Contents

Preface XI
List of Contributors XIII

1 Carbon Nanostructures: Covalent and Macromolecular Chemistry 1
 Francesco Giacalone, Mª Ángeles Herranz, and Nazario Martín
 1.1 Introduction 1
 1.2 Fullerene-Containing Polymers 2
 1.3 Carbon Nanotubes 10
 1.3.1 Defect Functionalization 11
 1.3.2 Sidewall Functionalization 13
 1.4 Graphenes 16
 1.4.1 Covalent Functionalization 17
 1.4.2 Noncovalent Functionalization 17
 1.5 Summary and Conclusions 20
 References 20

2 Hydrogen-Bonded Fullerene Assemblies 27
 José Santos, Beatriz M. Illescas, Luis Sánchez, and Nazario Martín
 2.1 Introduction 27
 2.2 Hydrogen-Bonded Fullerene-Based Supramolecular Structures 28
 2.3 Hydrogen-Bonded Fullerene-Based Donor–Acceptor Structures 32
 2.4 Applications 46
 References 49

3 Receptors for Pristine Fullerenes Based on Concave–Convex
 π–π Interactions 55
 Takeshi Kawase
 3.1 Introduction 55
 3.2 Fullerene Receptors Based on Traditional Hosts 56
 3.2.1 Simple Traditional Hosts 56
 3.2.2 Modified Traditional Host Molecules 59
 3.2.3 Receptors Bearing a Dimeric Structure of Traditional Host
 Molecules 62
 3.3 Hydrocarbon Receptors 64
 3.4 Receptors Bearing a Curved Conjugated System 66
3.4.1 Receptors Based on Bowl-Shaped Conjugated Systems 66
3.4.2 Receptors Bearing a Cylindrical Cavity 67
3.4.3 Carbon Nanorings 68
3.5 Conclusions 72
References 72

4 Cooperative Effects in the Self-Assembly of Fullerene Donor Ensembles 79
Jean-François Nierengarten
4.1 Introduction 79
4.2 Allosteric Cooperativity 80
4.2.1 General Principle 80
4.2.2 Allosteric Cooperativity in Supramolecular Fullerene Donor Ensembles 81
4.3 Chelate Cooperativity 88
4.3.1 General Principle 88
4.3.2 Binding of a Divalent Ligand AA to a Divalent Receptor BB 91
4.3.3 Binding of a Divalent Asymmetric Ligand AC to a Complementary Receptor BD 95
4.4 Conclusions 98
4.5 Experimental Details 99
4.5.1 General 100
4.5.2 UV–Visible Titrations 100
4.5.3 Luminescence Titrations 100
References 104

5 Fullerene-Containing Rotaxanes and Catenanes 107
Aurelio Mateo-Alonso
5.1 Introduction 107
5.1.1 Synthetic Strategies 107
5.1.1.1 Rotaxanes 107
5.1.1.2 Catenanes 108
5.1.2 Bistable Rotaxanes and Catenanes 109
5.2 Fullerene Rotaxanes and Catenanes 110
5.2.1 Metal Coordination 110
5.2.2 π Stacking Interactions 111
5.2.3 Hydrogen Bonds 113
5.3 Conclusions 123
References 124

6 Biomimetic Motifs Toward the Construction of Artificial Reaction Centers 127
Bruno Grimm and Dirk M. Guldi
6.1 Introduction 127
6.2 Supramolecular Architectures for Solar Energy Conversion 130
6.2.1 General Considerations 130
6.2.2 Coulomb Interactions 134
6.2.3 \(\pi-\pi\) Stacking 137
6.2.4 Hydrogen Bonding 143
6.2.5 Metal–Ligand Coordination 150
6.3 Outlook 154
References 154

7 Supramolecular Chemistry of Fullerene-Containing Micelles and Gels 159
Hongguang Li, Sukumaran Santhosh Babu, and Takashi Nakanishi
7.1 Introduction 159
7.2 Solubilization of Pristine \(C_{60}\) in Surfactant Assemblies 160
7.2.1 Solubilization in Micelles 160
7.2.2 Solubilization in Vesicles 162
7.3 Self-Assemblies of Amphiphilic \(C_{60}\) Derivatives 164
7.4 Gels of Fullerenes 166
7.5 Conclusions and Outlook 169
References 170

8 Fullerene-Containing Supramolecular Polymers and Dendrimers 173
Takeharu Haino and Toshiaki Ikeda
8.1 Introduction 173
8.2 Fabrication of [60]Fullerene Polymeric Array 174
8.3 Supramolecular Polymerization of Functionalized [60]Fullerene 178
8.3.1 Ionic Interaction 179
8.3.2 Hydrogen Bonding Interaction 182
8.3.3 Host–Guest Interaction 185
8.4 Supramolecular [60]Fullerene Dendrimer 188
8.4.1 Dendrimers with Peripheral Fullerene 188
8.4.2 Dendrimers with Inner Fullerene 193
8.5 Conclusions 198
References 198

9 [60]Fullerene-Containing Thermotropic Liquid Crystals 203
Daniel Guillon, Bertrand Donnio, and Robert Deschenaux
9.1 Introduction 203
9.2 Noncovalent \(C_{60}\) Derivatives 204
9.2.1 The Liquid–Crystalline Supramolecular Complex of \(C_{60}\) with a Cyclotrimeratrylene Derivative 204
9.2.2 Supramolecular Complex Composed of Rigid Dendritic Porphyrin and Fullerene 206
9.2.3 Self-Assembled Columns of \(C_{60}\) 207
9.2.4 Phthalocyanine-[60]Fullerene Dyads in Liquid Crystals 208
9.3 Covalent \(C_{60}\) Derivatives 208
9.3.1 Liquid–Crystalline Methanofullerene- and Fulleropyrrolidine-Based Poly(Aryl Ester) Dendrons 208
9.3.2 Liquid–Crystalline Fulleropyrrolidine-Based Poly(Benzyl Ether) Dendrons 212
9.3.3 Liquid–Crystalline Fullero(Codendrimers) 218
9.3.4 Polypedal [60]Fullerenes 223
9.3.5 Conical-Like “Shuttlecock” [60]Fullerenes 227
9.4 Conclusions 232
References 233

10 Supramolecular Chemistry of Fullerenes on Solid Surfaces 237
Roberto Otero, José María Gallego, Nazario Martín, and Rodolfo Miranda
10.1 Introduction 237
10.2 Fullerenes on Nonpatterned Metal Surfaces 238
10.2.1 Nature and Strength of Fullerene–Metal Interactions 238
10.2.2 Translational and Orientational Order of Fullerene Layers on Flat Metal Surfaces 239
10.2.3 Conventional Approaches to 2D Fullerene Supramolecular Chemistry: Fullerene Functionalization 240
10.3 Surface Templates for Fullerene Adsorption 243
10.3.1 0D Point Defects and Single-Molecule Arrays 243
10.3.2 1D Line Defects: Molecular Chains 244
10.3.3 2D Nanomeshes 246
10.4 Supramolecular Aggregation of Fullerenes and other Organic Species on Surfaces 248
10.4.1 Self-Assembled Monolayers as Hosts for Fullerenes on Solid Surfaces 249
10.4.2 Coassembly of Fullerenes and Other Organic Species 251
10.5 Outlook 258
References 259

11 Supramolecular Chemistry of Carbon Nanotubes 263
Bruno Jousselme, Arianna Filoramo, and Stéphane Campidelli
11.1 Introduction 263
11.2 Supramolecular Carbon Nanotube Hybrids 264
11.2.1 Carbon Nanotube and Surfactants 264
11.2.1.1 Suspension of Single-Wall Carbon Nanotubes (Why, How, and What for?) 264
11.2.2 π Stacking Interactions 270
11.2.2.1 Pyrene Derivatives 270
11.2.2.2 Other Cyclic Aromatic Compounds 276
11.2.2.3 Porphyrins and Derived Structures 277
11.2.3 Polymers and Wrapping 280
11.2.4 Filling Nanotubes 283
11.3 Conclusions 288
References 288

12 Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications 301

Riccardo Marega, Davide Giust, Adrian Kremer, and Davide Bonifazi

12.1 Introduction 301
12.2 Fullerene Interfaces 302
12.2.1 Fullerenes at the Liquid–Liquid and Micellar Interfaces 303
12.2.2 Fullerenes at the Solid–Liquid Interface 307
12.2.3 Fullerenes at the Gas–Solid Interface 310
12.2.4 Fullerenes at the Biological Interface 313
12.3 Carbon Nanotubes 317
12.3.1 Carbon Nanotubes at the Liquid–Liquid Interface 317
12.3.2 Carbon Nanotubes at the Solid–Liquid Interface 320
12.3.3 Carbon Nanotubes at the Gas–Solid Interface 325
12.3.4 Carbon Nanotubes at the Biological Interface 327
12.4 Conclusions 334
References 335

13 Applications of Supramolecular Ensembles with Fullerenes and CNTs: Solar Cells and Transistors 349

Hiroshi Imahori and Tomokazu Umeyama

13.1 Introduction 349
13.2 Solar Cells 350
13.2.1 Fullerene-Based Solar Cells 350
13.2.1.1 Self-Assembled Monolayers 350
13.2.1.2 Layer-by-Layer Deposition 353
13.2.1.3 Electrochemical Deposition 354
13.2.1.4 Solution-Processed Bulk Heterojunction Solar Cells 359
13.2.1.5 Hydrogen Bonding Systems 360
13.2.1.6 Coordination Bonding Systems 362
13.3 Transistors 366
13.3.1 Fullerenes 366
13.3.2 Carbon Nanotubes 366
13.4 Summary 368
References 369

14 Experimental Determination of Association Constants Involving Fullerenes 375

Emilio M. Pérez Álvarez and Nazario Martín

14.1 Planning a Titration Experiment 375
14.2 Performing a Titration 376
14.3 Choosing the Spectroscopic Method 378
14.4 Analyzing the Data 379
14.5 Determining Stoichiometry 380
14.6 Estimating Errors 381
14.7 Fullerenes as Guests: Spectroscopic Properties 381
14.8 Determination of the Binding Constant of an eTTF-based Host toward C$_{60}$: A Practical Example 385
14.9 Conclusions 389
References 390

Index 391