Contents

Preface XIII

1 General Introduction 1

- 1.1 Fundamental Knowledge Required for Successful Dispersion of Powders into Liquids *1*
- 1.1.1 Wetting of Powder into Liquid 1
- 1.1.2 Breaking of Aggregates and Agglomerates into Individual Units 8

٧

- 1.1.3 Wet Milling or Comminution 8
- 1.1.4 Stabilization of the Resulting Dispersion 9
- 1.1.5 Prevention of Ostwald Ripening (Crystal Growth) 9
- 1.1.6 Prevention of Sedimentation and Formation of Compact Sediments (Clays) 10
- 1.2 Particle Dimensions in Suspensions 11
- 1.3 Concentration Range of Suspensions 11
- 1.4 Outline of the Book 12 References 16
 - References 16
- 2 Fundamentals of Wetting and Spreading 17
- 2.1 Introduction 17
- 2.2 The Concept of the Contact Angle 18
- 2.2.1 The Contact Angle 19
- 2.2.2 Wetting Line-Three-Phase Line (Solid/Liquid/Vapor) 19
- 2.2.3 Thermodynamic Treatment-Young's Equation 19
- 2.3 Adhesion Tension 20
- 2.4 Work of Adhesion W_a 22
- 2.5 Work of Cohesion 22
- 2.6 Calculation of Surface Tension and Contact Angle 23
- 2.6.1 Good and Girifalco Approach 24
- 2.6.2 Fowkes Treatment 25
- 2.7 The Spreading of Liquids on Surfaces 25
- 2.7.1 The Spreading Coefficient *S* 25
- 2.8 Contact Angle Hysteresis 26

Contents

2.8.1 2.8.2	Reasons for Hysteresis28Wenzel's Equation28References29
3	The Critical Surface Tension of Wetting and the Role of Surfactants in Powder Wetting 31
3.1	The Critical Surface Tension of Wetting 31
3.2	Theoretical Basis of the Critical Surface Tension 32
3.3	Effect of Surfactant Adsorption 33
3.4	Dynamic Processes of Adsorption and Wetting 34
3.4.1	General Theory of Adsorption Kinetics 34
3.4.2	Adsorption Kinetics from Micellar Solutions 36
3.4.3	Experimental Techniques for Studying Adsorption Kinetics 37
3.4.3.1	The Drop Volume Technique 38
3.4.3.2	Maximum Bubble Pressure Technique 39
3.5	Wetting of Powders by Liquids 42
3.5.1	Rate of Penetration of Liquids: The Rideal–Washburn Equation 43
3.5.2	Measurement of Contact Angles of Liquids and Surfactant Solutions
	on Powders 44
3.5.3	Assessment of Wettability of Powders 45
3.5.3.1	Sinking Time, Submersion, or Immersion Test 45
3.5.3.2	List of Wetting Agents for Hydrophobic Solids in Water 45
	References 46
4	Structure of the Solid–Liquid Interface and Electrostatic
11	Stabilization 49
4.1	Origin of Chargo on Surfaces 49
4.1.1	Surface long 49
4.1.1.1	Isomorphic Substitution 50
4.1.1.2	Structure of the Electrical Double Laver 51
4.2.1	Diffuse Double Laver (Couv and Chapman) 51
422	Stern–Grahame Model of the Double Laver 52
4 3	Distinction between Specific and Nonspecific Adsorbed Ions 52
4.4	Electrical Double-Laver Repulsion 53
4.5	van der Waals Attraction 54
4.6	Total Energy of Interaction 57
4.6.1	Deryaguin–Landau–Verwey–Overbeek Theory 57
4.7	Flocculation of Suspensions 59
4.8	Criteria for Stabilization of Dispersions with Double-Layer
	Interaction 62
	References 62

- 5 Electrokinetic Phenomena and Zeta Potential 63
- 5.1 Stern–Grahame Model of the Double Layer 67

VI

Contents VII

- 5.2 Calculation of Zeta Potential from Particle Mobility 68
- 5.2.1 von Smoluchowski (Classical) Treatment 68
- 5.2.2 The Huckel Equation 71
- Henry's Treatment 72 5.2.3
- 5.3 Measurement of Electrophoretic Mobility and Zeta Potential 73
- 5.3.1 Ultramicroscopic Technique (Microelectrophoresis) 73
- 5.3.2 Laser Velocimetry Technique 76
- Electroacoustic Methods 78 5.4 References 83
- General Classification of Dispersing Agents and Adsorption of 6 Surfactants at the Solid/Liquid Interface 85
- 6.1 Classification of Dispersing Agents 85
- 6.1.1 Surfactants 85
- Anionic Surfactants 85 6.1.2
- Cationic Surfactants 86 6.1.3
- Amphoteric (Zwitterionic) Surfactants 86 6.1.4
- 6.1.5 Nonionic Surfactants 87
- Alcohol Ethoxylates 87 6.1.6
- Alkyl Phenol Ethoxylates 88 6.1.7
- Fatty Acid Ethoxylates 88 6.1.8
- Sorbitan Esters and Their Ethoxylated Derivatives (Spans and 6.1.9 Tweens) 89
- Ethoxylated Fats and Oils 90 6.1.10
- Amine Ethoxylates 90 6.1.11
- Polymeric Surfactants 90 6.1.12
- 6.1.13 Polyelectrolytes 93
- 6.1.14 Adsorption of Surfactants at the Solid–Liquid Interface 93
- Adsorption of Ionic Surfactants on Hydrophobic Surfaces 94 6.1.15
- Adsorption of Ionic Surfactants on Polar Surfaces 97 6.1.16
- Adsorption of Nonionic Surfactants 6.1.17 98
- Theoretical Treatment of Surfactant Adsorption 101 6.1.18
- 6.1.19 Examples of Typical Adsorption Isotherms of Model Nonionic Surfactants on Hydrophobic Solids 103 References 105
- Adsorption and Conformation of Polymeric Surfactants at the Solid-7 Liquid Interface 107
- Theories of Polymer Adsorption 110 7.1
- Experimental Techniques for Studying Polymeric Surfactant 7.2 Adsorption 117
- 7.3 Measurement of the Adsorption Isotherm 118
- 7.4 Measurement of the Fraction of Segments p 118
- 7.5 Determination of the Segment Density Distribution $\rho(z)$ and Adsorbed Layer Thickness δ_h 119

VIII Contents

7.6	Examples of the Adsorption Isotherms of Nonionic Polymeric Surfactants 122
7.7	Adsorbed Layer Thickness Results 126
7.8	Kinetics of Polymer Adsorption 128
	References 129
8	Stabilization and Destabilization of Suspensions Using Polymeric Surfactants and the Theory of Steric Stabilization 131
8.1	Introduction 131
8.2	Interaction between Particles Containing Adsorbed Polymeric Surfactant Layers (Steric Stabilization) 131
8.2.1	Mixing Interaction G_{mix} 132
8.2.2	Elastic Interaction G_{el} 134
8.2.3	Total Energy of Interaction 135
8.2.4	Criteria for Effective Steric Stabilization 135
8.3	Flocculation of Sterically Stabilized Dispersions 136
8.3.1	Weak Flocculation 136
8.3.2	Incipient Flocculation 137
8.3.3	Depletion Flocculation 138
8.4	Bridging Flocculation by Polymers and Polyelectrolytes 138
8.5	Examples for Suspension Stabilization Using Polymeric
	Surfactants 142
8.6	Polymeric Surfactants for Stabilization of Preformed Latex
	Dispersions 146
	References 148
9	Properties of Concentrated Suspensions 151
9.1	Interparticle Interactions and Their Combination 151
9.1.1	Hard-Sphere Interaction 151
9.1.2	"Soft" or Electrostatic Interaction: Figure 9.1b 152
9.1.3	Steric Interaction: Figure 9.1c 153
9.1.4	van der Waals Attraction: Figure 9.1d 156
9.1.5	Combination of Interaction Forces 157
9.2	Definition of "Dilute," "Concentrated," and "Solid"
	Suspensions 160
9.3	States of Suspension on Standing 164
	References 169
10	Sedimentation of Suspensions and Prevention of Formation of
	Dilatant Sediments 171
10.1	Sedimentation Rate of Suspensions 172
10.2	Prevention of Sedimentation and Formation of Dilatant
	Sediments 178
10.2.1	Balance of the Density of the Disperse Phase and
	Medium 178

- 10.2.2 Reduction of the Particle Size 178
- 10.2.3 Use of High Molecular Weight Thickeners 178
- 10.2.4 Use of "Inert" Fine Particles 179
- 10.2.5 Use of Mixtures of Polymers and Finely Divided Particulate Solids 182
- 10.2.6 Controlled Flocculation ("Self-Structured" Systems) 183
- 10.2.7 Depletion Flocculation 186
- 10.2.8 Use of Liquid Crystalline Phases 190 References 192
- 11 Characterization of Suspensions and Assessment of Their Stability 193
- 11.1 Introduction 193
- 11.2 Assessment of the Structure of the Solid/Liquid Interface 194
- 11.2.1 Double-Layer Investigation 194
- 11.2.1.1 Analytical Determination of Surface Charge 194
- 11.2.1.2 Electrokinetic and Zeta Potential Measurements 195
- 11.2.2 Measurement of Surfactant and Polymer Adsorption 196
- 11.3 Assessment of Sedimentation of Suspensions 199
- 11.4 Assessment of Flocculation and Ostwald Ripening (Crystal Growth) 201
- 11.4.1 Optical Microscopy 201
- 11.4.1.1 Sample Preparation for Optical Microscopy 203
- 11.4.1.2 Particle Size Measurements Using Optical Microscopy 203
- 11.4.2 Electron Microscopy 204
- 11.4.2.1 Transmission Electron Microscopy (TEM) 204
- 11.4.2.2 Scanning Electron Microscopy (SEM) 204
- 11.4.3 Confocal Laser Scanning Microscopy (CLSM) 205
- 11.4.4 Scanning Probe Microscopy (SPM) 205
- 11.4.5 Scanning Tunneling Microscopy (STM) 206
- 11.4.6 Atomic Force Microscopy (AFM) 206
- 11.5 Scattering Techniques 206
- 11.5.1 Light Scattering Techniques 207
- 11.5.1.1 Time-Average Light Scattering 207
- 11.5.2 Turbidity Measurements 208
- 11.5.3 Light Diffraction Techniques 208
- 11.5.4 Dynamic Light Scattering–Photon Correlation Spectroscopy (PCS) 211
- 11.5.5 Backscattering Techniques 214
- 11.6 Measurement of Rate of Flocculation 214
- 11.7 Measurement of Incipient Flocculation 215
- 11.8 Measurement of Crystal Growth (Ostwald Ripening) 216
- Bulk Properties of Suspensions: Equilibrium Sediment Volume (or Height) and Redispersion 216References 217

Contents

12	Rheological Techniques for Assessment of Stability of Suspensions 219
12.1	Introduction 219
12.1.1	Steady-State Shear Stress σ -Shear Rate γ Measurements 219
12.1.2	Constant Stress (Creep) Measurements 219
12.1.3	Dynamic (Oscillatory) Measurements 220
12.2	Steady-State Measurements 220
12.2.1	Rheological Models for Analysis of Flow Curves 220
12.2.1.1	Newtonian Systems 220
12.2.1.2	Bingham Plastic Systems 221
12.2.1.3	Pseudoplastic (Shear Thinning) System 221
12.2.1.4	Dilatant (Shear Thickening) System 222
12.2.1.5	Herschel–Bulkley General Model 222
12.2.2	The Casson Model 222
12.2.3	The Cross Equation 222
12.2.4	Time Effects during Flow Thixotropy and Negative (or anti-)
	Thixotropy 223
12.3	Constant Stress (Creep) Measurements 225
12.3.1	Analysis of Creep Curves 226
12.3.1.1	Viscous Fluid 226
12.3.1.2	Elastic Solid 226
12.3.2	Viscoelastic Response 226
12.3.2.1	Viscoelastic Liquid 226
12.3.2.2	Viscoelastic Solid 227
12.3.3	Creep Procedure 228
12.4	Dynamic (Oscillatory) Measurements 229
12.4.1	Analysis of Oscillatory Response for a Viscoelastic
	System 229
12.4.2	Vector Analysis of the Complex Modulus 230
12.4.3	Dynamic Viscosity η' 230
12.4.4	Note that $\eta \to \eta(0)$ as $\omega \to 0$ 230
12.4.5	Strain Sweep 231
12.4.6	Oscillatory Sweep 232
12.4.7	The Cohesive Energy Density E_c 232
12.4.8	Application of Rheological Techniques for the Assessment and
	Prediction of the Physical Stability of Suspensions 233
12.4.8.1	Rheological Techniques for Prediction of Sedimentation and
	Syneresis 233
12.4.8.2	Role of Thickeners 235
12.4.9	Assessment and Prediction of Flocculation Using Rheological
	Techniques 235
12.4.9.1	Strain Sweep Measurements 238
12.4.9.2	Oscillatory Sweep Measurements 239
12.4.10	Examples of Application of Rheology for Assessment and Prediction
	of Flocculation 240

x

Contents XI

- 12.4.10.1 Flocculation and Restabilization of Clays Using Cationic Surfactants 240
- 12.4.10.2 Flocculation of Sterically Stabilized Dispersions 240 References 241

13 **Rheology of Concentrated Suspensions** 243

- 13.1 Introduction 243
- 13.1.1 The Einstein Equation 244
- The Batchelor Equation 244 13.1.2
- Rheology of Concentrated Suspensions 13.1.3 244
- Rheology of Hard-Sphere Suspensions 13.1.3.1 245
- Rheology of Systems with "Soft" or Electrostatic Interaction 246 13.1.3.2
- Rheology of Sterically Stabilized Dispersions 248 13.1.3.3
- 13.1.3.4 Rheology of Flocculated Suspensions 250
- 13.1.4 Analysis of the Flow Curve 258
- Impulse Theory: Goodeve and Gillespie 258 13.1.4.1
- Elastic Floc Model: Hunter and Coworkers 259 13.1.4.2
- 13.1.5 Fractal Concept for Flocculation 259
- Examples of Strongly Flocculated (Coagulated) Suspension 261 13.1.6
- 13.1.6.1 Coagulation of Electrostatically Stabilized Suspensions by Addition of Electrolyte 261
- 13.1.7 Strongly Flocculated Sterically Stabilized Systems 263
- 13.1.7.1 Influence of the Addition of Electrolyte 263
- Influence of Increase of Temperature 266 13.1.7.2
- Models for Interpretation of Rheological Results 13.1.8 267
- Dublet Floc Structure Model 267 13.1.8.1
- 13.1.8.2 Elastic Floc Model 268
 - References 270

Index 271