfection 837, 844-845, 849, 1089, 1208, $1211-1214,\ 1216,\ 1221,\ 1223,\ 1232-1234,$ 1255-1256, 1260
- TransTermHP algorithm (prediction of bacterial transcription terminators) 791
- trimethylamine oxide (TMAO) 463 tris-(hydroxypropyltriazolylmethyl)amine (THPTA) 509-510, 512

- trityl-off RNA 145, 361
- desilylation 137-138
- failure sequences 141
- trityl-on RNA 137, 139, 145-146
- desilylation 138
- detritylation 142
- reversed-phase HPLC purification 140-142, 144
- transfer RNA (tRNA) 355
- abstract shape analysis 579, 584, 588
- affinity purification of RNPs 1050
- AFM 532-533, 536-537
- 3'-biotinylation/tagging with fluorescent dyes 118, 123
- crystallization 492
- homogenous 5'/3'-ends 32-35, 38, 40-42
- homology search for small ncRNAs 619, 622, 627-628
- identification and characterization of small ncRNAs in bacteria 719
- -- microarray 720
- -- RNA-seq 721-722, 724
- - cell-free translation 741-742
- - toeprinting assay 741, 772-775
- immunopurification of RNPs 1021, 1047
- isolation of RNA binding proteins 921-932, 946
- metal ion coordination 287-290
- incorporation of phosphorothioates 291-293
- - thiophilic metal ion rescue 293-294
- miRNA targets 1092
- molecular dynamics (MD) simulation 692, 700
- NAIM 355, 372-375, 377-381, 383-384, 387,389-392
- quality control of total cellular RNA, Northern blotting 95
- RNA ligation, in vitro production of full-length tRNA 50, 70-71, 74-81, 84
- RNA-protein interactions and RNA structure in RNPs 981-982, 984, 989-999, 1007, 1009
- RNA sequence and modification determination by radiolabeling 175-176, 182, 185, 187-188, 200
- alkaline hydrolysis 191
- -- chemical sequencing 188-189
- - end group analysis 190-191
- - enzymatic hydrolysis 191-192
- -- production of labeled random RNA fragments 199
- -- radiolabeling 180-181
- -- TLC 192, 196

- RNomics/RNPomics 802 ULSTM Fluorescent Labeling Kit, for Agilent - screening of genomes for known RNA arrays 796-797 genes or motifs 595-596 ultracentrifugation 427, 1041, 1055 sedimentation analysis of RNPs 1059, - cesium chloride/sulfate 1056, 1061-1064 1063 - glycerol gradient 814-816, 1056, - shRNA vectors 1223 1058-1059 - smFRET 501, 504-505, 515 - sucrose gradient 1061 - - dye labeling 508 – polysome profiling 839 - structure and folding analysis by SAXS ultra performance liquid chromatography 409, 411, 416 (UPLC) 143-144 structure prediction ultraviolet (UV) crosslinking/irradiation -- 2D 551 - RNPs in vivo 877-878, 883-884, 899-901, 905-906 -- 2D and 3D 644-645, 651-652, 655 - RNP structure analysis 977, 999, structure probing by crosslinking 242, 244-246, 248-249 1003-1005, 1008-1009, 1026, 1030-1035, 1042-1044 - - 5'-end-labeling by transcription priming – naked RNA control 1045 - structure probing by Fenton cleavage 302 - RNA structure probing 240-247 structure probing by Pb²⁺ cleavage 269 - RNA to nylon membrane 91, 746, 808 - - probing of metal ion binding sites 271, ultraviolet (UV) melting studies of RNA 439, 445 - structure probing by Tb³⁺ footprinting 264 - definitions and nomenclature 446-447 equilibrium and non-equilibrium 459–460 - structure probing in vitro 205, 211, 214, - experimental solution to sloping baseline 216, 218-219 - temperature-gradient gel electrophoresis – experimental data processing 472-473 434, 439, 441 – heating rate and data sampling 471 - UV melting 446, 449, 461-462 − − pH variation and buffers 468−470 tRNA processing. See RNase (RNase P, RNase – RNA degradation 470-471 Z), tRNase Z and tRNA – softwares 473 nucleotidyltransferase - experiments for thermodynamic studies tRNA nucleotidyltransferase 182, 922 tRNA synthetase 1082 – bimolecular transitions 452-459 aminoacylation of tRNA 29, 33, 79, 176, – melting temperature definition 450 504-505, 922 - - unimolecular transitions 451-452 - aminoacyl-tRNA 501 - melting curves of large RNAs, - aminoacyl-transferase ribozyme 264 thermodynamic information 461-462 tRNA splicing 922-923, 927, 930 - parameters influencing melting - adenylyltransferase 923, 931 temperature 462-463 - 2' phosphotransferase 923 - practical problems - endonuclease 923, 927 - - evaporation during heating 463-464 - ligase 922-924 - - sloping baseline 464, 466-467 – purification 930–931 - self-complementary sequence pitfalls tRNase Z (RNase Z) 460-461 - bioinformatic studies 628 - two-state approximation 459 - purification from wheat germ using RNA UV absorption affinity matrices 922, 924-925, 927-929 – characteristics of nucleic acid bases tRNAdb (transfer RNA database) 816 447-449 Turnip Yellow Mosaic Virus (TYMV) RNA - - physical basis 445-446 531, 533 ultraviolet (UV) shadowing 13, 19, 41, 53, 62-63, 84, 112, 163, 336, 382, 484, 1045, 1123, 1214

ultraviolet (UV) spectroscopy, for RNA

- chemical reaction monitoring 164

UCSC Genome Browser 620, 625, 816,

822-823, 826, 829

ultraviolet (UV) spectroscopy, for RNA (contd.) -- NAIM 374-375 duplex melting (thermal denaturation) – RNA-metal ion interaction 285, 287, 159, 164, 166 301, 308 - GMPS 236-237 -- RNA structure probing 206, 211, 241, - RNA quantification 60, 1108, 1279-1281 264, 269, 301 UNAFold web server (UNAFold program – RNA synthesis 132, 143, 152 -- RNP 978 package) 549, 555-557 unlocked nucleic acid (UNA) 1246-1249, -- SAXS 416 -- smFRET 502-503 1251-1254, 1259, 1262, 1264 - film 63, 95, 194, 197, 201, 403, 437, 867, URA3 gene (ura3) 1070-1071, 1081 911, 978, 993, 996, 1000, 1037, 1047, 1092, 1180 - 1181- generation of hydroxyl radicals 301, Varkud satellite (VS) ribozyme 33, 500 vbFRET software package, smFRET analysis 421-422 - small-angle X-ray scattering (SAXS) Vienna RNA package/Web Services/Websuite 407-423 549, 620-621, 673, 811 – RNA damage 421-422 Watson-Crick base pair 66, 91, 301, 463, 596, yeast (Saccharomyces cerevisiae) - mitochondrial ai5γ group II intron 344 606, 633, 650, 671, 684, 689, 1100 - disruption of H bonds, UV melting 449 - poly(A) polymerase 182, 339 - NAIM 371 - protein A system 1030 - non-Watson-Crick base pair 206, 255, 493, - pyrophosphatase 10, 234 - small nuclear ribonucleoproteins (snRNPs), 551, 596 - reverse transcription 1034 spliceosomal complexes 957 - RNA probing 210-211, 217, 220 - - isolation of native complexes 963-971 - stacking 549 - Snu13 protein 982 Weblogo program 620 wiggle track file format 826, 829 - three-hybrid system 899, 1067-1083 Wincott deprotection protocol 359 - total RNA 279, 1157-1158 wobble base pair 549, 560, 633, 645, 671, - tRNA 38, 78, 123, 181, 185, 188-191, 199, 684, 692 269, 271, 409, 644–645, 655, 700, 939, worm-like chain (WLC) model 534 979, 981-982, 984, 989-992, 994-996, 998, 1007, 1019, 1021 – intron-containing X X-ray - U3 snoRNA/snoRNP 983, 999, 1002 crystallography/structure of RNA - U5 snRNA 996 -- crystallization of RNA 481-495 - [U4/U6.U5] tri-snRNP 996

zero-length crosslink 1030-1031

- 2D and 3D RNA structure prediction 633, 642, 644-645, 652, 656
- ligand-aptamer complex 1188
- molecular dynamics (MD) simulations 688-690, 692-693