Index

а	chemical looping combustion (CLC)
absorption heat pump (AHP) 210	268
activation energy 15, 16, 99	chemosensors 29, 33
active micromixers 65	Chevron's Rheniforming process 199
active mixers 63	chloramphenicol 31, 32
adductive crystallization 225	chromatographic reactors 216, 222
adsorptive catalysts 199	coiled flow inverter (CFI) 206, 207
adsorptive distillation 237–238	compression-resorption heat pump
air gap membrane distillation 238	(CRHP) 210
ammonia oxidation 55	contactor membrane reactors 214
Andrussow process 55	cyclic distillation 257, 271–276
Arrhenius equation 15	operation of 273
azeotrope 211, 213, 235, 238	cyclodextrin-assisted bromination 34
	cyclodextrin-confined compound 34
b	cyclodextrins 17, 33, 34
batch chromatographic reactor (BCR)	cyclohexane oxidation 55
216, 218, 220, 221	d
bifunctional catalysts 199	••
brute force techniques 18	degree of integration 197, 198 degrees of freedom 60, 197, 198, 215,
	288, 305
C	desorptive cooling 257, 286–288
carbon molecular sieves (CMS) 201,	dielectrophoretic 64
202	direct contact membrane distillation
carbonyl sulfide 202, 203	238
catalyst-adsorbent distribution 200	discotic phases 38
catalytic foam 30, 60, 61, 294	distributor membrane reactors 214
catalytic partial oxidation	double-walled batch reactor 313
of alkanes 291–293	droplet micromixers 64
of cellulose 293–295	drug purification 32
catalytic reactors 27, 55, 61, 197, 290	
coupling and decoupling in 60	e
Centrifugal Coriolis micromixer 65	ecological assessment 303, 312–317
centrifugal micromixer 65	electrokinetic 64
chaotic advection micromixers 64	electrowetting 64

The Fundamentals of Process Intensification, First Edition.

Andrzej Stankiewicz, Tom Van Gerven, and Georgios Stefanidis.

© 2019 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2019 by Wiley-VCH Verlag GmbH & Co. KGaA.

EMITEC monolithic structures 5/	heat transfer coefficients 40, 47, 86, 88		
emulsion pertraction 246	91, 158		
energy dissipation rates 67, 163, 164	high throughput screening (HTS)		
energy efficiency 110, 111, 141, 305,	techniques 40		
307, 311, 314, 317	homopolymerisation of styrene 315		
etherification of methanol 316	hydrodynamics modelling 29		
exergy 311, 335	hydroformylation process 202		
exothermic reactions 39, 63, 70, 205,	hydroxyapatite (HAp) 261		
286, 287, 294			
extractive crystallization 225, 241–243	i		
extractive distillation 213, 235–238,	in-line monolithic reactor 60		
316	integrated microstructured extraction		
extractive metallurgy 231, 232	system 54		
extractor membrane reactors 214	integrating hybrid separations		
extractor membrane reactors 211	techniques		
f	adsorptive distillation 237–238		
feasible operation window 197, 198	extractive crystallization 241–243		
film diffusion 245	extractive distillation 235-237		
flow focusing micromixers 64	membrane absorption/stripping		
fluid catalytic cracking (FCC) 35, 166	242-245		
forced alignment methods 18	membrane chromatography		
fractal systems 71–73	(adsorptive membranes)		
fuel gas combustion 263	245-246		
ruei gas combustion 203	membrane crystallization 240–242		
0	membrane distillation (MD)		
g gas–solid–solid trickle flow reactor	238-241		
215	membrane extraction 246-247		
	integrating reactions and separation		
gauzes 55, 62, 291–293	211, 212		
global warming potential (GWP)	membranes in chemical reactors		
313–315	213–219		
green engineering 302, 303	reactive absorption 226–227		
principles of 303, 305	reactive adsorption 215–222		
green process technology 302, 303	reactive comminution 227–234		
L	reactive crystallization/precipitation		
h	223–225		
handling chemical reactions 234–235	reactive distillation 211–215		
heat exchange (HEX)	reactive extraction 222–224		
reactor 3, 208, 209, 334			
properties 39	1		
surface area 40	Lorentz force 65		
heat integrated distillation column			
(HIDiC) 210	m		
heat/mass transfer 29	magneto-hydrodynamic 65		
heat pumping, in distillation systems	mass efficiency 303, 305, 307		
209–211	mass/heat transfer 41		
heat pumps 209	mechanical alloying 231, 232		

mechanical vapor recompression (MVR)	multifunctional catalysts 199–202			
210	multitubular fixed-bed reactor 27, 28			
membrane absorption/stripping	multitubular heat exchangers 72			
242-245	multitubular reactor 27, 312, 321			
membrane chromatography (adsorptive				
membranes) 245-246	n			
membrane crystallization 240–242,	nanomaterials production 233			
311	nitrophenol 34, 35			
membrane distillation (MD) 104, 238–241	Nusselt number 40, 88			
membrane extraction 246–247	0			
membranes-assisted distillation 238,	one-pot reactions 199			
240	open cross-flow structures (OCFS) 61			
mesoscale baffle configurations 260	62			
metal-organic frameworks (MOFs) 36, 37, 285	oscillatory flow reactor (OFR) 257–262			
methanol-nitrogen mixture 52				
methylamine synthesis 201	p			
methylcarbamoyl chloride (MCC) 334,	parallel lamination micromixers 64			
335, 337	passive micromixers 64			
microchannel reactors	passive mixers 63			
materials properties of 41	pervaporation 238, 240, 316			
platelet 39	photocatalytic system 202			
production-scale 42	PI approaches			
scale-up versus numbering-up 42	in randomness 27–29			
microchemical processing systems 39	structures targeting heat transfer			
microfluidic distillation device 52	39–49			
micromixers 63-66	structures targeting mass transfer			
microreactor engineering 313–316	49–63			
microstructured reactors 39–45, 50, 321	structures targeting mixing and fluid flow 63–73			
microstructured separation systems	structures targeting molecular events			
49–54	29–39			
molecularly imprinted polymers (MIPs)	plate-and-shell heat exchangers 47			
30, 31	plate-fin heat exchangers (PFHEs)			
protein crystals in 33	47–49			
molecularly imprinted systems 17, 29,	plate heat exchangers (PHEs) 47, 208			
33	pore diffusion 245			
synthesis and use of 31	pre-exponential factor 15			
monolithic catalyst 29, 30, 55, 56, 58,	pressure field 64			
60, 205	pressure swing adsorption (PSA)			
advantage of 58	284–286			
single channel of 56	printed circuits heat exchanger 46			
monolithic stirrer reactor (MSR) 22,	process intensification			
205	advantages of 303			
multifunctional adsorptive catalyst	approaches 8–11			
200	case study of Bhopal 332–339			

process intensification (contd.)	residence time distribution (RTD) 67,			
classification of 308	206, 235, 332			
definitions 5–8	restricted transition state-type			
design 331-332	selectivity 35, 36			
disadvantages of 303-304	reverse flow fixed bed reactor 268			
domains and scales 8-11	reverse flow (RF)			
ecological assessment 312-317	operation 262, 264, 268, 269			
equipment and methods 9	reactors 262-269			
flexibility 307	Reynolds numbers 65, 66, 258			
in green technology 304	Rh-complex catalyst 202			
inherent safety 317–321	rotating cylindrical annulus			
interdependency 308	chromatographic reactor			
interpretations 5–8	(RCACR) 221			
microreactor engineering 313–316				
other intensified processes 316–317	S			
principle 15–19	Sandwich Structures (SS) 61, 62			
driving forces, resistances and	semi-rigid structures 38–39			
interfaces 21, 22	separation factor 211, 212, 242			
experience molecules 19–21	sequential lamination micromixers 64			
synergies 21–23	shape-selective catalysts 17, 34–38			
principles 8–11	short contact time reactors 290–295			
procedure for 332	SiC foams 60			
quality 307	simulated moving bed chromatographic			
residence time 307	reactor ((SMBCR) 216, 218,			
safety 307	221			
simplicity 307	simulated moving bed membrane			
size of the installation 307	reactor 222			
sustainability assessment 309, 310	smectic phases 38			
sustainability assessment tools	spatial structures			
applied to 303–312	chemical processing, classes of 29			
sustainable processing 302–303	classification of 30			
product selectivity 35, 36	spiral heat exchangers 48, 49			
pulse combustion (P-C) 275–284	Stark effect 18			
paise combustion (1°C) 275 201	static mixers 67–70, 142, 205, 206, 323			
r	heat exchangers 205–207			
reactant selectivity 35, 36	reactors 205–207			
reaction and separation, structured	stirred tank batch reactor 320			
internals for 55–63	stirred tank reactors 20, 205, 235, 257			
reaction rate 15, 18, 99, 135, 160, 199,	variable volume operation of			
200, 211, 212	288–290			
reactive absorption 226–227	structured heat exchangers 46–49			
reactive comminution 227–234	structures targeting heat transfer 39–49			
reactive committation 227–234	microstructured reactors 39–45			
223–225	structured heat exchangers 46–49			
reactive distillation 211, 215	structured heat exchangers 40–49 structures targeting mass transfer			
reactive extraction 222, 224	49–63			
ICUCUITO CALLUCTION ALL, ALT	17 00			

microstructured separation systems	Taylor flow 58, 59			
49–55	tert-Amyl methyl ether (TAME)			
reaction and separation, structured	synthesis 316			
internals for 55-63	tert-butylation reaction 37			
structures targeting mixing and fluid	tetracycline hydrochloride 31, 32			
flow 63-73	thermal flow reversal reactors (TFRR)			
fractal systems 71–73	263, 265			
micromixers 63–66	thermal vapor recompression (TVR)			
static mixers 67–70	210			
structures targeting molecular events 29–39	thermo-acoustic heat pump (TAHP) 210			
molecular imprints 29–33 molecular reactors 33–34	trickle bed reactors (TBR) 27, 28, 257, 270			
semi-rigid structures 38-39	periodic operation of 269–271			
shape-selective catalysts 34–38	true moving bed chromatographic			
Sulzer Katapak-S structure 62	reactor (TMBCR) 216, 218			
sweep gas membrane distillation 238	twisted nematics 38			
synergies molecular scale				
multifunctional catalysts 199–202	V			
use of alternative energy forms 202–204	vacuum membrane distillation 104, 238			
synergies processing units	valveless pulse combustor 278, 279,			
heat exchanger (HEX) reactor	281			
208–209	vapor compression (VC) 209			
heat pumping in distillation systems 209–211	volatile air methane (VAM) combustion 263			
integrating catalysis and mixing 205 integrating reactions and separation 211–227	volatile organic compounds (VOC) 102, 245			
static mixer reactors and heat	oxidation of 263			
exchangers 205–207	W			
synergy 197–247	waste generation 302, 303, 305			
t				
tandem catalysis 199	z			
T-and Y-shaped micromixers 64	zeolites 17, 30, 35, 37, 102, 285, 287			
1 and 1 shaped interonitacis of	2001100 17, 00, 00, 07, 102, 200, 207			