Contents

Preface xiii
List of Contributors xv

Part I The Academia – Market Bouncing of Peptide Drugs – Challenges and Strategies in Translational Research with Peptide Drugs 1

1 Peptides as Leads for Drug Discovery 3
Paul J. Edwards, and Steven R. LaPlante

1.1 Introduction 3
1.2 Overview of Process for Transforming Peptides to Peptidomimetics 5
1.3 HCMV Protease 7
1.3.1 HCMV Protease: Identification and Characterization of Antiviral Inhibitors Targeting the Serine Protease Domain of the Human Cytomegalovirus (HCMV Protease) 7
1.3.2 Mapping Essential Elements of the Substrate Peptides and Determining Structures of Ligands Bound to HCMV 8
1.3.3 Improving Peptide Activity to Allow SAR Studies 10
1.3.4 Elucidation of the Binding Mode of the Optimized Peptidyl Segment 10
1.3.5 Ligand Adaptations upon Binding 12
1.3.6 Strategic Summary for HCMV Peptide Mimic Design Process 14
1.4 HCV Protease 15
1.4.1 HCV Protease as an Antiviral Target 15
1.4.2 NS3 Serine Protease Possesses a Chymotrypsin-Like Fold 16
1.4.3 Discovery of the Peptide DDIVPC as an Inhibitor of NS3 Protease 16
1.4.4 “Sensemaking” and Knowledge Building: Mapping of the Critical Binding Residues of the Peptide and Creation of an Inhibitor-Protease Model 18
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.5</td>
<td>Knowledge Building: Monitoring Ligand Flexibility in the Free-State</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>and Changes Upon Binding – P3 Rigidification</td>
<td></td>
</tr>
<tr>
<td>1.4.6</td>
<td>N-Terminal Truncation and Improved P1, P2 and P5 Substituents</td>
<td>22</td>
</tr>
<tr>
<td>1.4.7</td>
<td>Macrocyclization: Linking the Flexible P1 Side-Chain to P3</td>
<td>25</td>
</tr>
<tr>
<td>1.4.8</td>
<td>HCV Protease Inhibitor BI00201335</td>
<td>29</td>
</tr>
<tr>
<td>1.5</td>
<td>Herpes Simplex Virus</td>
<td>32</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Herpes Simplex Virus-Encoded Ribonucleotide Reductase Inhibitors</td>
<td>32</td>
</tr>
<tr>
<td>1.6</td>
<td>Renin</td>
<td>38</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Aspartyl Protease Renin as a Target</td>
<td>38</td>
</tr>
<tr>
<td>1.7</td>
<td>HIV</td>
<td>45</td>
</tr>
<tr>
<td>1.7.1</td>
<td>HIV Protease Inhibitors</td>
<td>45</td>
</tr>
<tr>
<td>1.8</td>
<td>Conclusions</td>
<td>47</td>
</tr>
</tbody>
</table>

2 Marketing Antimicrobial Peptides: A Critical Academic Point of View 57

Eduard Bardají

2.1 Introduction 57

2.2 Basic Research: Antimicrobial Peptides 58

2.3 Patents 61

2.4 Potential Applications of AMPs 63

2.5 Technology Transfer: Valorization, Licensing, or Spin-Off Creation 64

2.6 Spin-Off Creation: An Academic Point of View 66

3 Oral Peptide Drug Delivery: Strategies to Overcome Challenges 71

Hamman, Josias H. and Steenekamp, Jan H.

3.1 Introduction 71

3.2 Challenges Associated with Oral Peptide Delivery 72

3.2.1 Transport Pathways Across the Intestinal Epithelium 72

3.2.2 Unfavorable Physicochemical Properties of Peptide Drugs 73

3.2.2.1 Molecular Size, Hydrophilicity, and Physical Stability 73

3.2.3 Physical Barriers of the Gastrointestinal Tract 73

3.2.3.1 Transcellular Pathway 73

3.2.3.2 Paracellular Pathway 75

3.2.4 Biochemical Barriers of the Gastrointestinal Tract 75

3.2.4.1 Luminal Enzymes 76

3.2.4.2 Brush Border Membrane Bound Enzymes and Intracellular Enzymes 76

3.2.5 Efflux Transport Systems 76

3.2.6 Gastrointestinal Transit Time and Site-Specific Absorption 77
3.3 Strategies to Overcome the Barriers of the Gastrointestinal Tract
3.3.1 Absorption Enhancing Agents
3.3.2 Chemical and Physical Modifications
3.3.3 Targeting Strategies
3.3.3.1 Targeting Specific Regions of the Gastrointestinal Tract
3.3.3.2 Targeting Receptors and Transporters
3.3.4 Formulation Strategies
3.3.4.1 Particulate Carrier Systems
3.3.4.2 Enzyme Inhibition
3.3.4.3 Mucoadhesive Systems
3.4 Conclusions

4 Rational Design of Amphipathic α-Helical and Cyclic β-Sheet Antimicrobial Peptides: Specificity and Therapeutic Potential
Wendy J. Hartsock and Robert S. Hodges
4.1 Introduction to Antimicrobial Peptides
4.2 Antimicrobial and Hemolytic Activities of Amphipathic α-Helical Antimicrobial Peptides: Mechanisms and Selectivity
4.3 Structure–Activity Relationship Studies of Amphipathic α-Helical and Cyclic β-Sheet Antimicrobial Peptides: Optimization of Pathogen Selectivity and Prevention of Host Toxicity
4.4 Commercialization of Antimicrobial Peptides
4.5 Therapeutic Potential

5 Conotoxin-Based Leads in Drug Design
Muharrem Akcan and David J. Craik
5.1 Introduction
5.1.1 Cone Snails
5.1.2 Conotoxin Discovery and Characterization (MS, cDNA, Peptide Sequencing)
5.1.3 Conotoxin Classification and Targets
5.1.4 Posttranslational Modifications (PTMs)
5.1.5 Prospects for Drug Discovery
5.2 Conotoxin Synthesis, Folding, and Structure
5.2.1 Synthesis
5.2.2 Folding
5.2.3 Structure by NMR and X-Ray
5.3 Conotoxins as Drug Leads
5.3.1 Overview of Conotoxins in Drug Design
5.3.2 ω-Conotoxins (MVIIA, CVID)
5.3.3 α-Conotoxins (Vc1.1)
5.3.4 γ-Conotoxins (Mr1A) 130
5.3.5 Re-engineered Conotoxins in Drug Design 131
5.4 Conclusions 133

6 Plant Antimicrobial Peptides: From Basic Structures to Applied Research 139
Suzana M. Ribeiro, Simoni C. Dias, and Octavio L. Franco
6.1 Introduction 139
6.2 The Diversity of Plant Antimicrobial Peptides: Focusing on Tissue Localization and Plant Species Distribution 139
6.3 Possible Structural Folds Found in Plant AMPs to Date 140
6.4 New Biotechnological Products Produced from Plant Peptides 144

Part II Peptide Drugs’ Translational Tales – Peptide Drugs Before, Through and After Industry Pipelines 157

7 Omiganan Pentahydrochloride: A Novel, Broad-Spectrum Antimicrobial Peptide for Topical Use 159
Evelina Rubinchik and Dominique Dugourd
7.1 Omiganan: A Novel Anti-Infective Agent for Topical Indications 159
7.2 Structure and Mechanism of Action 160
7.3 Spectrum of Activity 163
7.4 Preclinical Efficacy Studies 163
7.5 Preclinical Toxicology Studies 164
7.6 Clinical Studies 165
7.7 Conclusions 167

8 Turning Endogenous Peptides into New Analgesics: The Example of Kyotorphin Derivatives 171
Marta M.B. Ribeiro, Isa D. Serrano, and Sônia Sá Santos
8.1 Introduction 171
8.2 Peptides as Future Drug Candidates 171
8.3 Central Nervous System Analgesic Peptides 172
8.4 Endogenous Opioid System 173
8.5 Strategies to Deliver Analgesic Peptides to the Brain 174
8.6 Development of New Opioid-Derived Peptides 175
8.7 Kyotorphin – the Potential of an Endogenous Dipeptide 177
8.8 New KTP Derivatives 178
8.9 Assessing BBB Permeability with Peptide – Membrane Partition Studies 179
8.10 Kyotorphins: Partition to the Membrane and Enhanced Analgesic Activity 179
8.11 Academia and Pharmaceutical Industry: Friends or Foes? 183

9 The Development of Romiplostim – a Therapeutic Peptibody Used to Stimulate Platelet Production 189
Graham Molineux and Ping Wei
9.1 Introduction 189
9.2 Thrombopoietin and c-Mpl 189
9.3 Discovery and Optimization of Romiplostim 192
9.4 Pharmacodynamics (PD) and Pharmacokinetics (PK) of Romiplostim 194
9.5 A Brief ITP Primer 199
9.5.1 Diagnosis and Treatment 199
9.5.2 Thrombopoietin and ITP 200
9.6 Romiplostim Clinical Data 201
9.7 Safety and Other Insights Gained from Romiplostim Design and Development 203

10 HIV vs. HIV: Turning HIV-Derived Peptides into Drugs 209
Henri G. Franquelim, Pedro M. Matos, and A. Salomé Veiga
10.1 Introduction 209
10.2 HIV-1 Envelope Protein 209
10.3 HIV Entry and Its Inhibition 210
10.4 HIV-1 Fusion Inhibitors: from Bench to Clinical Administration 211
10.5 New Strategies for Creating New HIV Fusion Inhibitor Peptides 215
10.5.1 Increasing Helicity and Binding to gp41 216
10.5.2 Isomeric Peptides and Resistance to Proteolysis 219
10.5.3 Bacterially Expressed Peptides 220
10.5.4 Modification of Peptides by Derivatization with Lipids or Proteins 220
10.6 Drug-Resistance and Combination Therapy 222
10.7 Concluding Remarks 223

11 Sifuvirtide, A Novel HIV-1 Fusion Inhibitor 231
Xiaobin Zhang, Hao Wu, and Fengshan Wang
11.1 Ideal Drug Target HIV-1 gp41 231
11.2 Structure-Based Drug Design of Sifuvirtide 232
11.3 High Potency of Sifuvirtide 234
11.4 Limited Drug Resistance 235
11.5 Enhancement of the Efficiency of Sifuvirtide by Biomembrane Selectivity 236
11.6 Pharmacokinetics of Sifuvirtide with Long Half-Life 237
11.7 Stratification of Monotherapy 238
11.8 20 mg Sifuvirtide Once Daily vs. 100 mg T20 Twice Daily 239
11.9 Conclusions and Discussion 240

Part III Whither Peptide Drugs? Peptides Shaping the Future of Drug Development 245

12 Endogenous Peptides and Their Receptors as Drug Discovery Targets for the Treatment of Metabolic Disease 247
Mary Ann Pelleymounter, Yuren Wang, and Ning Lee
12.1 Centrally Secreted Neuropeptide Systems 248
12.1.1 Corticotropin Releasing Factor (CRF) Peptides 248
12.1.2 Melanin Concentrating Hormone (MCH) 249
12.1.3 Melanocortins 250
12.1.4 Neuropeptide Y (NPY) 252
12.1.5 Neuromedin U (NMU) and Neuromedin S (NMS) 254
12.1.6 Opioids 255
12.1.7 QRFP 256
12.2 Peripherally Secreted Neuropeptides 256
12.2.1 Amylin 256
12.2.2 Bombesin-Like Peptides (Bombesin and Gastrin-Releasing Peptide) 257
12.2.3 Cholecystokinin (CCK) 258
12.2.4 Ghrelin 259
12.2.5 Glucagon-like Peptide-1 260
12.2.6 Leptin 261
12.2.7 Oxyntomodulin (OXM) 262
12.2.8 PYY3-36 and PP 262
12.3 Summary 263

13 Translation of Motilin and Ghrelin Receptor Agonists into Drugs for Gastrointestinal Disorders 269
Gareth J. Sanger, John Broad, and David H. Alpers
13.1 Introduction 269
13.1.1 Similarities and Differences Between Motilin and Ghrelin 269
13.1.2 Clinical Potential of Motilin and Ghrelin Receptor Agonists 270
13.2 Motilin and Ghrelin Receptor Agonists Under Development 271
13.3 Translational Value of Preclinical Assays 275
13.3.1 Motilin 271
13.3.1.1 Assays Relevant to the Therapeutic Mechanism of Action 271
13.3.1.2 Assays Relevant to Possible Non-GI Activity 275
13.3.2 Ghrelin 276
13.3.2.1 Assays Relevant to the Therapeutic Mechanism of Action 276
13.3.2.2 Assays Relevant to Non-GI Activity 276

13.4 Clinical Translation: Selecting the “Right” Patient Population 277

13.4.1 Critically Ill Patients with Delayed Gastric Emptying 279
13.4.2 Patients with Gastroparesis 279
13.4.2.1 Diabetic Gastroparesis 281
13.4.2.2 Parkinson’s Disease 281
13.4.2.3 Cyclic Nausea and Vomiting 282
13.4.2.4 Migraine 282
13.4.2.5 Functional Dyspepsia (FD) 282
13.4.2.6 Gastroesophageal Reflux Disease (GERD) 283
13.4.2.7 Anorexia and Decreased Appetite (Ghrelin Agonists Only) 284

13.5 Clinical Development of Motilin and Ghrelin Receptor Agonists 284

13.6 Conclusions 285

14 Of Mice and Men: Translational Research on Amylin Agonism 295

Jonathan D. Roth, Christine M. Mack, James L. Trevaskis, and David G. Parkes

14.1 Overview of Amylin Physiology 295
14.2 Pramlintide: An Amylin Agonist 296
14.3 Amylin Agonism: Translational Research in Insulin-Dependent Diabetes 297
14.3.1 Post-Prandial Hyperglucagonemia and Diabetes 297
14.3.2 Amylin Agonism and Glucagon: Preclinical and Clinical Studies 297
14.3.3 Gastric Emptying and Diabetes 298
14.3.4 Amylin Agonism and Gastric Emptying: Preclinical and Clinical Studies 298
14.4 Amylin Agonism: Translational Research in Obesity 299
14.4.1 Food Intake and Body Weight: Role of Endogenous Amylin 299
14.4.2 Food Intake and Body Weight: Pre-clinical Studies 300
14.4.3 Food Intake and Body Weight: Clinical Studies 302
14.4.4 Combination Studies 304
14.4.5 Amylin Agonism and Small Molecule Agents 304
14.4.6 Combined Amylin and Leptin Agonism 305
14.4.7 Future Areas for Amylin Agonism-Based Translational Research 307

15 Peptides and Polypeptides as Immunomodulators and Their Consequential Therapeutic Effect in Multiple Sclerosis and Other Autoimmune Diseases 313

Ruth Arnon, Michael Sela, and Rina Aharoni

15.1 Introduction 313
15.2 Peptides as Antigens and Vaccines 314
15.3 Peptides as Immunomodulators 315
15.4 Development of Copolymer 1 – a Polypeptide Immunomodulator Drug for the Treatment of Multiple Sclerosis 316
15.4.1 Clinical Studies with Cop 1 in MS Patients 317
15.4.2 Immunological Mechanisms Involved in the Mitigation of Disease by Cop 1 318
15.4.3 Immunomodulation by Cop 1 in the CNS 320
15.4.4 Neuroprotection and Augmentation of Neurotropic Factors in the Brain 321
15.4.5 Myelin Repair and Neurogenesis 323
15.4.6 The Effect of Cop 1 on Another Autoimmune Disease – Inflammatory Bowel Disease 326
15.5 Additional Immunomodulatory Peptides as Drug Candidates 327
15.5.1 Peptide Therapy for Type 1 Diabetes 327
15.5.2 Myasthenia Gravis (MG) 328
15.5.3 A Novel Tolerogenic Peptide for the Specific Treatment of Systemic Lupus Erythematosus 328
15.6 Summary and Concluding Remarks 329

16 Development of Antibody Fragments for Therapeutic Applications 337

Sofia Côrte-Real, Frederico Aires da Silva, and João Gonçalves

16.1 Antibodies 337
16.1.1 Antibody Structure 338
16.1.2 Antibody Fragments 341
16.1.3 Single-Domain Antibodies 343
16.1.4 Engineering Multivalent, Bispecific, and Bifunctional Fragments 345
16.1.5 Intracellular Antibodies (Intrabodies) 347
16.1.5.1 Immunogenicity of Engineered Antibodies 348
16.1.5.2 Engineering New Protein Scaffolds 349
16.2 Conclusions 350

Index 357