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1.1
Introduction

Many properties of solids are strongly affected by the presence of defects or impu-
rities. In semiconductors, impurities are routinely incorporated in small quantities
as a means of controlling the electrical conductivity. This practice, referred to as
doping, is at the heart ofmodern solid-state device design, where p-n junctions are
used in a myriad of different applications such as diodes, transistors, light emit-
ters, and solar cells. A p-n junction is an interface between two semiconductor
regions of different conductivity type: p-type and n-type. n-type semiconductors
contain impurities referred to as donors, which contribute electrons to the empty
conduction-band states of the semiconductor that lead to n-type conductivity. In
a p-type semiconductor, the presence of impurities called acceptors causes elec-
trons to be removed from the filled valence-band states.These removed electrons
leave behind mobile charged electronic vacancies in the valence band (referred to
as holes), which induce p-type conductivity.
In addition to intentionally incorporated impurities, native point defects are also

present. These are defects that are intrinsic to a given material, such as vacancies
(missing atoms), self-interstitials (additional atoms), or antisites (a cation sitting
on an anion site or vice versa in a compound semiconductor). Such native point
defects are typically electrically active, and can lead to compensation, that is, a
reduction in the conductivity that one aims to achieve by incorporating dopant
impurities. Native point defects are involved in self-diffusion [1], but also play
a critical role in dopant diffusion, because the motion of impurities is typically
assisted by vacancies or self-interstitials [2–5]. Point defectsmay also act as carrier
traps or be involved in degradation.
It is therefore crucial to understand the nature and origin of point defects in

order to control their formation and concentration.This is particularly important
because germanium has emerged as a promisingmaterial for use in the channel of
novel complementary metal-oxide Semiconductor (CMOS) devices. Compared
to silicon CMOS, germanium offers higher channel mobilities and lower voltage
operation due to its significantly smaller band gap. However, problems exist,
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Table 1.1 Bulk properties of silicon and germanium.

Property Silicon Germanium

Band gap (eV)a) 1.15 0.75
Electron mobility (cm2 (V ⋅ s)−1)b) 1500 3900
Hole mobility (cm2 (V ⋅ s)−1)b) 470 1900
Electron effective mass (me)c) 1.08 0.55
Hole effective mass (me)c) 0.56 0.37
Static dielectric constantb) 11.7 16
Lattice constant (Å)a) 5.43 5.66
Bulk modulus (GPa)a) 98 75
Cohesive energy (eV∕atom)a) 4.63 3.85

a) T = 0K data from Ref. [6].
b) T = 300K data from Ref. [7].
c) Density-of-states effective mass (T = 300K) from Ref. [8].

particularly in n-channel MOS field-effect transistors (FETs), which are likely
caused by the presence of defects near the semiconductor/dielectric interface,
such as germanium dangling bonds (DBs).
Throughout this chapter, we will occasionally compare results for germanium

with those for silicon. Such comparisons are meaningful not only because ger-
manium is frequently integrated with silicon in devices, but also because of the
similarities between the two semiconductors. Germanium, like silicon, is a semi-
conductor with the diamond crystal structure. Both are indirect semiconductors
with similar properties, as shown in Table 1.1. However, the conduction-band
minimum (CBM) in germanium occurs at the L-point in the Brillouin zone, while
the CBM occurs near the X-point in silicon. In addition, germanium has a signif-
icantly higher hole mobility compared to silicon, making it a desirable choice for
a number of applications.

1.2
Methods for Studying Defects and Impurities

1.2.1
Experimental Techniques

A number of experimental techniques exist for studying point defects and
impurities.
Electron spin resonance (ESR) is one of the most powerful techniques for the

study and identification of defects in semiconductors [9]. It provides information
about the chemical identity of the atoms in the vicinity of the defect, as well
as about the symmetry of the defect. ESR relies on the presence of unpaired
electrons. In cases where the stable ground-state configuration of the defect is not
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paramagnetic, optical excitation can often be used to generate ametastable charge
state with a net spin density. Optically detected magnetic resonance (ODMR)
is a variant of the technique that can offer additional information about defect-
induced levels in the band gap [10]. The ability to directly compare measured
hyperfine parameters with calculated values for specific defect configurations
allows for an explicit identification of the microscopic structure [11, 12].
Vibrational spectroscopy can be applied to defects or impurities that give rise

to local vibrational modes (LVMs), whose frequencies and polarization contain
information about the chemical nature of the atoms involved in the bond as well
as the bonding environment [13]. Comparisons with calculations [14] can again
facilitate the identification of the observed defect and its structure.
Positron annihilation spectroscopy (PAS) [15] can be used to identify point

defects and measure their concentration, but it is mostly sensitive to negatively
charged defects and typically limited to detection of vacancies.
The electronic structure of defects can be studied with electrical techniques

such as temperature-dependent Hall measurements [16] or deep-level transient
spectroscopy (DLTS) [17]. Optical levels can be observed in photoluminescence,
absorption, or cathodoluminescence experiments[18].
Finally, we mention perturbed angular correlation spectroscopy (PACS), which

is a type of γ-ray spectroscopy that is used to study hyperfine interactions on probe
nuclei introduced into a crystal. Point defects near the probe nuclei modify inter-
nal fields, allowing the determination of defect association energies, migration
barriers and formation energy differences between defects within a crystal [19, 20]

1.2.2
First-Principles Calculations

Modern first-principles calculations can provide deep insight into the nature of
defects and impurities in semiconductors. Owing to a substantial increase in avail-
able computational power as well as in the development of novel algorithms, first-
principles techniques have achieved an unprecedented level of predictive power,
accuracy, and the ability to treat systems with an increasingly large number of
atoms. Such methods allow calculating the energetic properties of solids at the
microscopic level and the investigation of both the atomic and electronic structure
of defects and impurities. As mentioned in Section 1.2.1, first-principles methods
allow calculating observables that can be directly comparedwith experiments, and
also quantities that are difficult to extract directly from experiments such as elec-
tronic wavefunctions, microscopic charge densities, defect formation energies,
and local atomic relaxations.
Most state-of-the-art first-principles (or ab initio) calculations for defects and

impurities in solids are based on density functional theory (DFT) [21]. DFT seeks
to determine the ground-state properties of the many-body electronic system
present in solids. DFT in the Kohn–Sham (KS) scheme [22] provides an approx-
imate solution to this problem by formulating it as a single-particle problem
in which the electrons move in an effective potential that is composed of the
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Coulomb potential due to the atomic nuclei; the classical Hartree potential due
to all of the other electrons in the system; and a so-called exchange-correlation
potential (VXC), which captures the quantum-mechanical many-body interac-
tions. An exact expression for VXC is not known, but approximations such as
the local density approximation (LDA) or generalized gradient approximation
(GGA) have been shown to provide very good descriptions of structural prop-
erties [23, 24]. Within the LDA, VXC is assumed to depend only on the local
charge density [22]; the GGA additionally takes local variations of the charge
density into account [25, 26]. Within the LDA, VXC is assumed to have the value
corresponding to a homogeneous electron gas with a density equal to the local
charge density; values for the homogeneous electron gas are obtained with high
accuracy from quantumMonte Carlo simulations [27, 28].
DFT with traditional functionals such as the LDA and GGA has been very

successful in describing the many properties of molecules and solids, but it has
significant shortcomings in its description of electronic band structures, an
issue commonly referred to as the band-gap problem, because the band gap of
semiconductors and insulators is significantly underestimated. Sometimes this
underestimation is so severe that an LDA or GGA calculation actually produces
a zero band gap, that is, a metal, which is the case with germanium [29].
A variety of approaches have been proposed to overcome this problem. The

most rigorous are based on many-body perturbation theory, the lowest order
approximation being the GW approximation [30]. The GW approach is generally
regarded as the method of choice for computing excitation spectra of weakly
correlated systems, but it still has limitations: it is computationally expensive
for calculating the large supercells needed to study defects and impurities,
and no practical scheme is currently available for self-consistently calculating
energetics and forces (and thus atomic relaxations), rendering it difficult to study
cases where large structural relaxations occur [31, 32]. In addition, The GW
calculations typically use wave functions calculated with LDA or GGA as input,
and problems may arise when defect states do not lie within the DFT-calculated
band gap.
A number of approximate correction schemes also exist, the simplest being

a “scissors operator,” that is, a rigid shift of conduction bands and possibly
conduction-band-derived states to bring the fundamental gap in line with the
experimental value. More sophisticated approaches based on the extrapola-
tions of certain parameters have been proposed but these introduce additional
uncertainties [33]. Pseudopotentials are typically used in conjunction with DFT
calculations in order to avoid solving an all-electron problem. The construction
of pseudopotentials allows some flexibility in the choice of parameters, and
modified pseudopotentials have been successfully implemented for corrections
of the DFT band structure [34].
Aside from the band gap, some other features of DFT band structures calculated

with LDAorGGAmay be inaccurate: semicore states (such as theGe 3d states) are
underbound and hence too close to the valence-band states. This error contribut-
ing to the band-gap underestimation as p-d repulsion pushes the valence-band
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maximum (VBM) upward and closer to the CBM. In the DFT+U scheme, an
orbital-dependent potential is applied to the semicore d states.This potential adds
an extra Coulomb interaction (U) to such states, and lowers their energetic posi-
tion on an absolute energy scale. The lowering of the d states shifts the VBM
downward (due to p-d coupling) and opens up the band gap.This leads to a partial
opening of the band gap, but the band gap is not fully corrected as it still suffers
from underestimation due to other DFT-inherent causes such as self-interaction
errors. Still some improvement in the band structure occurs, and such DFT+U
calculations have been applied to defects in germanium [35, 36].
It would be desirable to have amethodology that stayswithinDFT and retains its

capability to efficiently calculate energetics and forces, while improving the band
structure. Novel functionals have been developed that have proven successful in
achieving these goals. Hybrid functionals essentially mix the standard GGA func-
tional with a certain amount of exact exchange, as would be obtained from the
Hartree–Fock method.The twomost common implementations of this approach
were developed by Perdew, Ernzerhof, and Burke (PBE0) [37–40] and by Heyd,
Scuseria, and Ernzerhof (HSE) [41, 42]. Both include 25% Hartree–Fock exact
exchange, but theHSE formalism truncates the contributions fromexact exchange
at a certain length, which allows formore accurate descriptions ofmetallic systems
and also results in a reduction of computational demands.

1.3
Impurities

1.3.1
Shallow Dopants

The most common dopant impurities for silicon and germanium are group-III
elements as p-type dopants and group-V elements as n-type dopants. A shallow
dopant is characterized by a small ionization energy. For example, arsenic in ger-
manium introduces an extra electron resulting from arsenic having five valence
electrons (as opposed to four for germanium). The atomic electronic level corre-
sponding to this arsenic state lies well above the CBM of germanium, and, there-
fore, the extra electron drops to the bulk CBM of germanium, that is, an extended
electronic state. Within that state, the electron is Coulombically attracted to the
positive As center, a situation described by hydrogenic effective mass theory. The
energy difference between the ground state of this hydrogen-like system (modified
by the dielectric constant and the effective mass of the host material) determines
the ionization energy. Table 1.2 lists the ionization energies for a number of com-
mon dopants in silicon and germanium. Table 1.2 shows that ionization energies
are significantly smaller in germanium as compared with silicon, which can be
attributed to its larger dielectric constant and smaller effective masses.
Another important characteristic of dopant impurities is their solubility, which

determines how easily dopants can be incorporated. Table 1.3 lists the solid solu-
bility limits for some common dopants in silicon and germanium.
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Table 1.2 Dopant ionization energies in silicon and germanium.

Dopant impurity Type Silicon (meV) Germanium (meV)

B p-type 45 10
Al p-type 67 10
Ga p-type 72 11
In p-type 160 11
P n-type 45 12
As n-type 54 13
Sb n-type 39 9.6

Source: Data from Ref. [8].

Table 1.3 Dopant solid solubility limits in silicon and germanium.

Dopant impurity Type Silicon (1020cm−3) Germanium (1020cm−3)

B p-type 6.0 –
Al p-type 0.2 4.0
Ga p-type 0.4 5.0
P n-type 15.0 –
As n-type 19.0 1.9
Sb n-type 0.7 0.1

Source: Data from Ref. [43].

Dopants can be incorporated in a variety of ways. Sometimes this is accom-
plished during the growth of the material itself; in other cases, in separate
treatments. The two most common methods include diffusion and ion implan-
tation. In diffusion techniques, a high concentration of dopant atoms is first
introduced onto the surface of the semiconductor by coating the semiconductor
surface with a dopant-containing layer, and using elevated temperatures to
cause the dopant atoms to diffuse into the semiconductor. In ion implantation,
an ion beam bombards the semiconductor substrate, implanting dopants into
the material as well as simultaneously damaging the substrate, thus requiring a
post-implantation anneal.
In all cases, controlling the spatial distribution of dopants is a challenge. Some

applications require an even distribution of dopants throughout the semicon-
ducting material, but state-of-the-art devices typically require precise positioning
of dopant atoms over small length scales (on the order of nanometers). This
is typically accomplished using ion implantation, followed by a rapid thermal
anneal. The diffusivity of many dopants is mediated by native defects in the
semiconductor [2, 4]. In the case of germanium, many impurities (such as
arsenic) diffuse faster than germanium itself, which may be attributed to both
the electrostatic attraction between the impurities and native defects [2, 4].
Figure 1.1 illustrates the higher diffusivity of arsenic compared with self-diffusion
in germanium. Other impurities such as boron and silicon diffuse slower than
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Figure 1.1 Temperature dependence of
the diffusion constant of foreign atoms in
Ge (thin lines) compared with self-diffusion
(thick line). Solid lines represent diffusion
data of elements that are mainly dissolved
on substitutional lattice sites. Long-dashed
lines (– –) indicate hybrid elements, which
are mainly dissolved on substitutional sites,

but diffuse in an interstitial configuration
via the dissociative mechanism. The short-
dashed lines (- - - -) indicate elements
that are mainly interstitially dissolved. The
upper short-dashed line shows the diffu-
sivity deduced for interstitial copper. Figure
courtesy of Ref. [2]

the self-diffusion in germanium, which can happen if the impurity atoms are
electrostatically repelled from native defects [2].
Impurities can diffuse via substitutional or interstitial sites. Native defects can

assist this diffusion through a variety of mechanisms. For example, if a vacancy
and substitutional impurity atom are attracted to one another (to minimize local
strain, or by electrostatic interaction), they can diffuse to form a complex.This pair
can then dissociate and subsequently reform along a different direction, leading to
long-range migration [4, 44]. Self-interstitial defects can also assist impurity dif-
fusion. This requires the self-interstitial atom and impurity atom to stay spatially
localized and not dissociate. When the self-interstitial (paired with the impurity)
diffuses one atomic site, it can create a local lattice distortion that causes the
impurity to follow [44]. There are also dissociative mechanisms by which substi-
tutional impurity atoms can diffuse through interstitial sites [44]. Such diffusion
involves the creation anddestruction of vacancies as the impuritymoves from sub-
stitutional to interstitial sites. Finally, we mention the kick-outmechanism, which
is assisted by self-interstitials: the impurity is kicked out of a substitutional site,
migrates interstitially, and then rejoins a substitutional site by kicking a bulk lattice
atom into an interstitial position.Therefore, in order to fully understand dopant or
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impurity incorporation (and diffusion), it is clearly essential to study the behavior
of native defects.

1.3.2
Hydrogen

Hydrogen is a ubiquitous impurity that is present in most growth and processing
environments, and is easily incorporated inmaterials. In semiconductors, intersti-
tial hydrogen usually acts as an amphoteric impurity, that is, it behaves as a donor
in p-type material and as an acceptor in n-type material [45, 46]. This implies
that hydrogen counteracts the prevailing conductivity, and will have a tendency
to form complexes with dopant impurities [47]. In germanium, however, hydro-
gen exhibits a less usual behavior where it is always negatively charged [48, 49].
The reason for this behavior is linked to the fairly high position of the germanium
VBM on an absolute energy scale [50]. Combined with the fact that the electronic
defect level associated with interstitial hydrogen is approximately constant on an
absolute energy scale, this explains why hydrogen in silicon is amphoteric while
in germanium hydrogen is exclusively an acceptor. This behavior has important
consequences for hydrogen’s ability to passivate defects in germanium, as will be
discussed in Section 1.4.4.

1.4
Intrinsic Defects

We have already mentioned that native defects can interact with impurity atoms
and determine their diffusivity. In addition, native point defects can be electri-
cally active and introduce defect levels within the band gap. Such energy levels can
degrade device performance, as will be discussed in Section 1.4.4. In bulk germa-
nium, native defects can take the form of vacancies (missing atoms) or interstitials
(extra atoms). At interfaces, native defects can be characterized by a lack of con-
sistent bonding across the interface; such defects are referred to as DBs.

1.4.1
Vacancies

1.4.1.1 Electronic Structure
When a vacancy is created in germanium, an atom is removed and four bonds are
broken. The remaining DBs can be represented as sp3 orbitals (Figure 1.2). The
interaction of these orbitals produces a symmetric state (commonly referred to
as a1) and three degenerate states (commonly referred to as t2). Depending on
the occupancy of these states (as determined by the charge state of the vacancy),
the degeneracy of the t2 states can be split by Jahn–Teller distortions. These t2
states can also be split by strain or the presence of another defect or impurity
atom nearby. An assessment of the stability of different charge states requires a
discussion of the formation energy of the vacancy.
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Figure 1.2 Electronic structure of the
vacancy in germanium. (a) sp3 bonding
orbitals in germanium. (b) Symmetric a1 and
degenerate t2 defect states for the vacancy

in germanium. (c) Symmetry breaking can
split the t2 states due to strain, Jahn–Teller
distortion, or nearby defects.

1.4.1.2 Formation Energy
The formation energy is a key quantity for characterizing defects in solids. In the
dilute regime and assuming thermal equilibrium, the formation energy (Ef ) of a
defect is related to its concentration through a Boltzmann relation [24]:

C = N0 e−Ef ∕kBT , (1.1)

whereN0 is the number of sites the defect can incorporate on, including the num-
ber of possible configurations per site, kB is the Boltzmann constant, and T is the
temperature. For a vacancy in charge state q(Vq

Ge), the formation energy is defined
as follows [24]:

Ef [Vq
Ge] = Etot[Ge ∶ Vq

Ge] − Etot[Ge ∶ bulk] + 𝜇Ge + qεF . (1.2)

The Etot terms are the total energies of the germanium crystal with and without
the defect. For the defect, a supercell geometry is used. Note that inclusion of
spin polarization is essential to ensure correct occupation of the defect states. μGe
is the chemical potential, representing the energy of the reservoir in which the
germanium atom that was removed from the solid was placed. In the case of an
elemental solid such as germanium, this is simply the energy per atom of a bulk
germanium crystal. Sometimes this is presented as placing the germanium atom
that was removed on the surface of the material; this increases the number of bulk
atoms by one, leading to the same conclusion that the reference energy is equiva-
lent to that of a bulk germanium atom.
When the vacancy is in charge state q, q electrons have been removed from

the defect, and these electrons have been placed in a reservoir with energy εF ,
that is, the electron chemical potential or (in semiconductor language) the Fermi
level. Typically, εF is referenced to the bulk VBM. The Fermi level in Eq. (1.2) is a
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Figure 1.3 Formation energy of vacancies in silicon (a) and in germanium (b) as calculated
with hybrid density functional theory [51]. Only the lowest energy charge state is shown for
each value of the Fermi level.

variable. In practice, the Fermi level is of course fixed to a value that is determined
by local charge neutrality, taking into account all point defects and all impurities
(in all possible charge states) that are present in the material. However, we will see
that it is instructive to examine the formation energy of the defect as a function of
εF , allowing us, for instance, to examine what would happen in p-type (εF close to
the VBM) versus n-type material (εF close to the CBM).
We, therefore, plot the formation energy as a function of εF , as illustrated in

Figure 1.3 for both Si andGe.The values shownherewere obtainedwith the hybrid
density functional technique described in Section 1.2.2, using the HSE functional.
For calculational details we refer to Ref. [51]. For a given value of the Fermi level,
only the lowest energy charge state is shown, and the slope of the line segment
corresponds to the charge of the defect. We note that the concentration of higher
energy charge states is exponentially attenuated (Eq. (1.1)).
Figure 1.3 shows that germanium vacancies have a significantly smaller forma-

tion energy than silicon vacancies. Consequences, particularly for diffusion, will
be discussed in Section 1.4.1.5.

1.4.1.3 Defect Levels

The kinks in the curve indicate transitions between different charge states of the
defect. The Fermi-level positions at which these occur determine the so-called
charge-state transition levels (q∕q′), which can be derived from the calculated for-
mation energies:

(q∕q′) = −
Ef (Dq; 𝜀F = 0) − Ef (Dq′ ; 𝜀F = 0)

q − q′
, (1.3)
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Table 1.4 Charge-state transition levels associated with
the vacancies in silicon and germanium as calculated
with hybrid density functional theory [51].

Transition Level Silicon (eV) Germanium (eV)

(+2/+1) – 0.14
(+1/0) – 0.15
(+2/0) 0.38 –
(0∕ − 1) 0.63 0.16
(−1∕ − 2) 1.00 0.38

where Ef (Dq; εF = 0) is the formation energy of the defectD in charge state qwhen
the Fermi level is at the VBM. For εF < (q∕q′), the defect is stable in charge state
q, while for εF > (q∕q′), the defect is stable in charge q′. These transition levels
are also sometimes referred to as thermodynamic transition levels, and can be
probed using experimental techniques such as DLTS, in which the final charge
state is able to fully relax to its corresponding equilibrium atomic configuration
after the charge-state transition.
Table 1.4 lists the charge-state transition levels for the vacancies in germanium

and silicon. Table 1.4 and Figure 1.3 show that the (+2/+1), (+1/0), and (0∕ − 1)
charge-state transition levels in germanium are very close in energy. PACS
measurements have found the (0∕ − 1) transition level to be located at 0.2 ± 0.04
eV above the germanium VBM [52, 53], in good agreement with the result in
Table 1.4. The (−1∕ − 2) level is calculated to be 0.38 eV above the VBM in
germanium. A vacancy-related charge-state transition level at 0.33 eV has been
detected with DLTS [54].
Physical insight into the formation of the+2,+1, 0, and−1 charge states and the

corresponding transition levels can be obtained by considering the single-particle
states introduced in Section 1.4.1.1. We illustrate these single-particle states in
Figure 1.4. In the neutral charge state of the vacancy, four electrons (one from each
germanium sp3 orbital) are available to fill the vacancy-induced single-particle KS
states. Two electrons go into the a1 state (below the VBM) and two are left to
occupy the spin-up channel of the t2 states, leading to a spin-1 configuration. The
+1 charge state of the vacancy is obtained by removing one electron from the
t2 states, leading to a configuration with spin 1/2. Removing a second electron
leads to the +2 charge state and a spin-0 configuration. The a1 states, which are
well below the VBM, always remain occupied, and hence the+2 charge state is the
lowest achievable charge state of the vacancy.Upon adding one additional electron
to obtain the −1 charge state, there are 5 electrons: 2 in the a1 state, and 3 in the
spin-up channel of the t2 states, which are thus occupied with one electron each.
This leads to a spin-3/2 configuration. We thus see that starting from +2, the +1,
0, and −1 charge states are obtained by adding one, two, or three electrons to the
spin-majority channel of the t2 states. These electrons go into different orbitals,
and apparently inter-orbital repulsion is quite weak, explaining why the (+2/+1),
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Figure 1.4 Kohn–Sham states for the +2 to −2 charge states of the vacancy in germa-
nium. These results were obtained through spin-polarized hybrid density functional theory
calculations [51].

(+1/0), and (0∕ − 1) charge-state transition levels are very close together in energy,
as seen in Table 1.4.
To obtain the −2 charge state, however, an electron must now be added to the

spin-minority channel associated with the t2 states. This now causes intra-orbital
electron–electron repulsion (apparently much stronger than inter-orbital repul-
sion) between the two electrons in the t2 state that is doubly occupied; a significant
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rearrangement of the single-particle states occurs and explains the large separa-
tion between the (0∕ − 1) and (−1∕ − 2) charge-state transition levels, as seen in
Table 1.4).
The results shown in Figure 1.3 and Table 1.4 are in broad agreement with other

density functional calculations for vacancies in germanium reported in the liter-
ature [35, 36, 55]. The discrepancies that do occur can be mainly attributed to
the different approximations made within the DFT framework. In the study by
Fazzio et al. [55] modifications were made to the germanium pseudopotential,
while Śpiewak et al. [35] employed LDA+U andTahini et al. [36] usedGGA+U . In
addition, the studies by Fazzio et al. [55] and Tahini et al.[36] did not consider spin
polarization, which is essential to obtain a correct occupation of single-particle
states.

1.4.1.4 Comparison with Silicon
Figure 1.3 shows that the +1 charge state is not stable in silicon, while the +1
charge state of the vacancy in germanium is stable over a small but finite range
of Fermi levels. The calculations for silicon [51] show that the +1 charge state is
never thermodynamically stable. Such a situation, where the stable charge state as
a function of Fermi level jumps from +2 to 0, is referred to as a negative−U tran-
sition [56]. Experimentally, the fact that the +1 charge state of the silicon vacancy
is not stable has indeed been observed using DLTS [57].
The relative spacing of the charge-state transition levels of the vacancy is very

different in silicon and germanium (Figure 1.3). The difference can be mainly
attributed to the different behavior of the neutral charge state. In germanium,
the atomic structures of the +2, +1, 0, and −1 charge states are quite similar,
that is, the atomic relaxations do not drastically change as electrons are added
to the t2 spin-up states. But in silicon, the neutral charge state exhibits distinctly
larger relaxations, indicative of extensive rebonding (probably induced by silicon’s
smaller lattice constant) and resulting in a lowering of the energy of this charge
state relative to the other charge states.This Jahn–Teller distortion lowers the two
occupied t2 eigenvalues with respect to the unoccupied one and is responsible
for the much larger spacing of the (+1/0) and (0∕ − 1) transition levels in silicon
compared to germanium.

1.4.1.5 Diffusion
Self-diffusion in germanium is known to be largely governed by vacancies
[1, 4, 5]. The diffusion activation energy is the sum of formation energy and
migration barrier. A migration barrier of 0.1 eV was calculated for the vacancy in
germanium [58]. The formation energy is a function of Fermi level. For modest
doping levels (below ∼ 5 × 1018 cm−3) the material is close to intrinsic at the
temperatures of interest for diffusion, and under those conditions the vacancy
will likely be in a−1 charge state, with a formation energy of∼ 2.9 eV (Figure 1.3).
Combined with the migration barrier, this leads to an activation energy for
self-diffusion of 3.0 eV, in remarkable agreement with the experimental values of
3.1 eV [1].
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Assuming that vacancies are also amajor contributor to self-diffusion in silicon,
the same exercise leads to amigration barrier of 0.5 eV [59] and a formation energy
of 4.1 eV for the neutral charge state (Figure 1.3), resulting in an activation energy
of 4.6 eV—again in good agreement with the experimental value of 4.8 eV [60].
We note that that the value of the formation energy of the vacancy depends on

the Fermi level (Figure 1.3), and therefore doping may impact self-diffusion, par-
ticularly at high doping levels.This has indeed been observed experimentally [61].

1.4.2
Self-Interstitials

Self-interstitials are formed when extra atoms are added to the crystal. Self-
interstitials can exist in a variety of atomic configurations, illustrated in
Figure 1.5.
The split interstitial is formed by placing two atoms on a single lattice site. The

orientation of these two atoms defines the type of split interstitial. In both silicon
and germanium, the <110> orientation (illustrated in Figure 1.5a) is the lowest
in energy for stable charge states of the split-interstitial [62–65]. The hexagonal
interstitial is formed by placing a germanium atom on a sixfold coordinated inter-
stitial site, while the tetrahedral interstitial is located on a fourfold-coordinated
site. Intermediate structures can be formed by placing an interstitial atom at a

(a) (b)

(d)(c)

Figure 1.5 Atomic configuration for various
types of self-interstitial defects in germa-
nium. The types are defined as: (a) split inter-
stitial, (b) hexagonal interstitial, (c) tetrahe-
dral interstitial, and (d) open cage structure

formed by a bond-center interstitial atom
relaxing outward toward the hexagonal site
(distorted hexagonal structure). Black atoms
indicate bulk-like atoms. Gray atoms indicate
the interstitial atom(s).
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Figure 1.6 Configuration-coordinate diagram for the self-interstitial in germanium. D
denotes the split-interstitial, H the hexagonal interstitial, and T the tetrahedral interstitial.
Figure courtesy of Ref. [63].

bond-center location and then allowing the structure to relax toward the tetrahe-
dral or hexagonal configuration [66].
Because the interstitial can exist in different atomic configurations, it is possible

for the lowest-energy atomic configuration of one charge state to be different from
that in a different charge state. First-principles calculations based on DFT-LDA
combined with nonlinear core corrections for the germanium d states [63] indi-
cated that the neutral charge state is stable in the split-interstitial configuration,
while the +2 charge state is stable in the tetrahedral configuration.The +1 charge
state is most stable in an open cage structure similarly to Figure 1.5d (distorted
hexagonal configuration) [63, 66].
Because of this stability in different atomic configurations, it is important to

understand the barriers associated with the various interstitial configurational
transformations. Figure 1.6 illustrates these barriers, as well as the lowest energy
configurations for the 0, +1, and +2 charge states. We see that the barriers asso-
ciated with metastable states for the neutral and +1 charge states are very small,
indicating that it is unlikely that interstitials will become trapped in metastable
states.
First-principles calculations based on DFT-LDA consistently find the (+1/0)

charge-state transition level to be very close to the VBM [64, 65]. Experimentally,
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PACS data suggests that the self-interstitial produces a transition level in the
vicinity of the CBM [52, 53]. The origin of this particular transition has been
debated [64, 65], but the most likely assignment is the (0∕ − 1) transition. We
note that calculations for self-interstitials to date have been performed only with
DFT-LDA [64, 65], making conclusive assignments difficult due to the band-gap
problem.
In germanium, the self-interstitial is a less important defect than the vacancy

because of its significantly higher formation energy [4, 5]. Dopant diffusion in
germanium is predominantly mediated by vacancies [4, 5].

1.4.3
Dangling Bonds

1.4.3.1 Electronic Levels
Vacancies and self-interstitials are point defects that occur within the bulk of a
germanium crystal. At an interface with another semiconductor or insulator, devi-
ations from perfect coordination may occur, leading to DBs. Figure 1.7 illustrates
a schematic atomic configuration for a DB at a germanium/germanium-oxide
interface.
A number of first-principles calculations have been performed forDBs in silicon

[68, 69] and germanium [48, 51, 69]. Figure 1.8 displays the results for DB defect
levels from Ref. [51], again comparing silicon and germanium.
Calculations forDBs in silicon place the (+/0) level at an energy of about 0.1–0.2

eV above the VBM, and the (0/–) level at about 0.6–0.8 eV, indicating that the
neutral DBwould be stable over quite a large range of Fermi levels within the band
gap [51, 69] (Table 1.5).This agrees with EPR experiments [71–73] that probe the
neutral charge state of the DB of anMOS capacitor, finding that the neutral charge
state is stable over a 0.5 eV range within the silicon band gap [71].
Calculations for DBs in germanium lead to results for the DB levels that agree to

within about 0.2 eV [51, 69], with the defect levels occurring near the germanium

Figure 1.7 Schematic representation of a dangling bond at a germanium/germanium-
oxide interface. Gray atoms represent germanium, black atoms oxygen, and the white atom
the germanium atom with the DB. Figure courtesy of Ref. [67].
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Figure 1.8 Charge-state transition levels for
dangling bonds in silicon and germanium
as calculated with hybrid density functional
theory [51]. The connected bottom lines indi-
cate the VBM for silicon and germanium,
while the connected top lines indicate the

CBM for these materials. The alignment of
the band structures is based on the calcu-
lated valence-band offset of 0.6 eV [70]. The
short lines indicate the charge-state tran-
sition levels associated with the dangling
bonds [51].

Table 1.5 Charge-state transition levels associated
with the dangling bonds in silicon and germanium
as calculated with hybrid density functional theory [51].

Transition Level Silicon (eV) Germanium (eV)

(0∕ − 1) 0.10 −0.11
(+1/0) 0.55 −0.21

VBM. Some of the calculations place the (0∕−) level of the DB below the VBM
[48, 51], while others place it just above the VBM [69]. Although the quantitative
difference is quite small, this leads to qualitatively different results: in one case,
the DB can only be stable in a negative charge state (and thus not be observable
by ESR, which requires a neutral charge state), while in the other, different charge
states are in principle possible—although the authors of Ref. [69] argued that the
concentration of neutral DBs would be small. ESR experiments have been unsuc-
cessful at detecting DBs at germanium/oxide interfaces [74], indicating that the
concentration of neutral DBs is undetectably small.
Additional experimental information is provided by ESR studies of Si1−x Gex∕

SiO2 interfaces [75, 76], by analyzing the interfacial ESR signal as a function of
the germanium concentration (x). The results were used to provide an estimate of
where the germanium DB defect level would lie if referenced to the silicon band
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gap, resulting in a value 0.35 ± 0.10 eV above the silicon VBM [76]. If we use the
data in Figure 1.8 and assume that the germaniumDB level remains constant on an
absolute energy scale as the alloy concentration is changed—a reasonable assump-
tion for a highly localized state such as theDB—we can use the valence-band offset
between silicon and germanium (0.6 eV [70]) to estimate the position of the ger-
manium DB level in pure silicon; this estimate leads to a value for the germanium
DB (0∕ − 1) level of 0.49 eV above the Si VBM, in reasonable agreement with the
experimental determination. If anything, experimental results point to an even
lower position of the germanium DB than what is depicted in Figure 1.8.
Therefore, by combining existing experimental data with current state-of-the-

art ab initio calculations, we obtain a complete and consistent picture of the DB in
germanium. Comparing these results with those for the silicon DB (as presented
in Figure 1.8), we expect DBs to behave very differently in germanium-based
devices than they do in silicon-based devices. In Section 1.4.4 we discuss this in
detail.

1.4.4
Impact on Devices

Compared with silicon, germanium CMOS devices still lag in performance. p-
channel MOSFETs show acceptable performance but exhibit an undesirable pos-
itive threshold voltage shift [77]. n-channel MOSFETs suffer from low channel
mobilities and on-state currents [78–80].These problems are likely caused by the
presence of defects, such as germanium DBs, near the semiconductor/dielectric
interface. In Section 1.4.3.1 we discussed that the levels of the DB in germanium
are likely to be below the VBM, causing it to always be negatively charged. DB
defects near an interface will therefore give rise to negative fixed charge, creat-
ing serious problems for devices that rely on the formation of an electron channel
(such as n-channel MOSFETs) [81]. Even for p-channel devices, such fixed charge
will induce undesirable carrier scattering, as well as a positive threshold voltage
shift, which has also been experimentally observed [77].
DBs are known to also occur at silicon/oxide interfaces. As illustrated in

Figure 1.8), silicon DBs induce defect levels within the silicon band gap, which,
in principle, also act as carrier traps in MOS devices. In silicon, hydrogen is very
effective at passivating interfacial DB defects [82]. Hydrogen can bind to the
silicon DB, forming an Si–H bond that has no defect levels in the band gap.
However, as discussed in Section 1.3.2, hydrogen behaves very differently in ger-

manium compared to silicon. In silicon, hydrogen is an amphoteric impurity, but
in germanium, hydrogen acts exclusively as an acceptor and is thus always nega-
tively charged [48, 49]. Hydrogen interstitials will thus be electrostatically repelled
fromDBs in germanium, and will not effectively passivate DB defects.This is con-
sistent with experimental observations showing that hydrogenation is ineffective
in reducing interface-state densities at germanium/oxide interfaces [74].Given the
inability of hydrogen to passivate DB defects, alternative passivation strategies will
need to be explored for germanium.
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1.5
Summary

Wehave discussed the atomic and electronic structure of dopant impurities, point
defects, DBs, and hydrogen in germanium, along the way comparing with silicon.
We showed how results from first-principles calculations can help in interpreting
experimental results and aid in developing a complete understanding of defects.
Specifically, we discussed the origin of defect levels introduced by germanium
vacancies, comparing to silicon. For the germanium interstitial, we illustrated the
various configurations and charge states for which it can be stable. DBs as well
as hydrogen exhibit qualitatively different behavior in silicon versus germanium.
This leads to a number of problems for germanium-based devices, and the need
for novel passivation schemes.
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