Sachregister

A	- Kopplung mit LC 461
AAS (Atomabsorptionsspektrometrie) 159–	Affinitätschromatographie 563-564
171	Agarose 596
– Anwendungen 172	Ähnlichkeitsmaße 500
– Einelementcharakter 172	Akkreditierung von Laboratorien 30–31
– Flammen-AAS 162–168	Aktivierungsanalyse 297
– Hydrid-Technik 167–168	Aktivierungsenergie 120–121
Abbau, Edman- 584–585	Aktivitätskoeffizienten 67–68
Ablation 142	Aktuator 510
Ableitung, Signale 488	akustische Oberflächenwellen 541–542
Abschirmkonstante 259	aliphatische Diester 333
absolute Brechzahl 136	n-Alkane 399
absolute Methoden 19	Alkene, substituierte 222
Absorption	Alkohol-Dehydrogenase (ADH) 576
- Absorptionsphotometrie 237–239	Alkohole, Karl-Fischer-Titration 359–360
- Gase 11	allgemeine Gaskonstante 91
– Messungen 234–235	allochromatische Stoffe 233
- Signalbeeinflussung 169–170	Alphazerfall 298
 spektrales Absorptionsmaß 235 	Alternativhypothese 479–485
Abstand, Euklidischer 499–500	Altersbestimmung 301
Abtrennung	Amine, aromatische 421
– Analyt 16	p-Amino-Acetophenon 219
– Matrix 16–17	6-Aminocapronat 450
- Salze 561–562	Aminosäuren 47–48, 422
Additionsmethode, Standard- 19–20	– kodierende 558
Adduktbildung 590	 Oligoamino-Oligocarbonsäure 569
Adenosintriphosphat (ATP) 578–579	– Seitenketten 593
ADH (Alkohol-Dehydrogenase) 576	Aminoterminus 583
Adrenalin 414	Ammonium 527
Adsorption, Ionenaustausch 113	- ISE 329
Adsorptionschromatographie	Ammonium-Gruppierung 48
- GC 402–404	Ammoniumsalze, Titration 65
- HPLC 423-424	Amperometrie 355–361
Adsorptionseffekte 345	- Sensoren 531
Adsorptionsenergie 420, 423	- Titration 357–361
AED (Atomemissionsdetektor) 393	Ampholyte 46–48
AES (Atomemissionsspektroskopie) 172–	Amphotyre 98
183	analoge Filter 486–488
– Anwendungen 182	Analysatoren
- Anwendungen 102	raiary satoren

Analytische Chemie, 4. Auflage. M. Otto © 2011 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2011 by Wiley-VCH Verlag GmbH & Co. KGaA.

- Aufgabenbereiche 3-8

- diskrete 509-512 - Chemometrie 473-506 - kontinuierliche 512-519 - Chromatographie 367-471 - Grundlagen 1-32 Analysatorkristall 189–190 Qualitätssicherung 26–31 Analyse - Aktivierungs- 297 Spektroskopie 133–309 - CFA 513-514 analytische Kenngrößen 18-31 - Cluster- 499-501 analytischer Prozess 8-18 - FIA 514-518 Auswertung und Bericht 17–18 - Gruppentypen- 549-550 - Messung 17 - halbquantitative 74 Probenvorbereitung 13–17 - Head-Space- 16 analytisches Auflösungsvermögen 25 - Immunoassays 578-583 analytisches Signal, diskretisiertes 487 Isotopenverdünnungsanalyse 304 Anfangsreaktionsgeschwindigkeit 119 - kontinuierliche Echtzeitanalyse 552 Anfärbung von Proteinen 566 - Lasermikro- 616-618 Angström 135 - LDA 501-503 anharmonischer Oszillator 203 - Mischungs- 124 Anilin 421 - mobile Analysensysteme 609 Anilinothiazolinon 584 - Multielement- 182 Anionenaustauscher 425 anionische Tenside 517-518 - Neutronenaktivierungs- 303 Anode, Molybdän- 187-188 - Neutronenaktivierungsanalyse 302-303 - nicht-selektive 547-551 Anodic Stripping Voltammetry (ASV) 353 - Proteinsequenz- 583-584 anodische Stromstärke 339 quantitative, siehe quantitative Analyse anorganische Verbindungen, Ionisierungs-Signal- 485-491 methoden 290-291 Spuren- 508 anorganischer Kohlenstoff 610 statistische, siehe Statistik Anregung Varianz- 483–485 Stoß-176 Analysenverfahren thermische 176 - Kalibrierung 18-20 von Elektronenspins 271–273 - Validierung 26-28 von Kernspins 251–253 zweidimensionale 5, 25 Anregungsmechanismen Fluoreszenz 244–245 Analysenzeiten 507 Analyt - Phosphoreszenz 244-245 - Abtrennung und Anreicherung 16 Röntgenspektroskopie 183–197 - Konzentrierung 561 Anregungsquellen, AES 173-177 - Mengenbereiche 12-13 Anreicherung, Analyt 16 - Titration 56 Anthracen 246 Analytik 3D-Fluoreszenzspektrum 248 - Bio-, siehe Bioanalytik antiauxochrome Gruppen 232 - Datenmodellierung 492-493 antichaotrop 560 - Elektro- 311-365 Antigen/Antikörper 578-579 - Element- 3-6 Anti-Stokes-Linien 206 - Nucleinsäure- 594-601 Anwendungen - Protein- 448, 557-594 - AAS 172 Prozess-, siehe Prozessanalytik - AES 182 - Struktur-, siehe Strukturanalytik - ¹³C-NMR 268-271 - Umwelt- 605-614 - DNA-Chips 601 - Verbindungs- 3-6 - Dünnschichtchromatographie 440-441 - Verteilungs- 6-7 - Elektronenspektroskopie an Ober-- Werkstoff- 614-625 flächen 622-625 Analytische Chemie - EPR 273-274 - auf Basis chemischer Reaktionen 33-131 Fällungsreaktionen 74–77

Fällungstitration 75–77

- GC/MS-Kopplung 456-457 Atomemissionsdetektor (AED) 393 Gelchromatographie 434-435 Atomemissionsspektroskopie (AES) 172-GLC 398-402 183 Gravimetrie 75-77 - Anwendungen 182 1H-NMR 266–268 - Kopplung mit LC 461 - Ionenaustausch 115-116 Atomfluoreszenz 158 - ISE 336-337 - Werkstoffanalytik 617 - Kapillarelektrophorese 452-454 3-atomige Moleküle 208 kinetische Methoden 121–123 Atomisator 162-168 - komplexometrische Titrationen 89-90 Graphitrohr- 168 Lumineszenz-Spektroskopie 249–250 Atomisierung, elektrothermische 166-168 Massenspektrometrie 291–296 Atomlinien 157-159 - Polarographie 347-348 Atommodell, Bohrsches 184 - radiometrische Methoden 301-304 Atomspektroskopie 151-197 Redoxtitrationen 95–100 Spektrenarten 152–159 Reflexionsspektroskopie 242–243 ATP (Adenosintriphosphat) 578-579 - RFA 194-196 Attenuated Total Reflectance (ATR) 212 Säure-Base-Titrationen 64-66 Aufgabenbereiche der Analytischen Che-- SFC 446 mie 3-8 Verteilungschromatographie 421–422 Auflösung von Metallen 95-96 Auflösungsvermögen APCI-Interface 458 - analytisches 25 Apertur, numerische 533 Apoenzym 571 Chromatographie 379–381 Apolan-87 397 geometrisches 615 Apo-Myoglobin 559 Massenspektrometrie 277 äquatoriale Bindungen 220 Monochromatoren 146-147 Äquivalentleitfähigkeit 318 Aufschlussmethoden 14-16 Äquivalenzpunkt 53, 57 Proteine 559–560 Redoxtitrationen 96 Aufwand 25-26 Archäologie 301 Auger-Elektronen 184 Argentometrie 75 Auger-Spektroskopie 620-621, 625 Argon-Plasma 290 ausgezogene Kapillare 443 Ausschluss von Molekülen 430-431 Aromaten, substituierte 222-224 aromatische Amine 421 Ausschlussgrenze 432-433 aromatische Kohlenwasserstoffe, polycycli-Ausschütteln, retrogrades 106 sche 442, 605-607 äußerer Standard 20 Arrays, Sensor- 543 äußeres Chromatogramm 368 Arrhenius-Gleichung 120-121 Austauschgleichgewichte 114-115 Arsen 612 Austauschstromdichte 340 artifizielle Biomoleküle 559 Auswertung im analytischen Prozess Aspartat 575 17 - 18Assays automatische Dispensersysteme 436 - ELISA 582-583 Automatisierung 507-555 - Immuno- 578-583 - industrielle Prozesse 521 ASV (Anodic Stripping Voltammetry) 353 Prozesskontrolle 544 Asymmetrie-Potential 327 Prozessrefraktometer 550–551 At-Line-Verfahren 545 Autoprotolyse 40-41, 66 Atom Bombardment, Fast 289-290 Autoskalierung 497-498 Atomabsorptionsspektrometrie (AAS) 159auxochrome Gruppen 232 axiale Bindungen 220

- Anwendungen 172 Einelementcharakter 172 Flammen-AAS 162-168 - Hydrid-Technik 167-168

В	Bleiverbindungen, organische 612-613
Bananenschale 241	Blindpolarogramm 345
Bandbreite	Blotting, Southern 597
– effektive 144	Blutharnstoff (BHS) 511
- spektrale 147-148	Bodenhöhe, theoretische 374
Bandenspektren 152	Bodenguecksilber 343
Baselinie 50	Bogenanregung 173–175
Basen	Bohrsches Atommodell 184
- Protolyse 45–46	Bolometer 213
- Stärke von 41–42	Boltzmann-Verteilung 158
- siehe auch Säure-Base	Bombardment, Fast Atom 289–290
Basenzusatz 53	Bor, photometrische Bestimmung 239
Basislinientrennung 381	Born-Oppenheimer-Näherung 204
Beeinflussung	Borsäure 64
- Absorptionssignal 169–170	Braggsche Gleichung 189
- Fällungsgleichgewichte 70–73	Brechung
 lokalisierte Schwingungen 218–220 	– absolute Brechzahl 136
- Reaktionsgeschwindigkeit 120–121	- Brechungsindex 533
Beer, siehe Lambert-Beersches Gesetz	- Licht 136–138
Befreiungsreagenz 164	- Snelliussches Brechungsgesetz 137
Beladungsgrad 114	Breitbandentkopplung 268
Benzin, Stofftypenanalyse 549	Brilliant-Blau, Coomassie- 566
Benzo[a]pyren 607	Brom, Isotopenmuster 292
Benzoesäure 102	Bromkresolgrün 60
Benzol	Brønsted, Säure-Base-Theorie 39–40
- monosubstituiertes 232	BSB (biologischer Sauerstoffbedarf) 610–
- Nitro- 286	611
- Ringstrom 261	BTEX-Verbindungen 607
Bericht, im analytischen Prozess 17–18	Bunsen-Prisma 145
Besetzungswahrscheinlichkeit 186, 253–254	Bangen Highla 113
Betazerfall 298–299	С
Beugungsordnung 147	Calciumoxalat 124
Beweglichkeit	Calorimetry, Differential Scanning 125–126
- Ionen 320	cancerogene PAK-Fraktion 608
- relative 568	Carbonsäuren 102–103
Bewertung, statistische 21–24	- Oligoamino-Oligocarbonsäure 569
Bewertung von Wässern 64	Carbonylbande 219
Bezugselektrode 326	Carboxyterminus 584
BHS (Blutharnstoff) 511	Carotinoide 231
Biamperometrie 358–360	Carrier 514
binäre Eluenten 407	CC (kovalente Chromatographie) 564–566
Bindungen	Cer, ICP-MS 290
– äquatoriale 220	CFA (Continous Flow Analysis) 513–514
- relative Bindungsenergie 623	chaotrop 560
- Wasserstoffbrücken- 218	charakteristische Frequenzen 217
Binomialverteilung 476	charakteristische Massendifferenzen 295
Bioanalyten, Konzentrierung 561	Chelatbildner 79
Bioanalytik 557–603	Chelatkomplexe, 8-Hydroxychinolin- 110
– Immunoassays 578–583	CHEMFET (chemischer FET) 528
biokatalytische Membransensoren 526–527	Chemilumineszenz 250
biologischer Sauerstoffbedarf (BSB) 610–	chemisch gebundene Phasen 416–417
611	chemische Energie 313
Biomakromoleküle 586–588	chemische Immobilisierungstechniken 538
	chemische Inniobnisierungstechniken 338 chemische Ionisation (CI) 287–288
Biphenyle, halogenierte 607	CICIIII3CIIC 101113au011 (CI) 207-200

chemische Sensoren 8, 521-544 CMC (Micellbildungs-Konzentration) 562 chemische Verschiebung 260-263 13C-NMR 268-271 Cofaktor 571 chemischer Sauerstoffbedarf (CSB) 605, 610-611 Colthup-Tabelle 223 chemisches Gleichgewicht 34-35 Compton-Effekt 138, 299 Condon-Prinzip, Franck- 229 - siehe auch Gleichgewichte Chemometrie 473-506 Coomassie-Brilliant-Blau 566 - statistische Grundlagen 473-485 Coulometrie 361-364 chirale Phasen 422 - galvanostatische 363-364 Chloroform 110 - potentiostatische 361-363 Chlor, Isotopenmuster 292 coulometrische Titration 363-364 Chloroform Craig-Verteilung 106-107 - deuteriertes 262 CSB (chemischer Sauerstoffbedarf) 605, - FIA 518 610-611 Chlorokomplexe 425 Cumol 267 Chlorophyll 367-368 χ^2 -Verteilung 29 Chlorung von Trinkwasser 531 Cyanopropylpolysiloxan 464 CHN-Analysator 519 cyclische Glucose 7 Chopper 171, 214 Cyclohexan 220 Chromatographie 367-471 Cyclotronfrequenz 283 - Adsorptions- 402-404, 423-424 Cyclotron-Resonanz-Spektrometer, Ionen-- Affinitäts- 563-564 283-284 - Auflösung 379-381 Czerny-Turner-Gitter 145, 180 - Dünnschichtchromatographie 435-441 - Elektro- 435 Dalton (Einheit) 433, 557 Elektrophorese 447 - Flüssig-, siehe LC Dansylchlorid 422 GC, siehe GC Daten - Gelchromatographie 430-435 Filterung 486–491 - HIC 562-563 - Interpretation 473 - HPLC 404-423 korrelierte 473 IC, siehe IC Modellierung 492–493 - Kenngrößen von Chromatogram-Datenbanken, Protein- 594 men 371-374 Datenverarbeitung 473 kinetische Theorie 376-379 Datenvorverarbeitung 497-498 - klassische Theorie 374-376 Dead-Stop-Titration 361 - Kopplung mit Spektroskopie 454 Debye-Kräfte 398 - kovalente 564-566 DEDTC (Diethyldithiocarbamat) 240 - LC, siehe LC Deformationsschwingungen 209 - mehrdimensional 461 denaturierte Proteinstruktur 559 - Prozesskontrolle 553-554 Dendrogramm 499 - qualitative Analyse 381-382 Depolarisationsgrad 207 quantitative Analyse 383 Desaktivierung durch Strahlung 246–247 - SFC, siehe SFC Desaktivierung von Oberflächen 395–396 Verteilungs- 415–423 deskriptive Statistik 474 Wanderungsgeschwindigkeit 371 Desorptionsquellen 285, 289–290 - zweidimensional 462 Desoxyribonucleinsäure, siehe DNA Chromophore 230-231 Destillation 16 - Optroden 539 Detektiv, wissenschaftlicher 2-3 CI (chemische Ionisation) 287-288 Detektoren Citronensäure, Protolysediagramm 56 - AAS 168-171 Clark-Sensor 355-356, 553 - Dünnschichtchromatographie 437-438 - ECD 391-392 Clean up 16-17 Clusteranalyse 499-501 - elektrochemische 413-414

- Diodenarray-Spektralphotometer 234 enzymatische Methoden 576–578 - FID 390-391 - Konversions- 284 Gasionisations- 300 pin-Photodiode 150 - GC 389-393 Dioxine 605, 607 Gelchromatographie 434–435 Diphenylamin 99 - HPLC 410-415 Dipolmoment, permanentes 196 - indirekte photometrische 429 Direktamperometrie 355-357 Leitfähigkeits- 426 direkte Kalibration, Modellierung 495-496 - MS 284 Direktpotentiometrie 326–337 - optische Spektroskopie 148-150 diskrete Analysatoren 509-512 - Photodiodenarray- 412 diskrete FT 490 - photometrische 411-412 diskretisiertes analytisches Signal 487 - Refraktometer 412-413 Diskriminanzfunktionen 502-503 RFA-Spektrometer 190–191 Dispensersysteme, automatische 436 Schwingungsspektroskopie 213–214 Dispersion 145 - SFC 444 - Monochromatoren 146-147 - spektrometrische 393 Dispersionskräfte 397 - spektroskopische 414-415 Dispersionsverhältnis 516 - TID 392 Dissoziationsgrad 37, 164 Dissoziationskonstante, Ionentransport 318 - WLD 389-390 Detergenzien 561-562 dissoziativer Elektroneneinfang 392 deuteriertes Chloroform 262 Distribution 370 Deuteriumlampe 170 Divinylbenzol 113 D-Faktoren 29 Divinylbenzol-Copolymerisat, Styrol- 424, 3D-Fluoreszenzspektrum, Anthracen 248 DMA (Dimethylarsinsäure) 613 Diacetyldioxim-Komplex, Ni- 75 o-Dianisidin 577 DNA, Hybridisierung trans-1,2-Dichlorethylen 225 DNA-Chips 600-601 Dichte, optische 236 DNA-Sequenzierung 597-598 Dickenscherschwingung 541 2-D-NMR 270-271 Didesoxy-Verfahren, Sanger- 597 DOC (Dissolved Organic Carbon) 610 Dielektrizitätskonstante von Wasser 548 n-Dodecan, Massenspektrum 293 Dieselkraftstoff 460 Dopingtests 2 Diester, aliphatische 333 Doppelhelix 596 Diethyldithiocarbamat (DEDTC) 240 Doppelkugelventile 408 Differential Scanning Calorimetry (DSC) Doppelpräzessionskegel 255 125-126 doppelt fokussierende Massenspektrome-Differentialrefraktometer, Ebbinghaus- 550 ter 279-280 differentielle molare Verdampfungsenthal-Dräger-Röhrchen 609 pie 401 dreiatomige Moleküle 208 Dreiecksvoltammetrie 353 Differenzpulspolarographie 351 Differenz-Thermoanalyse (DTA) 124-125 Dreistufengradienten 425 diffuse Reflexion 241-242 Drogen 579 Diffusion Druckaufschluss 15 - FIA 516 Druckverbreiterung 161 - Ionentransport 317 DSC (Differential Scanning Calorimetry) - Wirbel-/Streu- 377 125-126 Diffusionskoeffizient, Chromatographie DTA (Differenz-Thermoanalyse) 124-125 Diffusionsüberspannung 341 2D-Trennverfahren, planare 463 digitale Filter 486-488 Dünnschichtchromatographie 435-441 Dimerisierungsgleichgewicht 102-103 Retentionsfaktor 439 Dimethylarsinsäure (DMA) 613 Verteilungskoeffizient 440 DIN 55350 26 Dünnschichtkapillare 394 Dioden Durchflussanalyse, kontinuierliche 513-514 Durchflusszeit 372 Elektroanalytik 311-365 Durchschnittsstandardabweichung 481 - Coulometrie 361-364 Durchtrittsüberspannung 340 - Konduktometrie 322-325 dynamische SIMS 619 Potentiometrie 325–338 dynamischer Bereich 12 - Voltammetrie 338-361 E. coli 570 elektrochemische Detektoren, HPLC 413-Ε elektrochemische Prozesse, Voltam-Ebbinghaus-Differentialrefraktometer 550 metrie 339-342 Ebert-Aufstellung 177 elektrochemische Sensoren 524-532 ECD (Electron Capture Detector) 391-392 elektrochemische Wertigkeit 38, 319 Echelle Elektrochromatographie 435 - bitter 178-179 Elektroden 312-317 - Spektrometer 180-181 - Enzym- 357 - Festkörpermembran- 329-332 echte Elektrolyte 317 Echtheitsnachweise 2 - Finger- 532 Echtzeitanalyse, kontinuierliche 552 - Flüssigmembran- 332-336 Edman-Abbau 584-585 - Glas- 326-328 EDTA (Ethylendiamintetraacetat) 79, - Glasmembran- 329 83-87 Ionen- 313–317 Effekte ionenselektive 328–337 - Adsorptions- 345 - Kalomel- 314, 326 - Compton-Effekt 138, 299 - Redox- 313-317 rotierende Fest- 349 Kern-Overhauser-Effekt 269 - kinetische 345 Silber/Silberchlorid- 314 - Matrix- 19-20 - stationäre 352-353 Matrixeffekte 193 (un)polarisierbare 341-342, 358 Quantentunneleffekt 530 Elektrodenpotential 525 Raman-Effekt 205-208 - Standard- 93 Salzeffekte 120 Elektrodenreaktionen 312 Siebeffekte 596 irreversible 340 Zeeman-Effekt 171 Elektrogravimetrie 361 effektive Bandbreite 144 Elektrolyte 37-38 EI (Elektronenstoßionisation) 285-287 Festkörperelektrolyt-Sensoren 524–525 - Leit- 347-348 Einelementcharakter, AAS 172 einfache Extraktion 102-106 - Serum 512 einfacher t-Test 479-482 elektrolytische Leitfähigkeit 317-322 Einfachtestmesszelle 509 elektromagnetische Strahlung, Teilcheneinfarbige Indikatoren 62-64 charakter 138-139 Einlasssystem, Massenspektrometrie 276 elektromagnetisches Spektrum 134-139 Einstranganlage, FIA 514 - IR, siehe IR ... Einweg-ISE 512 - NIR 225-226 Einwegküvetten 510 - Röntgenbereich, siehe Röntgen... einzähnige Liganden 78-79 - UV/VIS, siehe Licht, optisch . . ., UV/VIS Einzelprobe 10 Eisessig 42 Elektronen Electron Nuclear Double Resonance (EN-- Auger- 184 - Dichteverteilung 228 DOR) 271 Electron Spectroscopy for Chemical Analysis - dissoziativer Elektroneneinfang 392 (ESCA) 185, 620-625 - Elektronenspektren von Molekülen 227elektrische Energie 313 elektrische Leitfähigkeit, siehe Leitfähigkeit - Spinanregung 271–273 elektrischer Widerstand, siehe Widerstand Elektronenanlagerungsdetektor (ECD) 391elektrisches Potential, siehe Potential

Elektronen-Paramagnetische-Resonanz (EPR) 271–274	EPR (Elektronen-Paramagnetische-Resonanz) 271–274
Elektronenspektroskopie 183–197 – an Oberflächen 620–625	Anwendungen 273–274Geräte 272
Elektronen-Spin-Resonanz (ESR), siehe EPR	Erdalkalielemente, Trennung 428
Elektronenstoßionisation (EI) 285–287	Eriochromschwarz T 88
Elektronenstrahlen 136	Erkennungssystem, Sensoren 535–540
Elektronenstrahlsonden 618–620	ESCA (Electron Spectroscopy for Chemical
elektronische Übergänge 228–233	Analysis) 185, 620–625
Elektrophorese 447	ESI (Elektrospray-Interface) 458
- Gel- 566–571	ESI (Elektrospray-Ionisation) 592–594
elektrophoretische Trennungen 46	ESR (Elektronen-Spin-Resonanz), siehe EPR
Elektrospray-Interface (ESI) 458	Ethidiumbromid 596
Elektrospray-Ionisation (ESI) 592–594	Ethylbromid 262
elektrothermische Atomisierung 166–168	Ethylendiamintetraessigsäure (EDTE) 79,
Elementanalytik 3–6	83–87
– Mechanisierung 519–520	Euklidischer Abstand 499–500
- Werkstoffanalytik 616	evaneszierende Welle 213, 539
Elemente, schwere 157	Exponentialfunktion 490
ELISA (Enzyme Linked Immuno Sorbent As-	externe Konversion 245
say) 582–583	externe Qualitätssicherung 30–31
Eluenten, binäre 407	Extinktionskoeffizienten 233
Eluieren 14–16	Extraktion 101–112
eluotrope Reihen 418–419 Elutionsstärke 419–420	als Ionenassoziat 111–112Extraktionskonstante 109
Emission, spontane/stimulierte 141	- Extraktionsmittel 107
Empfänger, siehe Detektoren	- Extraktionssysteme 107–112
Empfindlichkeit, Katodenmaterialien 149	- Festphasen- 17
enantiomere Verbindungen, Trennung 78	- Komplexe 108–111
Endcapping 417	
ENDOR (Electron Nuclear Double Reso-	F
nance), Puls- 271	FAB-Methode (Fast Atom Bombardment)
Energie	289–290
- Adsorptions- 420, 423	Fällung, Proteine 560–561
– Aktivierungs- 120–121	Fällungsgleichgewichte 66–73
- chemische 313	- Beeinflussung 70–73
– elektrische 313	Fällungsgrad 69–70
- relative Bindungsenergie 623	Fällungsindikation 77
Energieniveaus, Besetzung 253–254	Fällungsreaktionen 66–77
Entfaltung 485	- Anwendungen 74–77
Entkopplung - Breitband- 268	 Kombination mit Komplexometrie 81–82 Fällungstitration, Anwendungen 75–77
- Off-Resonanz- 268	Faltung 485
- Protonen- 268–269	Faraday-Konstante 91, 320
Entsalzung 115	Faradayscher Strom 311, 349
Entsorgung 580	Farben, Komplementär- 228
enzymatische Methoden 571–578	Farbstoffe, pH-Indikatoren 61
Enzymbestimmungen 575	Farbstofflaser 143
Enzyme, Restriktions- 600	Farbvergleiche, kolorimetrische 237
Enzyme Linked Immuno Sorbent Assay (ELI-	Fasern, optische 533
SA) 582–583	FC (Flüssigchromatographie) 404-441
Enzymelektrode 357	– LC/MS-Kopplung 457–459, 599
Enzymkinetik 118, 572–575	- Proteine 562–563
Enzym-Substrat-Komplex 573	FCKWs 607

- immobilisierte 415-416 Fehler, systematischer/Zufalls- 21-23 Fehlerintegral 477-478 - Leitfähigkeitsmessungen 548-549 Felddesorption (FD) 289 - Probenahme 10-11 Feldeffekttransistoren (FETs) 527-530 Flüssigmembranelektroden 332-336 Fokalebene 145, 180 Feldionisation (FI) 289 Fenster (Filterbreite) 486 Fokussierung, isoelektrische 568 Ferroin/Ferriin-Redoxindikator 98 Fouriertransformation, siehe FT . . . FPD (flammenphotometrischer Detektor) feste Säulenfüllungen 403 Festelektroden, rotierende 349 393 Festkörperelektrolytsensoren 524-525 Fragmentierungsmuster 293 Festkörpermembranelektroden 329-332 - Peptide 591 Festphasen-Extraktion 17 Franck-Condon-Prinzip 229 Festprobenanalyse 167 Fraunhoferlinien 151 Feststoffe, Probenahme 12 Free Induction Decay (FID) 256 Feststofflaser 143 Freiheitsgrade 476 FETs (Feldeffekttransistoren) 527-530 - F-Test 481-483 Feuchtegehalt von Papier 548 fremdionige Zusätze 71 FI (Feldionisation) 289 Frequenz 135 FIA (Fließ-Injektions-Analyse) 514-518 - charakteristische 217 FID (Flammenionisationsdetektor) 390-391 - Frequenzdomäne 489-490 FID (Free Induction Decay) 256 - Nyquist- 489 Filter Fronting 381 - analoge und digitale 486-488 FT-Datenfilterung 490-491 optische Spektroskopie 143-144 F-Test 481-483 Savitzky-Golay- 487-488 FTIR-Spektrometer 215 Filterbreite (Fenster) 486 FT-Signaltransformation 489-490 Filterphotometer 411 FT-Spektrometer 264 Fingerelektroden 532 Funkenanregung 173–175 Fingerprint 600 Funkenguellen 296 Fischers F-Test 481–483 funktionelle Gruppen 222 Fit, Goodness/Lack-of-Fit-Test 494 - Immobiline 569 Flächenauflösungsvermögen 615 siehe auch Gruppen Flammen-AAS 162-166 Funktionen Flammen-AES 173 - Diskriminanz- 502-503 Flammenionisationsdetektor (FID) 390-391 - Exponential- 490 flammenphotometrischer Detektor (FPD) - Kalibrier-, siehe Kalibrierfunktion 393 siehe auch Gesetze und Gleichungen Fleckgröße 600 Fused-Silica-Kapillare 444, 450 Fließ-Injektions-Analyse (FIA) 514-518 Fließverfahren, genormte 517 G Flugzeitmassenspektrometer 281–282 galvanische Zellen 312-317 Fluoreszenz Galvani-Spannung 313 - Anregungsmechanismen 244-245 galvanostatische Coulometrie 363-364 - optische Sensoren 537 Gaschromatographie (GC) 383-404 - RFA 194 - Aufbau eines GC 386-393 Fluoreszenzdetektoren 412 CHN-Analysator 519 fluoreszierender Indikator 437 - GC × GC 464-465 fluorimetrische Methoden 249 - GC/IR-Kopplung 459-461 Flüssigchromatographie (LC, FC) 404-441 - GC/MS-Kopplung 455-457 - LC × LC 463-464 - GLC 393-402 - LC/MS-Kopplung 457-459, 599 - Trennungen in der Gasphase 385-386 - Proteine 562-563 SFC, siehe SFC - Absorption 11 Flüssigkeiten - homogene Reaktionen 36-37

- Probenahme 11-12

Gas-Flüssig-Chromatographie (GLC)

– Anwendungen 398–402

stationäre Phasen 393-398

Gasionisationsdetektoren 300

Gaskonstante 91 Gaslaser 143

Gasmaus 11

Gasphasenquellen 285-289

Gasprüfröhrchen 609

gassensitive Sensoren 525-526

Gaussiches Integral 477–478

Gauss-Verteilung 474-475

normierte 477–479

GC × GC 464-465

GC/IR-Kopplung 459–461

gebundene Phasen, chemisch 416-417

Gegenelektrode 174

Gehalt 5

Gehaltsbereich 13

Geiger-Müller-Zählrohr 300

gekoppelte Gleichgewichte 345

gekrümmte Kalibrierkurven 165

Gelchromatographie 430-435

Gelelektrophorese

Kopplung mit MALDI-MS 591

- Nucleinsäuren 595-597

Proteine 566–571

Gelpermeation 434

Genauigkeit, statistische Bewertung 21–23

genetischer Fingerabdruck 600

Genom 558

genormte Fließverfahren 517

Geologie 301

geometrisches Auflösungsvermögen 615

gepackte Säulen 394, 410

Geräte

- Atomisatoren 162-168

- Bolometer 213

- Clark-Sensor 355-356, 553

- Einfachtestmesszelle 509

- Elektronenspektroskopie an Oberflä-

chen 621-622

- EPR 272

- Gaschromatograph 386–393

- Gasmaus 11

- Glasfritte 11

- Hochdruckverascher nach Knapp 15

- horizontale Gelelektrophorese-Kammer 566

- HPLC 406-415

- IR-Spektroskopie 214-215

- Kapillarelektrophorese 450-451

- Leitfähigkeitsmesszelle 323

- Lumineszenz-Spektroskopie 248-249

- Magnetfeld-Sektorfeldgerät 278-279

Massenspektrometrie 275–284

Mikrotitrier-Platte 582

- Monochromatoren 144-147

- NMR 264-266

optische Spektroskopie 139–151

- Pellistoren 540-541

Plasmabrenner 175

polarographische Messzelle 343

Prozessrefraktometer 550–551

Raman-Spektroskopie 215–216

RFA-Spektrometer 186–191

Sauerstoff-Festkörpersensor 524

- Schwingungsspektroskopie 210–216

- SFC 443-444

UV/VIS-Spektroskopie 233–235

- Zentrifugalanalysatoren 518-519

Geschichte, Analytische Chemie 1–2

Geschwindigkeit

Lichtgeschwindigkeit 133

- radioaktiver Zerfall 299-300

- siehe auch Reaktionsgeschwindigkeit

Gesellschaft, Bedeutung der Analytischen

Chemie 1-8

Gesetze und Gleichungen

Arrhenius-Gleichung 120–121

Braggsche Gleichung 189

Franck-Condon-Prinzip 229

Gauss-Verteilung 474–475

Grundgleichung für Sektorfeldinstrumente 278

- harmonischer Oszillator 201-203

Ilkovic-Gleichung 346

Interferenz 179

- Kohlrauschsches Quadratwurzelgesetz 321

 Kossel-Sommerfeldscher Verschiebungssatz 154

- Kubelka-Munk-Funktion 242-243, 441

Lambert-Beersches Gesetz 159, 236

Lorentzkraft 278

Massenwirkungsgesetz 34

Moseleysches Gesetz 188

Nernstsche Gleichung 91–93, 325

Nernstscher Verteilungssatz 101

Normalverteilung 474–475

- Nyquist-Frequenz 489

Ostwaldsches Verdünnungsgesetz 38, 43

- Rayleighsches Gesetz 170

Schrödinger-Gleichung 202

Snelliussches Brechungsgesetz 137

Stern-Volmer-Gleichung 537

- Trägheitsmoment 197

- van-Deemter-Gleichung 377-378 Grimmsche Glimmentladung 296 - Zeitgesetze 117–119 Grundgleichung für Sektorfeldinstrumente 278 Zentrifugalkraft 278 Gewässer, Bewertung 64 Gruppen gewichtete Durchschnittsstandardabwei-- antiauxochrome 232 - auxochrome 232 chung 481 g-Faktor 272 - chromophore 230-231 Gitter - siehe auch funktionelle Gruppen - Czerny-Turner- 145, 180 Gruppenfrequenzen 216-226 - Echellette- 178-179 Gruppenparameter, Umweltanalytik 610-Gitter-Relaxation, Spin- 256 Glaselektrode 326-328 Gruppentypenanalyse 549-550 Glasfaser 533 Glasfritte 11 Н Glaskohlenstoff-Scheibenelektrode 350 Hägg-Diagramme 50 Glasmembranelektroden 329 Halbleiterdetektoren, RFA 190-191 Glättung 485 halbquantitative Analyse, Luftbestand-GLC (Gas-Flüssig-Chromatographie) teile 74 - Anwendungen 398-402 Halbwertsbreite 375 stationäre Phasen 393-398 Halbwertszeit 300, 580 Gleichgewichte Halbzellenprozesse 314 - Austausch- 114-115 Halogenidbestimmung nach Mohr 77 - chemische 34-35 halogenierte Biphenyle (PCBs) 607 Dimerisierungs- 102-103 Hämoglobin 584 Fällungs- 66-73 Haptene 579-582 gekoppelte 345 harmonischer Oszillator 201-203 heterogene Reaktionen 36–37 Harnstoff 511 Härte, Wasser- 115 Kohlensäure- 63 - Lösungs- 66–73 Häufigkeitsdichte 475 Gleichgewichtskonstante, thermodynami-Hauptkomponentenanalyse 501 sche 35 Head-Space-Analyse 16 Gleichgewichtskonzentration 48-51 Heart-cut-Methode 463 Herzog-Geometrie, Mattauch- 280, 296 gleichionige Zusätze 70-73 Gleichungen, siehe Gesetze und Gleichungen Heteroatome 230 Glimmentladung 177 heterogene Gleichgewichtsreaktionen 36-37 - Grimmsche 296 HIC (Hydrophobic Interaction Chromatogra-Glucose 7, 288-289 phy) 562-563 Glucoseoxidase (GOD) 574, 576 hierarchische Clusteranalyse 500 Glutamat 575 Hilfsreaktionen 577 Glutaraldehyd-Reaktion 582 Histidin 581 Glutathion-Konjugat, Sepharose- 565 ¹H-NMR 266-268 Golay-Filter, Savitzky- 487-488 Hochdruckverascher nach Knapp 15 Goodness-of-Fit-Test 494 Hochpassfilter 490-491 Gramicidin 586 Hofmeister-Serie 560 Graphitrohratomisator 168 Hohlkatodenlampen 161–162 Graphitrohrküvette 166 Hohlspiegel 177 Gravimetrie Holoenzym 571 Anwendungen 75–77 homogene Membranen 525 - Elektro- 361 homogene Reaktionen 35-37 - Fällungsreaktionen 66-77 homologe Reihe 386 - Thermo- 123-124 horizontale Gelelektrophorese-Kammer 566 Grenzflächenelektrophorese 448 Hormone, Chromatographie 414 Grenzstrombereich 355 HPLC (Hochleistungsflüssigchromatogra-Grenzstrukturen, mesomere 219 phie) 404-423

– Detektoren 410–415	industrielle Prozesse, Automatisierung 521
– Geräte 406–415	inelastische Neutronenstreuung 210
– monolithisch gepackte Säulen 410	Infrarot, siehe IR
– Pumpen 407–409	Injektionssystem, HPLC 409
Hybridisierung, DNA 601	In-Line-Verfahren 545
Hydridgenerator 614	innerer Standard 20
Hydridtechnik, AAS 167–168	inneres Chromatogramm 368
Hydridübertragung 288	Innerkomplexe 108
hydrolysierte Silicagel-Oberfläche 395	Instrumentierung, siehe Geräte
Hydrophobic Interaction Chromatography (HIC) 562–563	Insulin 583 Integral, Gausssches 477–478
Hydroxidfällung 73	Integration, Signale 488
Hydroxid-Ionen, coulometrische Generie-	Intensität, Atomlinien 157–159
rung 364	Interface
8-Hydroxychinolin-Chelatkomplexe 110	- GC/MS 455-456
Hyperfeinstruktur 272–273	– LC/MS-Kopplung 457–458
Hypothesen, Testen von 477–485	Interferenz 179
71	- isobare 296
1	– polyatomare 296
IC (Ionenchromatographie) 424-430	Interferometer, Michelson- 214
- Suppressorsäule 427–428	interne Konversion 245
ICP (Inductively Coupled Plasma) 175, 290,	interne Qualitätssicherung 28–29
461	Intervall, Vertrauens- 23–24
ICR (Ionen-Cyclotron-Resonanz) 283	Intervallskala 497
Identifizierung 4	inverse FT 490
- IR-/Raman-Spektroskopie 220–225	inverse Matrix 494–495
- Polymere 124	inverse Population 142
idiochromatische Stoffe 233	Inversyoltammetrie 351–353
Ilkovic-Gleichung 346	Iod-125 581–582
Imaginärteil 490	Ionen
Immobiline 569	– Ammonium- 527
immobilisierte Flüssigkeiten 415–416	– Beweglichkeit 320
immobilisiertes Reagenz 535–536	– ionische Flüssigkeitsbestandteile 548–
Immobilisierungstechniken, chemische 538	549
Immunoassays 578–583	– Leit- 449
- ELISA 582-583	- Metall-Ionen-Puffer 333
Immunogene, Synthese 581–582	- Methylenblaukation 517-518
Impinger 11	– Nachfolge-/Terminator- 449
Impulshöhendiskriminierung 191	– potentialbestimmende 338
Impulsverfahren, NMR 255–256	– Tetraphenylarsonium- 348
inaktive Sinterperle 541	– Transport in Lösungen 317
Indikator	Ionenäquivalentleitfähigkeit 320–321
– fluoreszierender 437	Ionenassoziat 111–112
– komplexometrische Titrationen 87–89	Ionenaustausch 112–116
– Metall-Indikator-Komplex 88–89	Ionenchromatographie (IC) 424-430
– pH- 61–64	 klassische Ionenaustauschchromatogra-
– Redoxtitrationen 98–99	phie 424–425
indirekte Kalibration, Modellierung 495–	– Suppressorsäule 427–428
496	Ionen-Cyclotron-Resonanz (ICR) 283–284
indirekte photometrische Detektoren 429	Ionenelektroden 313–317
Individuenanalytik 521	Ionenfallen, Quadrupol- 282–283
- Umwelt- 606–608	Ionenpaarbildner 111, 421, 599
induktiv gekoppeltes Plasma (ICP) 175, 290	Ionenprodukt des Wassers 41
- LC/AES-Kopplung 461	Ionenquelle, MS 276–277, 285–289

ionenselektive Elektroden (ISE) 328–337 – Anwendungen 336–337 – Einweg- 512	Kapazitätsstrom 349 Kapillare, ausgezogene 443 Kapillarelektrophorese 450
ionenselektiver FET (ISFET) 528–530	– Anwendungen 452–454
Ionensonden, Werkstoffanalytik 618–620	Kapillarsäulen 394–396
Ionisation	Kapillar-SFC 443
– chemische 287–288	Kapillarviskosimeter 434
– Ionisationskonstante 165	Karl-Fischer-Titration 359–360
 Metalle und anorganische Verbindun- 	Karminsäure 239
gen 290–291	Katalase 574
– unter Atmosphärendruck 458–459	katalysierte Reaktionen 122
Ionophore 335	– enzym- 572–575
IR-Küvette 211	Kationenaustauscher 427
irreversible Elektrodenreaktionen 340	Katodenmaterialien, Empfindlichkeit 149
IR-Spektroskopie 197–227	katodische Reduktion 339
– GC/IR-Kopplung 459–461	katodische Stromstärke 339
– Geräte 214–215	Kenngrößen
– Prozesskontrolle 551–552	– analytische 18–31
IR-Spektrum, Phenol 224	– Chromatogramm 371–374
ISO 9000 26	Kern-Overhauser-Effekt 269
isobare Interferenzen 296	Kernresonanz, siehe NMR
isoelektrische Fokussierung 568	Kernspins, Anregung 251–253
isoelektrischer Punkt 47	Kern-Zeeman-Niveaus 252
isomere Kohlenwasserstoffe 6	Kessom-Kräfte 398
iso-Propylbenzol 6	Ketoglutarat 575
Isotachophorese 449	Kettenabbruchverfahren 598
Isotherme, Verteilungs- 101–102	Kinetik
isotherme GC 400–402	- Chromatographie 376–379
isotonische Lösungen 560	- enzymkatalysierte Reaktionen 572–575
Isotope 587	- kinetische Effekte 345
- stabile 287	– Michaelis-Menten- 573
isotopenmarkierte Spezies 304	kinetische Methoden 116–123
Isotopenmuster, Brom/Chlor 292	Klassifizierung, multivariate Statistik 496–
Isotopenpeaks 286	503
Isotopenverdünnungsanalyse 304	Klassifizierungsvektor 502 k-nächste Nachbarn, Methode der 503
J	kodierende Aminosäuren 558
Jablonski-Termschema 244 Johnson-Geometrie, Nier- 279	Kohlensäuregleichgewicht 63 Kohlenwasserstoffe
	– isomere 6
K	 polycyclische aromatische 442, 605–607
Kalibrierung	Kohlrauschsches Quadratwurzelgesetz 321
– Analysenverfahren 18–20	Kokristallisation, Proteine 588
– gekrümmte Kalibrierkurven 165	Kolbenmembranpumpen 408
– lineare 19	Kollimator 216
Kalium, ISE 329	Kollinearität 496
Kalman-Filter 488	Kollisionsgas 281
Kalomelelektrode 314, 326	kolorimetrische Farbvergleiche 237
kalorimetrische Sensoren 540–541	Kompartimentierung 611–614
Kalorimetrie, DSC 125–126	Komplementärfarben 228
Kapazität	Komplexbildungsreaktionen 78–90
– Ionenaustausch- 113–114	 konditionelle Komplexbildungskonstan-
– Messung 548	te 83
– Puffer- 53–55	 Löslichkeitserhöhung durch 71

660 | Sachregister

- Redoxreaktionen 95 Korrelation 485 stufenweise 78 korrelierte Daten 473 Komplexe korrespondierendes Säure-Base-Paar 49 - Extraktion 108-111 kosmotrop 560 - 8-Hydroxychinolin-Chelat- 110 Kossel-Sommerfeldscher Verschiebungs-- Inner- 108 satz 154 - labile 614 Kosten 25-26 - Metall-Indikator- 88-89 kovalente Chromatographie (CC) 564-566 Kovats, Retentionsindizes 399-400 - Neutralchelat- 79 - Nickelammin- 80 Kraftkonstante 201 - Ni-Diacetyldioxim- 75 kritischer Druck 442 - sterische Anordnung 86 Kubelka-Munk-Funktion 242-243, 441 komplexe Zahl 490 Kupplung, Edman-Abbau 585 Komplexometrie 78-90 Kurzhub-Kolbenpumpen 408 Kombination mit Fällungsreaktionen 81-Küvettenfenster 211 Küvettentransfer 510 - Kombination mit Säure-Base-Reaktionen 83-85 - Titration 86-90 labile Komplexe 614 Komplexstabilität 80-81 Laboratorien, Akkreditierung 30-31 Komplexverbindungen 78-79 Labormechanisierung 507-521 Konduktometrie 322-325 Laborroboter 520-521 - Titration 323–325 Lack-of-Fit-Test 494 Konfidenzintervall 23-24 Ladungserhaltung 44-45 Lageparameter 475–477 Konformere 7 Lambert-Beersches Gesetz 159, 236 Konjugat 582 Konjugation von Chromophoren 231 Laminarbrenner 163 Kontaminationen 10, 508 Lampen kontinuierliche Analysatoren, Mechanisie-- Deuterium- 170 rung 512-519 Leuchtstoff- 244 Kontinuierliche Durchflussanalyse (CFA) Langhub-Kolbenpumpen 408 513-514 Langzeitexpositionsmessungen 608-609 kontinuierliche Echtzeitanalyse 552 Larmor-Frequenz 254-255 kontinuierliche On-Line-Analyse 546 Laser, Spektroskopie 140-144 Laserdesorption/Ionisation, siehe MALDI kontinuierliche Spektren 152 Konvektion 450 Lasermikroanalysen 616-618 - FIA 516 LC (Flüssigchromatographie) 404-441 Konversion, interne/externe 245 - LC/MS-Kopplung 457-459, 599 Konversionsdiode 284 - Proteine 562-563 Konvertierung, Edman-Abbau 585 LC × LC 463-464 Konzentration 5 LDA (lineare Diskriminanzanalyse) 501-503 Konzentrationsabhängigkeit der Leitfähig-Lebensmittelsicherheit 2 keit 320-322 Leitelektrolyt 347-348 Konzentrationsüberspannung 341 Leitersequenz 590, 598 Konzentrierung Leitfähigkeit Bioanalyten 561 elektrolytische 317–322 - Proteine 561-562 Konzentrationsabhängigkeit 320–322 Kopplung - spezifische 318, 323 - Chromatographie und Spektroskopie Leitfähigkeitsdetektor, IC 426 Leitfähigkeitsmessung, Flüssigkeiten 548-- Schwingungs- 216-218 Leitfähigkeitsmesszelle 323 - Spin-Bahn- 157 Leitfähigkeitssensoren 531-532 Spin-Spin- 262–264 Korngröße 406 Leit-Ion 449

Lernen	- Stamm- 75
- überwachtes 501–503	Lösungsmittel
– unüberwachtes 498–501	– Lösungsmittelgemische 419
Leuchtstofflampen 244	– nicht-wässrige 65–66
Licht	– UV/VIS-Spektroskopie 231
- Brechung 136–138	Lösungsreaktionen, homogene 36–37
- polarisiertes 207	Luftanalytik 609
- Streuung 138	Luftbestandteile, halbquantitative Analy-
- Wellennatur 135–138	sen 74
– Zerlegung 143–148	luftsegmentierter Durchflussanalysator 513
Lichtgeschwindigkeit 133–135	Lumineszenz-Spektroskopie 243–250, 437
Lichtquellen, AAS 159–162	– Anwendungen 249–250
Lichtwellenleiter 533	– Geräte 248–249
Liganden 78–79	Lyonium-Ionen 65
Lineardispersion 146	
lineare Diskriminanzanalyse (LDA)	M
501–503	Macroarrays 600
lineare Kalibrierfunktion 19	Magnetfeldsektorfeldgerät 278–279
lineare Modelle 492	magnetische Kernresonanz, siehe NMR
lineare Photodiodenzeile 150	magnetische Linsen 136
lineare Regression 493–494	magnetische Quantenzahl 252
linearer Bereich, GC 390	magnetische Resonanzspektroskopie 250-
lineares Auflösungsvermögen 615	274
Lineargeschwindigkeit, Chromatogra-	magnetisches Moment, Atomkern 251
phie 376	Makromoleküle, Bio- 586–588
Liner 388	MALDI-MS 588–591
Linien	Markierung mit ¹²⁵ I 581–582
– prominente 182	Martin-Faktor 385
- Stokes/Anti-Stokes- 206	Maskierungen 239
Linienspektren 152	– Fällungsreaktionen 66–77
- Seriencharakter 153	maßanalytische Methoden 75
Linsen, magnetische 136	Masse
Lithium	- exakte 586
– ISE 329	– mittlere 586
– Termschema 155	– nominale 277, 586
lokalisierte Schwingungen 217–220	Masse-Ladungs-Verhältnis 275
London-Kräfte 397	Massenanalysator 277
Longitudinaldiffusion 378	Massenchromatogramm 456
longitudinale Relaxation 258	Massendifferenzen, charakteristische 295
Lorentzkraft 278	Massenerhaltung 44–45
Löschung (Quenching) 248	Massenkonzentration 104
Lösen 14–16	Massenkonzepte 587
Löslichkeit	Massenschwächungskoeffizient 183, 192
 Erhöhung durch Komplexbildung 71 	massensensitive Sensoren 541–543
- Gleichgewichte 94–95	Massenspektren 284–291
– Löslichkeitskonstante 67–68	Massenspektrometrie (MS) 274–296
– Löslichkeitsprodukt 67–68, 316	- Anwendungen 291–296
- molare 68–69	- doppelt fokussierende 279–280
Lösungen	– ESI 592–594
- Ionentransport 317	- GC/MS-Kopplung 455–457
- isotonische 560	– Geräte 275–284
 Lösungsgleichgewichte 66–73 	– LC/MS-Kopplung 457–459, 599
- Puffer- 51-53	– MALDI-MS 588–591
- spezifische Leitfähigkeit 318	- Proteine 584-588

- Quadrupol- 280-281 - Aufschlussmethoden 559-560 - Schlüsselbruchstücke 293-295 - Born-Oppenheimer-Näherung 204 - SIMS 618-619 - chemische Immobilisierungstechni-- TOF 281-282 ken 538 - Triple-Quadrupol- 594 - Craig-Verteilung 106-107 massenspektrometrischer Detektor (MSD) elektrophoretische 448-450 enzymatische Methoden 571–578 Massenübertragungsterm 378–379 Fast Atom Bombardment 289–290 Materialien, optische Spektroskopie 148- fluorimetrische 249 150 Halogenidbestimmung nach Mohr 77 Matrix, Abtrennung 16-17 Heart-cut-Methode 463 Matrix (Mathematik), inverse/transponier- Hydrid-Technik 167–168 te 494-495 Impulsverfahren 256–262 Matrixeffekte 19–20, 193 In-Line-Verfahren 545 Mattauch-Herzog-Geometrie 280, 296 Ionisierungsmethoden 290–291 Mechanisierung Kettenabbruchverfahren 598 diskrete Analysatoren 509-512 kinetische Methoden 116–123 Elementaranalysatoren 519-520 maßanalytische 75 - Labor- 507-521 mehrdimensionale Trennverfahren 461 Methode der fixierten Zeit 122 mehratomige Moleküle, Spektren 208–210 Methode der k-nächsten Nachbarn 503 mehrdimensionale Trennverfahren 461 - multivariate Statistik 491-503 Mehrelektronensysteme - ein Valenzelektron 154-156 - Off-Line-Verfahren 545 mehrere Valenzelektronen 156–157 pH-Wert-Berechnung 43–48 Mehrkanalsensoren 543–544 Plattform-Technik 168 mehrprotonige Säuren 46 Projektionsmethoden 498–499 - Titration 60 Puls-Methoden 350–351 mehrzähnige Liganden 79 radiometrische 297-304 Membranelektroden, polykristalline 331 Sanger-Didesoxy-Verfahren 597 Membranen, homogene 525 Silberbestimmung nach Volhard 77 Membransensoren, biokatalytische 526-527 Southern Blotting 597 Mengenbereiche, Probe und Analyt 12-13 spektroskopische Methoden 134–139 Menten-Kinetik, Michaelis- 573 Standard-Additionsmethode Mesomerie Stopped-Flow-Technik 518 - p-Amino-Acetophenon 219 - Tangentenmethode 122 - Methylenblaukation 517-518 - thermische Methoden 123 Werkstoffanalytik 616–625 Messung im analytischen Prozess 17 Messung radioaktiver Strahlung 300-301 Methylenblaukation 517-518 Messwertstreuungen 483-485 Methylorange 61 Messzelle Micellbildner 452 - Einfachtest- 509 Micellbildungskonzentration (CMC) 562 - Leitfähigkeits- 323 Michaelis-Menten-Kinetik 573 polarographische 343 Michelson-Interferometer 214 Metal Oxide Silicon FET (MOSFET) 528 Microarrays 601 Metalle mikroelektronische Sensoren 524–532 – Auflösung 95–96 Mikrolithographie 530, 547 - Ionisierungsmethoden 290-291 Mikromembranen 429 - Metall-Indikator-Komplex 88-89 Mikroteilchenpackungen 410 - Metall-Ionen-Puffer 333 Mikrotitrierplatte photometrische Bestimmung 238 Milchpulver 227 Methoden und Verfahren Mischprobe 10 - absolute Methoden 19 Mischungen, homogene Reaktionen 36-37 - analytischer Prozess 8-18 Mischungsanalysen 124 - At-Line-Verfahren 545 Mittelwert 21-22, 475-476

- Mittelwertsfilter 486-488 - Schlüsselbruchstücke 293-295 - Vergleich 479-485 - SIMS 618-619 MMA (Monomethylarsonsäure) - TOF 281-282 mobile Analysensysteme 609 - Triple-Quadrupol- 594 mobile Phase 368-370 MSD (massenspektrometrischer Detektor) - Auswahl 420 393 Müller-Zählrohr, Geiger- 300 Dünnschichtchromatographie 436 - Gelchromatographie 433-434 Multielementanalysen 182 - HPLC 418-ü4 Multikern-NMR-Spektroskopie 271 - SFC 444 Multimodefaser 534 Mobilzeit 372 multiplikative Verteilung 106 Modelle, siehe Theorien und Modelle multivariate Modellierung 494-495 Modellierung multivariate Statistik 491-503 - analytische Daten 492-493 Projektionsmethoden 498–499 - multivariate 494-495 Munk-Funktion, Kubelka- 242-243, 441 - univariate 493-494 Mustererkennung 496–503 Moden, stille 210 Myoglobin 592-593 Mohr, Halogenidbestimmung nach 77 - Apo- 559 molare Leitfähigkeit 318 molare Löslichkeit 68-69 molare Verdampfungsenthalpie 401 Moleküle Nachfolge-Ion 449 Nachsäulenderivatisierung 425 - 3-atomige 208 - Ausschluss von 430-431 Nachweis 4 Biomakro- 586–588 Nachweisgrenze 24 Elektronenspektren 227–233 - GC 390 - mehratomige 208-210 Photometrie 239 - neutrale 454 NAD+ (Nicotinamidadenindinucleotid) 572, - Summenformel 291-293 576-577 zweiatomige 201–203 Nahinfrarot (NIR) 225-226 Molekülorbitale 228 - Benzinspektrum 549 Molekülspektroskopie, optische 197-250 Prozesskontrolle 549–550 Molmasse, Bestimmung 291-293 n-Alkane 399 Molybdänanode 187-188 2-Naphthylamin 108 Monochromatoren 144-147 Nassaufschluss 15 - AAS 168-171 native Proteinstruktur 559 - Schwingungsspektroskopie 213-214 Natrium monolithisch gepackte Säulen 410 - ISE 329 Monomethylarsonsäure (MMA) 613 - Termschema 156 Monomodefaser 534 Natrium-Dodecylsulfat (SDS) 567-568 natürliche Radioaktivität 301–302 monosubstituierte Benzole 232 Morpholinethansulfonat 450 n-Dodecan 293 Moseleysches Gesetz, 188 Nebenreaktionskoeffizient 82-84 MOSFET (Metal Oxide Silicon FET) 528 Nephelometrie 243 MS (Massenspektrometrie) 274–296 Nernst-Faktor 92 Nernst-Gleichung 91-93, 325 – Anwendungen 291–296 doppelt fokussierende 279–280 Nernstscher Verteilungssatz 101 - ESI 592-594 Nettoretentionsvolumen 385 - GC/MS-Kopplung 455-457 Netzebenenabstand 189 - Geräte 275-284 Netzwerk, Polyacrylamid- 570 - LC/MS-Kopplung 457-459, 599 Neutralchelate 79, 108 - MALDI-MS 588-591 neutrale Moleküle, Elektrophorese 454 Proteine 584–588 neutrale Polyether 335

Neutralisationstitration 324

- Quadrupol- 280-281

Neutronen	 Oberflächenstrukturen von Werkstof-
– inelastische Streuung 210	fen 615
 Neutronenaktivierungsanalyse 302–303 	– -wellen 541–542
– thermische 302	Oberphase 105
nicht-dispersiver IR-Analysator 551–552	Oberschwingungen 226
nicht-invasive Prozessanalytik 547	o-Dianisidin 577
nicht-inverse Population 142	ODS-Trennsäule 445
nicht-oxidierende Säuren 96	Off-Line-Verfahren 545
nicht-selektive Analysenprinzipien, Automati-	Off-Resonanz-Entkopplung 268
sierung 547–551	Ohmscher Spannungsabfall 340
nicht-wässrige Lösungsmittel 65–66	Oligoamino-Oligocarbonsäure 569
Nickelamminkomplexe 80	oligomere Polyethylene 446
Nickschwingungen 222	Oppenheimer-Näherung, Born- 204
Nicotinamidadenindinucleotid (NAD+) 572,	optische Dichte (OD) 236
576–577	optische Fasern 533
Ni-Diacetyldioxim-Komplex 75	optische Molekülspektroskopie 197–250
Niedertemperaturplasmen 158	optische Sensoren 532–540
Nier-Johnson-Geometrie 279 Nilblau 539	optische Spektroskopie
	- Instrumentierung 139–151
Ninhydrin 438 NIR (Nahinfrarot) 225–226	– Strahlungsquellen 140–143 Optroden 538
– Benzinspektrum 549	Orbitale, Molekül- 228
- Prozesskontrolle 549–550	ordinale Skala 497
Nitrobenzol 286	Ordnung, Reaktions- 117–119
NMR 251–271	organische Bleiverbindungen 612–613
– Anwendungen 266	organische Schadstoffe, schwerflüchtige 607
 Besetzung der Energieniveaus 253–254 	organischer Kohlenstoff 610
– Geräte 264–266	Ostwald, Wilhelm 1
– Impulsverfahren 256–262	Ostwaldsches Verdünnungsgesetz 38, 43
– Multikern- 271	Oszillator
 Resonanzbedingung 254–255 	– anharmonischer 203
– zweidimensionale 270–271	– harmonischer 201–203
nominale Skala 497	Overhauser-Effekt, Kern- 269
Noradrenalin 414	Oxalacetat 575
Normalpulspolarographie 350–351	Oxidation 90
Normalschwingungen 209	Oxidationsmittel 93
Normalverteilung 474–475	Oxidationszustände 623–624
normierte Gauss-Verteilung 477–479	Oxonium/Oxidanium 40
Nuclear Magnetic Resonance, siehe NMR	P
Nucleinsäureanalytik 594–601	•
- Gelelektrophorese 595–597	Packungsmaterialien, IC 426
LC/MS-Kopplung 599Reinigung von Nucleinsäuren 594–595	PAGE (Polyacrylamid-Gel) 567 PAKs (polycyclische aromatische Kohlenwas-
Nucleotide 594–595	serstoffe) 442, 605–607
Nullhypothese 479–485	p-Amino-Acetophenon 219
numerische Apertur 533	Papier, Feuchtegehalt 548
Nyquist-Frequenz 489	Parallelanalysen 23–24
V 1	Partikelstrahlinterface 457–458
	Partitioning 370
0	Paschen-Runge-Aufstellung 178
Oberflächen	Pattern Recognition 496
– Desaktivierung 395–396	PCBs (halogenierte Biphenyle) 607
– Elektronenspektroskopie 620–625	Peakabfolge, Poisson-verteilte 462
 hydrolysierte Silicagel- 395 	Peakflankenspektren 456

Peakgruppen, NMR 266 - indirekte 429 Peakkapazität 382-383 pH-Puffer 51-56 - mehrdimensionale Trennverfahren 462-Phthalatpuffer 328 pH-Wert 463 Peaktrennung 379-381 - Berechnung 43-48 - Glaselektrode 326-328 Peakverbreiterung 371 - kinetische Einflüsse 378 - Gleichgewichtskonzentration 48-51 Pellistoren 540-541 pH-sensitive Schicht 543 - Pufferlösungen 51-53 Pentan 420 Peptide, Fragmentierungs-Schema 591 - Redoxreaktionen 93-94 Peptidrest 422 physikalische Probenvorbereitung 14-17 Peptidstruktur 583 piezoelektrische Waage 542 permanentes Dipolmoment 196 pin-Photodiode 150 Permanganometrie 99-100 planare 2D-Trennverfahren 463 Plancksches Wirkungsquantum 138 Permeationsgrenze 432 Pestizide 579 Plasmabrenner 175 PFT (Puls Fourier Transform) 264 Plasmen Phasen - Argon- 290 - chemisch gebundene 416-417 - induktiv gekoppelte 175, 290, 461 Niedertemperatur- 158 - chirale 422 Platindrahtelektrode 350 - mobile, siehe mobile Phasen Plattform-Technik 168 - polare 396 stationäre, siehe stationäre Phasen PLB (Porous Layer Beads) 418 Umkehr- 416 Pobenmassenbereich 13 Phasendurchtritt 312 POC (Particulate Organic Carbon) 610 Phasenverhältnis 373 Poisson-verteilte Peakabfolge 462 Phenalylen 272 Poisson-Verteilung 476 Phenanthren 247, 412 polare Phasen 396 Phenole 454 polare Reste 417 IR-Spektrum 224 Polarisation, Elektroden 340 Phenolindex 605 polarisierbare Elektroden 341-342, 358 Trinkwasser 480 polarisiertes Licht 207 Phenolphthalein 61 Polaritätsindex nach Snyder 418 Phenylendiamindihydrochlorid 428 Polarographie 343-349 Phenylisothiocyanat 584 - Anwendungen 347-348 pH-Indikatoren 61-64 - Differenzpuls- 351 Phosphoreszenz - Normalpuls- 350-351 polarographische Messzelle 343 - Anregungsmechanismen 244-245 – Raumtemperatur 250 Polyacrylamid 527, 570 Polyacrylamid-Gel (PAGE) 567 Phosphorsäure 51, 60 polyatomare Interferenzen 296 Photodiode, pin- 150 Photodiodenarray-Detektor 412 polycyclische aromatische Kohlenwasserstoffe Photoelektronenspektroskopie 185, 620 (PAKs) 442, 605-607 Polydimethylsilicon 397 Photometerkugel 235 Polydimethylsiloxan 387, 464 Photometrie Absorptions- 237–239 Polyether, neutrale 335 - Automatisierung 510 Polyethylene, oligomere 446 - Diodenarray-Spektral- 234 Polyethylenglycol 397 - Metallbestimmung 238 polykristalline Membranelektroden 331 - Nachweisgrenze 239 Polymere, Identifizierung 124 - scannende 411 Polynomglättung 487-488 photometrische Detektoren Population, inverse 142 - FPD 393 poröse Schichtpolymere 422 - HPLC 411-412 Porous Layer Beads (PLB) 418

- Ampholyte 46-48 Potential - Asymmetrie- 327 Löslichkeitsveränderung 71–73 - Strom-Potentialkurven 342-343 pH-Wert-Berechnung 45-46 potentialbestimmendes Ion 338 - Proteine 558 potentielle Elektrolyte 317 - Protolysediagramm 55 Protolysegleichgewichte 40–41 Potentiometrie 325-338 potentiometrische Sensoren 524–531 Protolysegrad 43–48 potentiometrische Titrationen 337-338 Schwefelwasserstoff 71–72 potentiostatische Coulometrie 361–363 Protolyte Präzessionsbewegung, Atomkern 254–255 - schwache 58-60 Präzision, statistische Bewertung 21-23 - starke 56-58 Primärmethoden 19 Protonenentkopplung 268–269 Primärstrahlung 192 Protonenresonanz 254 Prisma 540 Protonenübertragung 288 Prozessanalytik 7-8, 507-555 - Bunsen- 145 Probenahme 9–13 nicht-invasive 547 - Feststoffe 12 Prozesschromatographie 553-554 - Flüssigkeiten 10-11 Prozesse - Gase 11-12 - analytische 8-18 Mengenbereiche 12–13 industrielle 521 Probenaufgabe, Dünnschichtchromatogra-Prozesskontrolle phie 436-437 - Automatisierung 544 Probengeber, GC 388-389 – Flüssigkeiten 548–549 Probenhalter, optische Spektroskopie 148- IR-Spektroskopie 551–552 - NIR 549-550 Probenraum, Schwingungsspektrosko- UV/VIS-Spektroskopie 549–550 pie 211-213 Prozessrefraktometer 550-551 Probenvorbereitung 13–17 Prozessstrom 8 Proinsulin 587 Prüfröhrchen 74 Projektionsmethoden 498-499 Prüfverfahren 477-485 prominente Linien 182 Pseudoordnungen 119 Proportionalzähler 300 p-Terphenyl 301 Propylbenzol, iso- 6 Puffer Proteinanalytik 557-594 Metall-Ionen- 333 - Elektrophorese 448 - pH- 51-56 - Immunoassays 578-583 - Phthalat- 328 Protein-Datenbanken 594 - Pufferschwerpunkt 59 Proteine Puffersysteme 55–56 - Anfärbung 566 Pufferkapazität 53-55 Pufferlösungen - Aufschlussmethoden 559-560 - enzymatische Analysemethoden 571-578 Elektrophorese 447 - Fällung 560-561 pH-Wert 51-53 - Gelelektrophorese 566-571 Puls-ENDOR (Electron Nuclear Double Reso-Immunoassays 578–583 nance) 271 - Kokristallisation 588 Puls-Methoden 350-351 - MS 584-588 Pulverkamera 195 Proteinsequenzanalyse 583–584 Pulverproben 194 Reinigung 558-562 Pumpen, HPLC 407-409 - Struktur 559 Punkt, isoelektrischer 47 - thiolhaltige 565 Pyrazoline 424 - Trennungen 562-571 - Zentrifugation 561 Quadratwurzelgesetz, Kohlrauschsches 321 Protium 270 Protolyse Quadrupolionenfallen 282-283

Out designation of the market 200 201	Randles-Sevcik-Koeffizient 352
Quadrupolmassenspektrometer 280–281	
- Triple- 594	Rangfolge 497
qualitative Analyse 3–4	Raumtemperatur, Phosphoreszenz 250
- AES 181	Rauschen, weißes 485
- auf Basis chemischer Reaktionen 38–39	Rayleighsches Gesetz 170
- Chromatographie 381–382	Reaktantkonzentration 117
- GLC 398-400	Reaktionen 33–131
- IR-/Raman-Spektroskopie 220–225	- Edman-Abbau 584–585
– Massenspektrometrie 293–295	- Elektroden- 312
- Polarographie 344-346	– enzymkatalysierte 572–575
- RFA 191–192	- erster Ordnung 118–119
- UV/VIS-Spektroskopie 243	- Fällungs-, siehe Fällungsreaktionen
Qualitätssicherung 26–31	- Glutaraldehyd- 582
Quantentunneleffekt 530	 heterogene Gleichgewichtsreaktio-
Quantenzahl	nen 36–37
– magnetische 252	– Hilfs- 577
– Spin- 154, 251	 homogene Gasreaktionen 36–37
Quantile 478	– katalytische 122
quantitative Analyse 4–6	– Komplexbildungs- 78–90
– AAS 168–171	– nullter Ordnung 117–118
– AES 181	– Redox- 70, 90–100
– auf Basis chemischer Reaktionen 38–39	– Säure-Base- 39–66, 83–85
- Chromatographie 383	– zweiter Ordnung 118–119
- GLC 400-402	Reaktionsbedingungen 93–95
– ¹ H-NMR 267–268	Reaktionsgeschwindigkeit 116
IR-/Raman-Spektroskopie 226–227	– Anfangs- 119
 Lumineszenz-Spektroskopie 247–248 	– Beeinflussung 120–121
 Massenspektrometrie 295–296 	 Massenwirkungsgesetz 34
- Polarographie 346-347	Reaktionsladungszahl 92
– Prozesskontrolle 544	Reaktionstypen 35-37
– RFA 192–196	Reaktionsüberspannung 341
UV/VIS-Spektroskopie 235–243	Realteil 490
Quecksilbertropfelektrode 341–342	Rechtecksignal 350-351, 485
Quellschicht 326	Redoxamphotere 98
Quellung 113–114	Redoxelektroden 313–317
Quenching (Löschung) 248	Redoxreaktionen 90-100
Quermagnetisierung 258	 Fällungsgleichgewichte 70
	– Reaktionsbedingungen 93–95
	Redoxtitrationen 90–100
R	– Äquivalenzpunkt 96
radioaktiver Zerfall, Geschwindigkeit 299-	Reduktion 90
300	- katodische 339
Radioaktivität 580	Reduktionmittel 93
– Messung 300–301	reduzierte Retentionszeit 372
- natürliche 301–302	reduziertes Retentionsvolumen 384
Radio-Carbon-Methode 301	Referenzwert 23
Radioimmunoassay (RIA) 579–583	Reflexion, reguläre/diffuse 241–242
radiometrische Methoden 297–304	Reflexionsmessungen, UV/VIS-Spektrosko-
– Anwendungen 301–304	pie 234–235
Radionuklide 298–300	Reflexionsspektroskopie
Raman-Effekt 205–208	- Anwendungen 242–243
Raman-Spektrometer 215–216	– UV/VIS- 241–242
Raman-Spektroskopie 197–227	Reflexivschicht 511
- SERS 205	Refraktometer 412–413

 Ebbinghaus-Differentialrefraktome- 	Rotameter 388
ter 550	Rotationskonstanten 199–200
Regelkarte 28–29	Rotationsspektren 198–200
Regeneration, Säulen 429	 Überlagerung von Rotation und Schwin-
Regenwasser, Arsenbelastung 614	gung 204–205
Regression, lineare 493–494	Rotator, starrer 198–200
reguläre Reflexion 241–242	rotierende Festelektroden 349
Reihe	rotierende Platindrahtelektrode 350
– eluotrope 418–419	Rotweinfleck 437
– homologe 386	Rowland-Kreis 178
Reinigung	Rückführbarkeit 30
– Nucleinsäuren 594–595	Rücktransformation (inverse FT) 490
- Protein- 558-562	Runge-Aufstellung, Paschen- 178
rekombinante Biomoleküle 559	
rekursive Filter 488	S
relative Beweglichkeit 568	Salze
relative Bindungsenergie 623	- Abtrennung 561–562
relative Standardabweichung 22	- Ammonium- 65
Relaxationsprozesse 255–256	- Salzeffekte 120
Remissionsspektren, Bananenschale 242	- schwerlösliche 68
Repeller 458	Sammelprobe 10
Resonanzbedingung, NMR 254–255	Sanger-Didesoxy-Verfahren 597
Resonanzspektroskopie, magnetische 250–	Saphir 408
274 Postmognoticionung 258	Sättigungsfaktor 303
Restmagnetisierung 258 Restriktionsenzyme 600	Sättigungskonzentration 68–69 Sauerstoff, Polarographie 347
Restriktor 443	Sauerstoffanalysatoren 552–553
Restwerte, Varianz 493	Sauerstoffbedarf
Retentionsdaten, GC 384–385	- biologischen 610–611
Retentionsfaktor 373, 438–440	- chemischer 605, 610–611
- Dünnschichtchromatographie 439	Sauerstofffestkörpersensor 524
Retentions indizes nach Kovats 399–400	Sauerstoffpartialdruck 525
Retentionsvolumen 384	Säulen
Retentionszeit, totale/reduzierte 372	- Effizienz 374–376
retrogrades Ausschütteln 106	– feste Füllungen 403
reziproke Lineardispersion 146	- GC 389
RFA (Röntgenfluoreszenzanalyse) 185–196	– gepackte 394
– Anwendungen 194–196	- HPLC 409-410
– wellenlängendispersive 190	– Kapillar- 394–396
RIA (Radioimmunoassay) 579–583	 monolithisch gepackte 410
Richtungsfokussierung 279	– ODS-Trennsäule 445
RI-Detektor 412–413	Regeneration 429
Ringspannung 220	– Stripper- 553
Ringstrom, Benzol 261	- Suppressor- 427–428
Ringversuche 30	– Vorsäule 406
RNA (Ribonucleinsäure) 596	Säulenofen 389
Roboter, Labor- 520–521	Säure-Base-Paar, korrespondierendes 49
Robustheit 27	Säure-Base-Reaktionen 39–66
Röntgenbeugung 183, 196–197, 618–620	- Kombination mit Komplexometrie 83–85
Röntgenfluoreszenzanalyse (RFA) 185–196	Säure-Base-Theorie nach Brønsted 39–40
- Anwendungen 194–196	Säure-Base-Titrationen 56–66
– wellenlängendispersive 190	– Anwendungen 64–66
Röntgenröhre 187	Säurelinie 50
Röntgenspektroskopie 183–197	Säuren

- Amino- 47–48, 422	Sekundärelektronenvervielfacher (SEV)
- Benzoe- 102	149
- Bor- 64	Sekundärionenmassenspektroskopie
- Carbon- 102–103	(SIMS) 618–619
- Citronen- 56	Selektivität 25
– DNA, siehe DNA	- Flammen-AAS 167
- EDTA 79, 83-87	- UV/VIS-Spektroskopie 239–240
- Karmin- 239	Selektivitätskoeffizient, ISE 334
- Kohlensäuregleichgewicht 63	Selenat 167
- mehrprotonige 46, 60	sensitive Schicht 522
- nicht-oxidierende 96	Sensorarrays 543
- Nuclein- 594–601	Sensoren
- Oligoamino-Oligocarbonsäure 569	- amperometrische 531
- Phosphorsäure 51, 60	– biokatalytische Membran- 526–527
- Stärke von 41–42	- chemische 8, 521–544
Savitzky-Golay-Filter 487–488	- Erkennungssystem 535–540
SAW-(Surface Acoustic Waves)-Senso-	- Festkörperelektrolyt- 524–525
ren 541–542	- massensensitive 541–543
scannende Photometer 411	- optische 532–540
Scanning Calorimetry, Differential 125–126	– potentiometrische 524–531
Schadstoffe, schwerflüchtige organische	- thermische (kalorimetrische) 540–541
607	Separator 455
Schätzung 476	Sepharose-Glutathion-Konjugat 565
Scheibenelektrode, Glaskohlenstoff- 350	Septum 11
Scherschwingung, Dicken- 541	Sequenzierung
Schichtmaterialien 417–418	– DNA- 597–598
Schichtpolymere, poröse 422	- Proteine 583–584
schließende Statistik 474	Seriencharakter der Linienspektren 153
Schlüsselbruchstücke 293–295	SERS (Surface Enhanced Raman Spectrosc
Schmelzen 14–16	py) 205
Schnelltests, Umweltanalytik 608–609	Serum, Elektrolytbestimmung 512
Schrödinger-Gleichung 202	Sesselform, Cyclohexan 220
schwache Elektrolyte 37–38	Sevcik-Koeffizient, Randles- 352
schwache Protolyte 58–60	SFC (superkritische Flüssigchromatogra-
Schwanzbildung 381, 395	phie) 441–447
Schwefelwasserstoff 609	- Anwendungen 446
- Protolyse 71–72	- Kapillar- 443
schwere Elemente 157	- Leistungsparameter 444–446
schwerflüchtige organische Schadstoffe 607	Siebeffekte 596
schwerlöslicher Salze 68	Signale 19
Schwingmühle 14	- Ableitung und Integration 488
Schwingungen, lokalisierte 217–220	- Analyse 485–491
Schwingungskopplungen 216–218	- diskretisiertes analytisches 487
Schwingungsspektren 201–210	- Signalschwerpunkt 263
- Rotations- 204–205	- Transformation 488–491
Schwingungsspektroskopie, Spektrome-	Signal-Rausch-Verhältnis 485–486
ter 210–216	- Auger-Spektroskopie 622
Screening 437	Signifikanzniveau 479
SDS (Natrium-Dodecylsulfat) 567–568	Silber/Silberchloridelektrode 314
SDS-PAGE 567	Silberbestimmung nach Volhard 77
Sedimentationskoeffizient 561	Silber-Zelle, Zink- 312
Seitenketten, Aminosäuren 593	Silicangumani 333
Sektorfeldgerät 278–279	Silicongummi 332
Sekundärabsorption 192	Siloxan-Umkehrphasen 417

- Raman- 197-227

SIMS (Sekundärionenmassenspektrosko- Röntgen- 183–197 pie) 618-619 UV/VIS- 227–243, 549–550 Simultanspektrometer 178 - Verallgemeinerung 151 Singulettzustand 245 XPS 620–623 Sinterperle, inaktive 541 spektroskopische Detektoren, HPLC 414-Skala, nominale/ordinale 497 415 Skeggs, luftsegmentierter Durchflussanalysa-Spektrum tor 513 Atomspektroskopie 152–159 Snelliussches Brechungsgesetz 137 Banden- 152 Snyder, Polaritätsindex 418 - ECSA 622 Solvatbildung 112 - elektromagnetisches, siehe elektromagneti-Solvenzien, HPLC 407 sches Spektrum Sommerfeldscher Verschiebungssatz, Elektronenspektren von Molekülen 227– Kossel- 154 Sonne, Fraunhoferlinien 151 IR-Spektrum von Phenol 224 Southern Blotting 597 kontinuierliches 152 Spacer 564 - Linien- 152 Spaltbreite 148 - Lithium 155 - Massenspektren 284-291 Spaltung, Edman-Abbau 585 Spannung, Galvani- 313 MS-Spektren von Glucose 288–289 Spannungsabfall, Ohmscher 340 - Natrium 156 Spannweite 29, 475 NIR-Benzinspektrum 549 SPE (Solid Phase Extraction) 17 Peakflankenspektren 456 Remissionsspektren 242 Spektralbereiche 135 Rotationsspektren 198-200 spektrale Bandbreite 147–148 spektrales Absorptionsmaß 235 Schwingungsspektren 201–210 Spektralphotometer, Diodenarray- 234 Speziation 612 Spektralserien 153 Spezies, isotopenmarkierte 304 Spektrenbibliotheken, MS 295 spezifische Leitfähigkeit 318, 323 Spektrometer Spezifizierung, Umweltanalytik 611-614 - FTIR- 215 Spin-Bahn-Kopplung 157 - PFT- 264 Spin-Gitter-Relaxation 256 - Schwingungsspektroskopie 210-216 Spinquantenzahl 154, 251 spektrometrische Detektoren 393 Spin-Spin-Kopplung 262-264 Spektroskopie 133-309 Spirilloxanthin 367-368 - Atom-, siehe Atomspektroskopie spontane Emission 141 - Auger- 620-621, 625 Spurenanalysen 508 - ECSA 185 Sputtern 624-625 - Elektronen- 183-197 stabiler Isotope 287 - Elektronenspektroskopie an Oberflä-Stabilität, Komplex- 80-81 chen 620-625 Stammlösungen 75 - EPR/ESR, siehe EPR Standardabweichung 21-22, 475 - Infrarot- 197-227, 551-552 Chromatographie 375 Standardadditionsmethode 19–20 Kopplung mit Chromatographie 454 - Lumineszenz- 243-250 Standardelektrodenpotential 93 magnetische Resonanzspektrosko-Standardwasserstoffelektrode 314 pie 250-274 Stärke - Massenspektrometrie, siehe MS Oxidations- und Reduktionmittel 93 - Molekül-, siehe Molekülspektroskopie - Säuren und Basen 41-42 starke Elektrolyte 38 - NMR, siehe NMR - optische, siehe optische Spektroskopie starke Protolyte 56-58 - Photoelektronen- 620 starrer Rotator 198-200 - radiometrische Methoden 297-304 stationäre Elektroden 352-353

stationäre Phase 368-370

- Affinitätschromatographie 564 Student-t-Test 479-482 Dünnschichtchromatographie 436 Stufen des Sauerstoffs 347 Gelchromatographie 431–433 stufenweise Komplexbildung 78 - GLC 393-398 Styrol 113 - SFC 444 Styrol-Divinylbenzol-Copolymerisat 424, - Verteilungschromatographie 415-418 statische SIMS 619 Substanzklassen, Raman-Spektroskopie 221 Statistik 21-24 substituierte Alkene 222 substituierte Aromaten 222-224 - Chemometrie 473-485 - multivariate 491-503 Substratbestimmungen 575-576 - Prüfverfahren 477-485 Substratsättigung 572 Stereoisomere 424 Sulfidfällung 73 sterische Anordnung, Komplexe 86 Summenformel eines Moleküls 291–293 Stern-Volmer-Gleichung 537 Summenparameter 521 Stichproben 479 Umweltanalytik 610–611 stille Moden 210 Summensignal 489 stimulierte Emission 141 superkritische Flüssigchromatographie stöchiometrische Konstante 67 (SFC) 441-447 Stoffgemisch, Chromatographie 380 - Anwendungen 446 stoffliche Zusammensetzung 4 - Kapillar-SFC 443 Stoffmenge 5 Leistungsparameter 444–446 Stoffmengenkonzentration 69 Suppressorsäule 427-428 Stofftypenanalyse 549 Surface Acoustic Waves (SAW) 541-542 Stokes-Linien 206 Surface Enhanced Raman Spectroscopy Stopped-Flow-Technik 518 (SERS) 205 Stör-Ionen 334-336 Svedberg (Einheit) 561 Stoßanregung 176 Symmetrie der Wellenfunktionen 228 Strahlung Synthese von Immunogenen 581–582 Desaktivierung durch 246–247 systematischer Fehler 23 - radioaktive 300-301 Szintillationsdetektor, RFA 190 strahlungslose Übergänge 245-246 Т Strahlungsquellen - AAS 159-162 Tailing 381, 395 - optische Spektroskopie 140-143 Tangentenmethode 122 - RFA 187-189 Taxonomie 500 - Schwingungsspektroskopie 210-211 TBP (Tributylphosphat) 112 Streuung Techniken, siehe Methoden und Verfahren - Licht 138 Teilchencharakter elektromagnetischer Strahlung 138-139 - Streudiffusion 377 - Streuparameter 475-477 Teilchengröße, Trägermaterial 405 - Vergleich 481-483 Temperaturprogramm 123 Strippersäule 553 temperaturprogrammierte GC 400-402 Strom Tenside, anionische 517–518 - anodische und katodische Strom-Terminator-Ion 449 stärke 339–342 Termschema Faradayscher 311, 349 - Jablonski- 244 - Kapazitäts- 349 - Lithium 155 Strom-Potential-Kurven 342-343 - Natrium 156 Strukturanalytik 6-8 p-Terphenyl 301 - 13C-NMR 269-270 Testen von Hypothesen 477-485 - ¹H-NMR 266-267 Tetraethylammoniumbicarbonat 599 - IR-/Raman-Spektroskopie 220-225 Tetraphenylarsonium-Ionen 348 Tetrapropylammonium-difluorid-thiophos-- MS-Fragmentierungsmuster 293 Student-t-Faktor 23-24, 27 phat 622

TG (Thermogravimetrie) 123-124 Trägerelektrophorese 447-448 theoretische Bodenhöhe 374 Trägermaterial Theorien und Modelle – gepackte Säulen 394 - Atomspektroskopie 151-152 HPLC 405 - Bohrsches Atommodell 184 - Trägergase 387-388 - Chromatographie 374-379 Trägerprotein 582 - Säure-Base-Theorie nach Brönsted 39-40 Trägerstrom, FIA 514 thermionischer Detektor (TID) 392 Trägheitsmoment 197 trans-1,2-Dichlorethylen 225 thermische Anregung 176 thermische Methoden 123 Transducer 522 thermische Neutronen 302 Transferrohr 455 thermische Sensoren 540-541 Transmissionsgrad 144 Thermoanalyse, Differenz- 124–125 transponierte Matrix 494-495 thermodynamische Gleichgewichtskonstan-Transportkarussell 510 transversale Relaxation 258 Thermogravimetrie (TG) 123-124 Trennebenen 502 Thermosprayinterface 458 Trennfaktor 105 thiolhaltige Proteine 565 - Chromatographie 374 Thorium 298 Trennflüssigkeiten 396-398 Thymolphthalein 60 Trennsäulen, HPLC 409-410 TIC (Total Inorganic Carbon) 610 Trennstufenhöhe 374–375 TID (thermionischer Detektor) 392 Trennsystem, Massenspektrometrie 277-284 Tiefenprofile 625 Tiefpassfilter 490-491 Trennungen Time-of-Flight-MS (TOF-MS) 281-282 chromatographische, siehe Chromatogra-Titrant 56 Titration elektrophoretische 46 Ammoniumsalze 65 enantiomere Verbindungen 78 amperometrische 357-361 Erdalkalielemente 428 Borsäure 64 Fällungsreaktionen 74–77 coulometrische 363-364 - HPLC 404-405 Dead-Stop- 361 in der Gasphase 385–386 - Fällungs- 75-77 Kapillarelektrophorese 451–452 - Karl-Fischer- 359-360 mehrdimensionale 461 - komplexometrische 86-90 Proteine 562-571 Salze 561-562 - konduktometrische 323-325 - nicht-wässrige Lösungsmittel 65-66 Trennwirksamkeit 386 - potentiometrische 337-338 Triazine 454 Redox- 90-100 Tributylphosphat (TBP) 112 Trimethylbenzol 267 - Säure-Base- 56-66 - voltametrische 360-361 1,3,5-Trimethylbenzol 6 Titrationsgrad 56 Trinkwasser Titrationskurve 56-60 - Chlorung 531 - Fällungstitration 76–77 Phenolgehalt 480 komplexometrische Titrationen 86 Trioctylamin 111 Redoxtitrationen 96–98 Triphenylmethanfarbstoffe 61 Titrimetrie, Fällungsreaktionen 66-77 Triple-Quadrupol-Massenspektrometer 594 TOC (Total Organic Carbon) 610 Triplettzustand 245 TOF-MS (Time-of-Flight-MS) 281-282 TRIS-Puffer 55 totale Retentionszeit 372 Triton X100 562 Totalreflexion 138 Trockenchemie 510-512 abgeschwächte 212 Trocknung 14 Totvolumen 407 Trübungsmessung 243 Tracer 304 t-Test 479-482

Turner-Gitter, Czerny- 145, 180 $-\chi^2$ - 29 Turn-over-Number 574 - multiplikative 106 - normierte Gauss- 477-479 Tyrosyl 581 Zufallsdaten 474-477 U Verteilungsanalytik 6-7 Übergänge Verteilungschromatographie 415-423 - elektronische 228-233 - Anwendungen 421-422 - strahlungslose 245-246 Verteilungsisotherme 101-102 überkritischer Zustand 442 Verteilungskoeffizient 373 Übersichtsanalyse 4 - Dünnschichtchromatographie 440 Überspannung, Elektroden 340-341 - GC 384-385 überwachtes Lernen 501-503 Vertrauensintervall 23-24 Überwachungsaufgaben 521 VIS ..., siehe Licht, UV/VIS ..., optisch Umkehrphasen 416 Viskosimeter, Kapillar- 434 Umweltanalytik 605-614 Viskosität 442 Volhard, Silberbestimmung nach 77 - Langzeitexpositionsmessungen 608-609 - Schnelltests 608-609 Volmer-Gleichung, Stern- 537 univariate Modellierung 493-494 Voltametrie 355-361 unpolarisierbare Elektroden 341-342 voltametrische Titration 360-361 Untergrundkompensation 170-171 Voltammetrie 338-361 Invers- 351–353 – Deuteriumlampe 170 Untersuchungsobjekt 3 - Puls-Methoden 350-351 unüberwachtes Lernen 498-501 stationäre Elektroden 352–353 Uran 298 zyklische 353-355 Urease 527 Volumenauflösungsvermögen 615 Urotropin 65 Volumenkapazität 114 UV/VIS-Spektroskopie 227-243 Vorkammerzerstäuber 163 Vorsäule 406 Geräte 233–235 Prozesskontrolle 549–550 W Waage, piezoelektrische 542 Valenzelektronen 135 Wahrscheinlichkeitsdichte 475 Mehrelektronensysteme 154–157 Wanderungsgeschwindigkeit, Chromatogra-Validierung, Analysenverfahren 26-28 phie 371 van-Deemter-Gleichung 377-378 Wärmekonvektion 450 Varianz 22 Wärmeleitfähigkeitsdetektor (WLD) 389-Varianz der Restwerte 493 390 Varianzanalyse 483-485 Wasser Vektor, Klassifizierungs- 502 Autoprotolyse 41–42 - Bewertung 64 Verbindungsanalytik 3-6 Verbrechensaufklärung 2 - Dielektrizitätskonstante 548 Verdampfungsenthalpie 401 - Ionenprodukt 41 Verdampfungsröhrchen 388 - Kapazitätsmessungen 548 Verdünnungsgesetz, Ostwaldsches 38, 43 - Regen- 614 Verfahren, siehe Methoden und Verfahren Trink-, siehe Trinkwasser Vergleich von Messwertstreuungen, F-Wasserhärte 115 Test 481-483 Wasserstoffbrückenbindung 218 Vergleich von Mittelwerten 479-485 Wasserstoff-Ionen, coulometrische Generie-Verhältnisskala 497 rung 364 Vernetzungsgrad 114 Wechselzahl 574 Verschiebung, chemische 260-263 weiches Wasser 115 weißes Rauschen 485 Verschiebungssatz, Kossel-Sommerfeldscher 154 Wellen, evaneszierende 213, 539 Verteilung Wellenfunktionen 228

674 | Sachregister

Wellenlänge 135 wellenlängendispersive RFA 190 Wellenlängenverbreiterung 160 Wellennatur des Lichtes 135–138 Wellenzahl 196 Werkstoffanalytik 614-625 Wertigkeit, elektrochemische 38, 319 Widerstand, elektrischer 322 Wiederfindungsrate (WFR) 23, 27 wiederholte Extraktion 102-106 Wiederholungsmessung 484 Winkelhalbierende 327 Wirbeldiffusion 377 Wirkungsquantum, Plancksches 138 wissenschaftlicher Detektiv 2-3 WLD (Wärmeleitfähigkeitsdetektor) 389-390

Χ

Xanthophyll 367 XPS (X-Ray Photoelectron Spectroscopy) 620–623 Xylenolorange 89

Υ

Y-Kabel 534

Z

Zahlen, komplexe 490 Zählrohr, Geiger-Müller- 300 Zeeman-Effekt 171

Zeeman-Niveaus, Kern- 252 Zeit 25-26 - Methode der fixierten Zeit 122 Zeitdomäne 489-490 Zeitgesetze 117–119 Zellen, galvanische 312-317 Zellspannung, Einfluss der Stromstärke 339-342 Zentrifugalanalysatoren 518-519 Zentrifugalkraft 278 Zentrifugation, Proteine 561 Zerfall von Radionukliden 298–300 Zerfallskonstanten 80 Zerlegung des Lichtes 143-148 Zertifizierung 31 Zielgrößen 28-29 Zink-Silber-Zelle 312 Zonenelektrophorese 448 Zufallsdaten, Verteilung 474-477 Zufallsfehler 21-22 Zusammensetzung, stoffliche 4 zweiatomige Moleküle, Schwingungsspektren 201-203 zweidimensionale Analysenverfahren 5, 25 zweidimensionale NMR 270-271 zweifarbige Indikatoren 62-64 Zwillingskalorimeter 125 zyklisch . . . siehe auch cyclisch . . . zyklische Voltammetrie 353-355 Zyklotronfrequenz 283 Zyklotron-Resonanz-Spektrometer, Ionen-283-284