Contents

Preface XVII
List of Contributors XXI

Part I Introduction 1

Bao-Lian Su, Clément Sanchez, and Xiao-Yu Yang
1.1 Introduction 3
1.2 Synthesis Strategies to Hierarchically Structured Porous Materials 8
1.3 Emerging Applications of Hierarchically Structural Porous Materials 16
1.4 Conclusions 20
Acknowledgments 20
References 21

2 Hierarchy in Natural Materials 29
Peter Fratzl and Marie Madeleine Giraud Guille
2.1 Natural Materials as a Source of Inspiration in Materials Science 29
2.2 Hierarchies Based on Fiber Architectures 31
2.3 Liquid Crystalline Assemblies, Clues to Mimic Hierarchical Structures 33
2.4 Mineralized Biological Tissues, Models for Hybrid Materials 34
2.5 Concluding Remarks 37
References 37
Part II Synthesis Strategies to Hierarchically Structured Porous Materials 41

3 Hierarchically Structured Porous Materials by Dually Micellar Templating Approach 43
Özlem Sel and Bernd M. Smarsly

3.1 Introduction 43
3.2 Nanocasting – True Liquid Crystalline Templating 43
3.2.1 Surfactants and Block Copolymer Mesophases as Templates 45
3.2.2 Ionic Liquids as Templates 45
3.3 Basics of Micellization 46
3.3.1 The Driving Force for Micellization – Hydrophobic Effect 47
3.3.2 Thermodynamics of Micelle Formation 48
3.4 Mixed Surfactant Solutions 49
3.4.1 Mixed Surfactant Systems at Higher Concentrations 49
3.5 Hierarchical Self-Assembly of Concentrated Aqueous Surfactant Mixtures – Hierarchical Mesoporous Structures 50
3.6 Conclusions 52
References 52

4 Colloidal Crystal Templating Approaches to Materials with Hierarchical Porosity 55
Nicholas D. Petkovich and Andreas Stein

4.1 Introduction and Historical Overview 55
4.1.1 Opals and Colloidal Crystals 56
4.1.2 Inverse Opals and Three-Dimensionally Ordered Macroporous Materials 58
4.2 The Preparation of 3DOM Materials 61
4.2.1 Monodisperse Colloidal Spheres 61
4.2.2 Methods to Assemble Colloidal Crystals 63
4.2.3 Infiltration and Processing Routes 66
4.3 3DOM Materials with Intrinsic Secondary Porosity 69
4.3.1 Porosity Produced in Sol–Gel Syntheses 69
4.3.2 Textural Mesopores in Nanocrystalline Walls 72
4.3.3 Porosity in Carbon Materials 75
4.3.4 Using Nanocomposites to Generate Porosity 76
4.3.5 Porosity in 3DOM Clay Minerals 76
4.4 Hierarchical Materials from Multimodal Colloidal Crystal Templates 77
4.4.1 Templates from Combinations of Polymer Spheres with Similar Sizes 78
4.4.2 Templates from Combinations of Polymer Spheres and Small Silica Colloids 81
4.4.3 Heterostructured Colloidal Crystal Templates 83
4.5 Hierarchical Materials from Combinations of Soft and Colloidal Crystal Templating 84

4.5.1 Colloidal Crystal Templated Zeolites 86

4.5.2 Introduction to Soft Templating of Mesopores 86

4.5.3 Hierarchical Silica Structures 88

4.5.3.1 Cationic Surfactant Templates 88

4.5.3.2 Nonionic Surfactant Templates 89

4.5.3.3 Ionic-Liquid Surfactant Templates 92

4.5.4 Hierarchical Carbon-Containing Structures 92

4.5.4.1 Pure Carbon Structures 92

4.5.4.2 Carbon–Silica Composites and Derived Structures 93

4.5.5 Hierarchical Alumina Structures 96

4.5.6 Hierarchical Structures Containing Other Compounds 97

4.5.7 Structures Synthesized via Multiple Hard and Soft Templates 98

4.5.8 Formation and Structure of Mesopores Confined in Colloidal Crystals 100

4.5.9 Disassembly and Reassembly of 3DOM/m Materials 101

4.6 Hierarchical Opals and Related Structures 103

5 Templating of Macroporous or Swollen Macrostructured Polymers 131

5.1 Introduction 131

5.2 Macroporous Polymer Gels Formed in Amphiphile Solutions 133

5.3 Macroporous Starch or Agarose Gels 136

5.4 Polymer Foams 140

5.5 Polymeric Films and Fibrous Mats 151

5.6 Polymer Spheres 159

5.7 Closing Remarks 166

References 168

6 Bioinspired Approach to Synthesizing Hierarchical Porous Materials 173

6.1 Introduction 173

6.2 Hierarchical Porous Materials from Biotemplates 176
Contents

6.2.1 Plant Parts as Templates 176
6.2.2 Cell and Bacteria as Templates 181
6.2.3 Saccharide as Templates 185
6.2.4 Diatomaceous Earth as Templates 188
6.2.5 Eggshell as Templates 193
6.3 Hierarchical Porous Materials from the Biomimetic Process 194
6.4 Conclusions and Perspectives 201
References 202

7 Porous Materials by Templating of Small Liquid Drops 209
Haifei Zhang
7.1 Introduction 209
7.2 Emulsion Templating 210
7.2.1 HIPE Templating for Hydrophilic Polymers and Related Materials 212
7.2.1.1 O/W HIPEs 212
7.2.1.2 C/W HIPEs 214
7.2.1.3 Related Materials 216
7.2.2 Microemulsion Templating 218
7.2.3 Freeze-Drying of Emulsions 221
7.3 Breath Figures Templating 223
7.3.1 Breath Figures 224
7.3.2 Polymer 226
7.3.2.1 General Polymers 226
7.3.2.2 Proteins Related 228
7.3.3 Particles 231
7.3.3.1 Polymer + Nanoparticles 231
7.3.3.2 Nanoparticles Only 231
7.3.4 Posttreatment of BF-Templated Films 234
7.3.4.1 Cross-linking 234
7.3.4.2 Carbonization 235
7.3.4.3 Calcination 235
7.4 Conclusions 236
Acknowledgment 237
References 237
Further Reading 239

8 Hierarchically Porous Materials by Phase Separation: Monoliths 241
Kazuki Nakanishi
8.1 Introduction 241
8.2 Background and Concepts 242
8.2.1 Polymerization-Induced Phase Separation in Oxide Sol Gels 242
8.2.2 Structure Formation Paralleled with Sol–Gel Transition 246
8.2.3 Macropore Control 247
8.2.4 Mesopore Control 247
8.3 Examples of Materials with Controlled Macro/Mesopores 248
8.3.1 Pure Silica 248
8.3.1.1 Typical Synthesis Conditions 248
8.3.1.2 Additional Mesopore Formation by Aging 249
8.3.1.3 Hierarchically Porous Monoliths 250
8.3.1.4 Supramolecular Templating of Mesopores 251
8.3.1.5 Applications 252
8.3.2 Siloxane-Based Organic–Inorganic Hybrids 253
8.3.2.1 Network from Precursors Containing the Trialkoxysilyl Group 253
8.3.2.2 Hierarchical Pores in an MTMS-Derived Network 253
8.3.2.3 Network from Bridged Alkoxysilanes 254
8.3.2.4 Conversion into Porous SiC Ceramics and Carbon Monoliths 254
8.3.3 Titania and Zirconia 255
8.3.3.1 Choice of Starting Compounds 255
8.3.3.2 Controls over Reactivity 256
8.3.3.3 Applications 257
8.3.4 Alumina and Aluminates from an Ionic Source 258
8.3.4.1 Epoxide-Mediated Gel Formation into Macroporous Monoliths 258
8.3.4.2 Extension to Complex Oxides 259
8.3.4.3 Extension to Phosphates 259
8.3.5 Highly Cross-linked Organic-Polymer System 260
8.3.5.1 Divinylbenzene Monoliths 260
8.3.5.2 Acrylates and Other Networks 261
8.3.5.3 Conversion into Carbon Monoliths 261
8.4 Summary 262
Acknowledgments 263
References 263

9 Feature Synthesis of Hierarchically Porous Materials Based on Green Easy-Leaching Concept 269
Ge Tian, Li-Hua Chen, Xiao-Yu Yang, and Bao-Lian Su
9.1 Introduction 269
9.2 Hierarchically Structured Porous Materials Synthesized by Easy-Leaching Air Templates 270
9.3 Hierarchically Structured Porous Materials Synthesized by Easy-Leaching Ice Template 272
9.3.1 Ceramics 273
9.3.2 Polymer 274
9.3.3 Hydrogels (Silica) 274
9.3.4 Composites 275
9.3.5 Development of Methodology 277
9.4 Hierarchically Structured Porous Materials Synthesized by Easy Selective-Leaching Method 283
9.5 Other Easy-Leaching Concepts in the Synthesis of Hierarchically Structured Porous Materials 290

9.5.1 Three-Dimensional Meso–Macrostructured Spongelike Silica Membranes by Inorganic Salts 290

9.5.2 Biomodal Mesoporous Silicas by Dilute Electrolytes 290

9.5.3 Hierarchical Bioactive Porous Silica Gels by Gas Templating 293

9.5.4 Hierarchically Porous Materials by Chemical Etching 294

9.5.5 Hierarchically Porous Materials by Sublimation 294

9.6 Summary 296

Acknowledgments 296

References 296

10 Integrative Chemistry Routes toward Advanced Functional Hierarchical Foams 301

Hervé Deleuze and Rénal Backov

10.1 Introduction 301

10.2 Organic–Inorganic PolyHIPEs Prepared from Water-in-Oil Emulsions 304

10.2.1 Non-Chemically Bonded (Class I) Hybrid PolyHIPEs 304

10.2.1.1 Inorganic Precursor in the HIPE Aqueous Phase 304

10.2.1.2 Metal Particle Generation onto PolyHIPE Surface 305

10.2.1.3 Nanocomposites 308

10.2.1.4 Organic–Inorganic Interpenetrating Networks 313

10.2.1.5 Hard Template Replica 313

10.2.2 Chemically Bonded (Class II) Hybrid PolyHIPEs 313

10.2.2.1 Inorganic–Organic Precursor’s Copolymerization 313

10.2.2.2 Organic–Organometallic Precursors Copolymerization 314

10.2.2.3 Organometallic PolyHIPE Functionalization 316

10.3 Organic–Inorganic PolyHIPEs Prepared from Direct Emulsions 316

10.3.1 Functional Organic–Inorganic PolyHIPEs 316

10.3.1.1 Silica Foams (Si-HIPE) 316

10.3.1.2 Eu$^{3+}$@Organo-Si(HIPE) Macro-Mesocellular Hybrid Foams Generation and Photonic Properties 317

10.3.1.3 Pd@Organo-Si(HIPE) Hybrid Monoliths: Generation Offering Cycling Heck Catalysis Reactions 318

10.3.1.4 Enzyme@Organo-Si(HIPE) Hybrid Monoliths: Highly Efficient Biocatalysts 321

10.3.2 Si(HIPE) as Hard Template to Carbonaceous Foams and Applications 324

10.3.2.1 From Si(HIPE) to Carbon(HIPE) and Their Use as Li-Ion Negative Electrodes 325

10.3.2.2 From Carbon(HIPE) to LiBH$_4$@Carbon(HIPE) for Hydrogen Storage and Release Properties 326

10.4 Particles-Stabilized PolyHIPE 328

10.4.1 Water-in-Oil Pickering Emulsions 329
11 Hierarchically Structured Porous Coatings and Membranes 335
Cedric Boissiere, Eric Prouzet, David Grosso, and Clément Sanchez
11.1 Introduction 335
11.2 The Multiple Templating Strategy 336
11.2.1 Hierarchical Inorganic Nanopatterning 337
11.2.2 Ionic Liquid (IL)/Block Copolymer Soft–Soft Templating 338
11.2.3 Polymer/Block Copolymer Soft–Soft Templating 338
11.2.4 Block Copolymer/Latex Beads Soft–Hard Templating for Hierarchical Metallic Thin Films 339
11.3 Dynamic Templating 340
11.3.1 Controlled Phase Separation 340
11.3.2 Breath Figures as Smart Templates 341
11.4 Building Block Assemblies for Photonic Band Gap Materials 343
11.4.1 The Latex Games 343
11.4.2 Multilayer Deposition of POMTF 344
11.5 Ink-Jet Printing and Cooperative Self-Assembly 345
11.6 Foaming Processes 345
11.6.1 2D Mesomacrocellular 345
11.7 Filtration Membranes 347
11.7.1 Microporous Hierarchical Membranes 348
11.7.1.1 Mesostructured Hierarchical Membranes Generated into the Porous Substrate 351
11.7.2 Mesostructured Hierarchical Membranes Generated by EISA 353
11.8 Conclusion 357
References 358

12 Self-Formation Phenomenon to Hierarchically Structured Porous Materials 363
Xiao-Yu Yang, Ge Tian, Li-Hua Chen, and Bao-Lian Su
12.1 Introduction 363
12.2 History of Self-Formation Phenomenon 364
12.3 Features of Self-Formation Phenomenon 367
12.4 Structural Features of Hierarchical Porous Materials Based on the Self-Formation Phenomenon 368
12.5 The Mechanism of Self-Formation Procedure 373
12.5.1 Surfactant-Templating Mechanism 373
12.5.2 Aggregation Mechanism for the Formation of Mesoporous Structures 375
12.5.3 Microphase-Separated Mechanism for the Formation of Macroporous Structures 376
12.5.4 Porogen Mechanism 376
12.6 Controlled Synthesis Based on the Self-Formation Phenomena 384
12.6.1 The Effect of Metal Alkoxide 384
12.6.2 The Effect of Surfactant 388
12.6.3 The Effect of pH Values 390
12.6.4 The Effect of Solvent 392
12.6.5 The Effect of Hydrothermal Synthesis 394
12.7 Development of Synthesis Methodology 396
12.7.1 Combination of Self-Formation and Templating Strategy 396
12.7.2 Combination of Self-Formation and Template Replicate 396
12.7.3 Combination of Self-Formation and Zeolitic Crystallization Procedures: Perspectives 399
12.8 Applications and Hierarchical Catalysis 399
12.9 Summary 402
Acknowledgments 403
References 403

Arnaud Lemaire and Bao-Lian Su

13.1 Introduction 407
13.2 Hierarchically Structured Meso–Macroporous Aluminosilicates 409
13.2.1 Single-Molecular Alkoxy Precursor (SMAP): Effect of pH 409
13.2.2 Single-Molecular Alkoxy Precursor: Effect of Chelating Agents 413
13.2.3 Single-Molecular Alkoxy Precursor: Effect of TMOS 416
13.2.3.1 General Features of Materials Obtained 416
13.2.3.2 Direct Observation of Macropore Formation by an Optical Microscope 418
13.2.3.3 Conclusions 423
13.2.4 Single-Molecular Alkoxy Precursor: Effect of TAOS 423
13.2.4.1 General Features of Materials Obtained 423
13.2.4.2 Mechanistic Considerations 425
13.2.4.3 Conclusions 425
13.3 Conclusion 426
Acknowledgment 426
References 427
Further Reading 433

14 Zeolites with Hierarchically Porous Structure: Mesoporous Zeolites 435

Feng-Shou Xiao and Xiangju Meng

14.1 Introduction 435
14.2 Mesoporous Zeolites Formed by Posttreatments 437
14.3 Mesoporous Zeolites Created by Solid Templates 438
14.4 Mesoporous Zeolites Created by Soft Templates 442
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>Functionalization of Mesoporous Zeolites</td>
<td>449</td>
</tr>
<tr>
<td>14.6</td>
<td>Perspectives in the Synthesis of Ordered Mesoporous Zeolites</td>
<td>452</td>
</tr>
<tr>
<td>15</td>
<td>Micro-Macroporous Structured Zeolite</td>
<td>457</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>457</td>
</tr>
<tr>
<td>15.2</td>
<td>Hollow Micro-Macroporous Structure</td>
<td>457</td>
</tr>
<tr>
<td>15.3</td>
<td>Micro-Macroporous Monoliths</td>
<td>465</td>
</tr>
<tr>
<td>15.4</td>
<td>Conclusion and Remarks</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>475</td>
</tr>
<tr>
<td>16</td>
<td>Hierarchically Porous Materials in Catalysis</td>
<td>483</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>483</td>
</tr>
<tr>
<td>16.2</td>
<td>Acid Catalyst</td>
<td>484</td>
</tr>
<tr>
<td>16.2.1</td>
<td>Alkali Posttreatment of Zeolite</td>
<td>484</td>
</tr>
<tr>
<td>16.2.2</td>
<td>Synthesis of Micro- and Mesoporous Composites</td>
<td>486</td>
</tr>
<tr>
<td>16.2.3</td>
<td>Creation of Intracrystalline Mesoporosity by Using Hard Template</td>
<td>486</td>
</tr>
<tr>
<td>16.2.3.1</td>
<td>Use of Silane-Functionalized Polymer</td>
<td>487</td>
</tr>
<tr>
<td>16.2.3.2</td>
<td>Al-SBA-15/Carbon Composite</td>
<td>488</td>
</tr>
<tr>
<td>16.2.3.3</td>
<td>Use of Cationic Polymer</td>
<td>490</td>
</tr>
<tr>
<td>16.2.4</td>
<td>Use of Amphiphilic Surfactant</td>
<td>491</td>
</tr>
<tr>
<td>16.2.5</td>
<td>Zeolite Nanosheets</td>
<td>493</td>
</tr>
<tr>
<td>16.2.6</td>
<td>Pillaring and Delamination</td>
<td>498</td>
</tr>
<tr>
<td>16.2.6.1</td>
<td>Delamination of the Zeolitic-Layered Precursor</td>
<td>498</td>
</tr>
<tr>
<td>16.2.6.2</td>
<td>Interlayer-Expanded Zeolite</td>
<td>499</td>
</tr>
<tr>
<td>16.3</td>
<td>Titanosilicates</td>
<td>500</td>
</tr>
<tr>
<td>16.3.1</td>
<td>TS-1-Based Material</td>
<td>500</td>
</tr>
<tr>
<td>16.3.2</td>
<td>MWW-Based Material</td>
<td>502</td>
</tr>
<tr>
<td>16.3.3</td>
<td>Hierarchical Mesoporous Titanosilicate</td>
<td>506</td>
</tr>
<tr>
<td>16.4</td>
<td>Conclusions and Outlook</td>
<td>511</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>511</td>
</tr>
<tr>
<td>17</td>
<td>Hierarchically Structured Porous Materials: Application to Separation Sciences</td>
<td>517</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>517</td>
</tr>
<tr>
<td>17.2</td>
<td>Separation Medium for HPLC</td>
<td>517</td>
</tr>
<tr>
<td>17.2.1</td>
<td>Particle-Packed Columns as Separation Media for HPLC</td>
<td>517</td>
</tr>
<tr>
<td>17.2.2</td>
<td>Monolithic Silica for HPLC Columns</td>
<td>518</td>
</tr>
</tbody>
</table>
17.2.3 Comparison between Monolithic and Particle-Packed Columns 520
17.2.3.1 Backpressure 520
17.2.3.2 Efficiency 521
17.2.3.3 Robustness 522
17.2.3.4 Cladding and Pore Homogeneity 522
17.3 Variations in Column Format and Pore Structures 523
17.3.1 Long Capillary Columns with High Permeability 523
17.3.2 Columns with Finer Domains 525
17.3.3 Monoliths with Fully Templated Mesopores 526
17.4 Products 526
17.4.1 Preconcentration Devices 526
17.4.2 Bioreactors and DNA Purifiers 527
17.4.3 Therapeutic Apheresis Device 527
17.5 Summary 527
Acknowledgments 528
References 528

18 Colloidal Photonic Crystals: Fabrication and Applications 531
Qingfeng Yan, Jie Yu, Zhongyu Cai, and X. S. Zhao
18.1 Photonic Crystals 531
18.2 Colloidal Self-Assembly Approach to Photonic Crystals 532
18.2.1 Sedimentation 533
18.2.2 Spin Coating 535
18.2.3 Physical Confinement 536
18.2.4 Vertical Deposition 537
18.2.5 Horizontal Deposition 539
18.2.6 Spray Coating and Printing 540
18.2.7 Layer-by-Layer Method 540
18.2.8 Other Methods 541
18.3 Optical Doping in Colloidal Photonic Crystals 542
18.3.1 Line Defect Engineering 544
18.3.2 Planar Defect Engineering 549
18.3.3 Point Defect Engineering 553
18.4 Band-Gap Engineering in Colloidal Photonic Crystals 557
18.4.1 Heterostructures 558
18.4.2 Superlattices 560
18.4.3 Other Hierarchical Colloidal Photonic Crystal Structures 560
18.5 Photonic Devices Based on Colloidal Photonic Crystals 562
18.5.1 Lasing in 3D Colloidal Photonic Crystals 562
18.5.2 Sensors Based on 3D Colloidal Photonic Crystals 564
18.5.3 Waveguide in 3D Colloidal Photonic Crystals 564
18.5.4 Structural Color and Display Devices 566
18.6 Outlook 569
Acknowledgments 571
References 571

19 Hierarchically Structured Porous Materials for Energy Conversion and Storage 577
Bao-Lian Su
19.1 Introduction 577
19.2 Hierarchically Structured Porous Materials for Energy Conversion 579
19.2.1 Sunlight Conversion to Chemicals and Electricity 579
19.2.1.1 Hierarchically Structured Porous Materials for Light Harvesting, Photochemical H₂ Production, and Photocatalysis 579
19.2.1.2 Hierarchically Structured Porous Materials for Dye-Sensitized Solar Cells (DSSCs) 583
19.2.1.3 Hierarchically Structured Porous Materials for Immobilization of Photosynthetic Species 585
19.2.2 Hierarchically Structured Porous Materials for Fuel Cells (FCs) 588
19.3 Hierarchically Structured Porous Materials for Energy Storage 591
19.3.1 Hierarchically Structured Porous Materials for Li Batteries 591
19.3.2 Hierarchically Structured Porous Materials for Supercapacitors 594
19.4 Conclusion and Outlook 597
References 597

20 Hierarchically Structured Porous Materials–Applications in Biochemistry: Bioceramics, Life Science, and Drug Delivery 601
María Vallet-Regí and Miguel Manzano
20.1 Introduction 601
20.2 Bioceramics 601
20.2.1 First Generation: Bio-Inerts 603
20.2.2 Second Generation: Bioactives and Resorbables 603
20.2.3 Third Generation: Driving Living Tissue Regeneration 603
20.3 Life Science 603
20.3.1 Bone Tissue Engineering 603
20.3.2 Porous Calcium Phosphates 606
20.3.3 Porous Bioglasses 606
20.3.4 Silica Mesoporous Materials 608
20.4 Drug Delivery 610
20.4.1 Silica Mesoporous Materials 611
20.4.2 Templated Glasses 613
20.4.3 Stimuli-Responsive Drug Delivery Systems 614
20.5 Three-Dimensional Scaffolds 616
References 616
21 On the Optimal Mechanical Properties of Hierarchical Biomaterials

H. X. Zhu, T. X. Fan, and D. Zhang

21.1 Introduction

21.2 Mechanics of Materials of First-Level Hierarchy

21.2.1 Young’s Modulus E_1

21.2.2 Tensile Strength S_1

21.2.3 Flaw Tolerance

21.2.4 Toughness

21.3 Mechanics of Materials of the Higher Level Hierarchy

21.4 Results and Discussion

References

22 Concluding Remarks

Bao-Lian Su, Clément Sanchez, and Xiao-Yu Yang

22.1 Looking Back

22.2 Looking Forward

Index