Subject Index

Numbers in front of the page numbers refer to Volume 1 and 2: e.g., 2: 282 refers to page 282 in volume 2

a
A. niger CBX-209, levoglucosan fermentation 1: 229
A. rhizogenes 2: 275
absorption, acoustic 2: 242
acetaldehyde, glucose product family 1: 21
acetic acid, glucose product family 1: 21
Acetobacterium woodii 1: 235
acetogenic bacteria, metabolic pathways 1: 234
acetogens 1: 233
acetoin, biomass building blocks 1: 22
acetone, glucose product family 1: 21
acetyl-CoA 1: 233, 236
acetylated starches 2: 80
acid addition, lactic acid 2: 386
acid-catalyzed dehyration 1: 91
acid-catalyzed hydrolysis, cellulose 1: 133
acid-catalyzed stages, biofine process 1: 144
acid conversion, cellulose 1: 129
acid cooking, straw 1: 193
acid-forming anaerobes 1: 235
acid hydrolysis, carbohydrate polysaccharides 1: 144
acid hydrolysis of polysaccharides 1: 140
acid hydrolysis process 1: 130–133, 199
acid-insoluble ligneous components, feedstock 1: 146
acid prehydrolysis 1: 200
acidification, lactic acid 2: 386
acidogenic anaerobes 1: 235
acids
– dilute 1: 362
– sugar-derived 2: 5
aconitic acid, glucose product family 1: 21
acoustic absorption, elastic protein-based polymer 2: 242
acrylic acid, glucose product family 1: 21
acyclic sugar derivatives 2: 48
acyl glutamate, synthesis 2: 305
acylated proteins 2: 304
addition
– cationic 2: 264–265
– copper-initiated 2: 262–263
– perfluoroalkyl iodides 2: 263–264
additive chemicals 1: 91
additive replacement, ethanol 1: 357
adhesions prevention, post-surgical 2: 238
adhesive films 1: 282
adhesive tack 2: 186
adhesives 2: 86
advanced materials, protein-based polymeric materials 2: 220
aerobic storage, potato juice 1: 300, 309
agarose gel gene ladder 2: 229
age of sustainability, modeling tools 1: 57–60
agribusiness, integrated production 1: 8
agricultural applications, lignin 2: 192
agricultural crop residues 1: 117
agricultural ecosystem modeling 1: 57–60
agricultural land, net requirement 1: 54–55
agricultural varieties, oil qualities 2: 276
agricultural waste 1: 68
agriculture residue collection 1: 317–344
agrification 1: 96
Agrobacterium tumefaciens 2: 275
agroindustry, sugar 1: 209–211
agroscope, dutch 1: 96
air-blown gasification 1: 232
air classification 1: 176
– oat grain 1: 183
Alcaligenes eutrophus, PHB accumulation 2: 424
alcell demonstration plant 2: 180
alcell process 2: 179
alcohol commodities, sugar-based 2: 36–37
Subject Index

464

alcohols
 – microbial conversion 2: 32–34
 – microbial fermentation 2: 33
 – production 1: 235–236
 – sugar-based 2: 42
 – sugar-derived 2: 5
alfalfa 1: 254
 – chlorophyll extraction 2: 329
 – cultivation 1: 260
Alfalfa New Products Initiative see ANPI
alfaprox procedure 1: 257
algal fungi, chitin occurrence 2: 415
aliphatic diols, high molecular weight 2: 298
alkali pretreatments 1: 200
alkaloids 1: 268
 – thermal addition 2: 264
alkyl polyglycoside carboxylate 2: 307
alkyl polyglycosides 2: 272, 305
 – emulsifiers 2: 308
 – manufacturing processes 2: 306
 – synthesis 2: 306
 – see also APG
allylic C–H Bonds, oxidation 2: 269–270
alternative life, GJ Drinks 1: 275–277
American Society for the Testing of Materials see ASTM
American straw, chemical composition 2: 107
amino acid-based product family trees 2: 201–216
amino acid composition, lucerne 1: 275
amino acid production, microbial 2: 201–216
amino acid residues, hydrophobicity scale 2: 234–235
amino acid units, proteins 1: 122
amino acids 1: 267, 2: 304
 – analysis 1: 299
 – brown juice content 1: 305
 – fermentation 2: 203
 – markets 2: 207
δ-aminolevulinic acid see DALA
ammonia fiber explosion, pretreatment 1: 362
ammonium lactate 2: 387
amphiphilic drugs, controlled release devices 2: 240
amylases 1: 197
amylopectin
 – physical structure 1: 140
 – starch synthesis 2: 71
amylose
 – physical structure 1: 140
 – starch synthesis 2: 71
anaerobe bacteria, lactic acid fermentation 1: 298
anaerobes, acidogenic 1: 235
anaerobic fermentations, succinic acid 2: 35
anaerobic production, succinic acid 2: 369
anaerobic storage, potato juice 1: 300, 310
analytical assays, antioxidant activities 1: 186
analytical methods, lactic acid fermentation 1: 299
1,6-anhydro-β-D-glucose, chemical structure 1: 245
β-anhydroglucopyranose units 1: 140
anhydrosugar 1: 229, 243, 245
animal bedding, stover 1: 325
animal feed, nutrient-enriched 1: 170
animal feed supplements
 – antioxidants 2: 188
 – lignin 2: 196
animal health 2: 195–196
anions of fatty acids, oxidative coupling 2: 266
anodic coupling, fatty acids 2: 267–269
ANPI 1: 260
anthracenes 1: 118
antibiotic-resistant bacterial strains 2: 195
antibiotics 2: 15
antidiarrheic effects, dietary lignin 2: 195
antifeedants 1: 277
antifreeze protein 1: 269
antimutagenic effects, chlorophyll 2: 336
antioxidant activity, oat bran-rich fractions 1: 186
antioxidants 1: 186
 – animal feed supplements 2: 188
 – ferulic acid 1: 179
 – lignin 2: 187–189
 – lubricants industry 2: 188
 – rubber industry 2: 188
 – synthetic 2: 188
antisense RNA approach 2: 275
APG 2: 11–12, 272
 – synthesis 2: 13
apolar groups, exothermic hydration 2: 218
apolar–polar repulsive free energy of hydration 2: 218
apple-peel wax 2: 430–432
 – components 2: 434
– market launch 2: 436–437
– natural 2: 429–437
– production 2: 432–433
– skin protection 2: 434
aquatic biomass 1: 91
aquous media, proteins 2: 218
aquous phase hydrogenation 2: 375
arabinanes 2: 109
arabinose, reaction 1: 199
arabinoxylans 1: 178
Arachis hypogaea 2: 277
aromatic chemicals, sugar-based 2: 29
aromatic compounds 1: 118
– renewable raw materials 2: 259
– transition metal-catalyzed syntheses 2: 259
aromatic functionality, char 1: 156
Arthrobacter 1: 398
arthropods, chitin occurrence 2: 416
arylglucorol units 2: 156
ascorbic acid, D-sorbitol 2: 9
ash components, feedstock 1: 146
asparagine residues, biodegradable thermoplastics 2: 241
aspartic acid (ASP) 2: 34
– basic biobased chemicals 1: 22
Aspergillus 1: 181
Aspergillus 1: 202
Aspergillus itaconicus, IA 2: 36
Aspergillus oryzae 2: 20
– cellulase development 1: 366
– thermostabilization 1: 370
Aspergillus succinoproducens 2: 35
Aspergillus terreus, IA 2: 36
asphalt emulsifiers, lignin-based 2: 192–193
ASTM, tests 2: 232
austria-wide concept, biomass usage 1: 284
austrian-concept, biorefinery 1: 273
autoadhesive tack 2: 186
autotrophic acetogens, syngas fermentation 1: 233
autotrophic bacterium
AVGVP, biocompatibility 2: 232
axioms, phenomenological 2: 232–234
b
B-starch 2: 68
Bacillus megaterium 2: 424
bacteria, biodegradation 1: 363
bacteria cellulosome 1: 365
bacteria destruction, lignin 2: 196
bacteriochlorophylls 2: 326
bagasse 1: 91
– brazil production 1: 210
– energy source 1: 222
– world production 1: 51
bagasse storage, case study 1: 321
bale storage 1: 322
– corn stover 1: 320
bale transport, Iowa Corn Stover Collection Project 1: 319
baling 1: 333
– dry material 1: 332
BAS 1: 268
basic chemicals
– cellulose 1: 17
– glucose 1: 17
– starch 1: 17
basic principles, biotechnology 2: 349–351
basic substances, biorefinery 1: 18
batch fermentation, brown juice 1: 299–300
BBI 2: 322
14-BDO 2: 373, 375
beer streams 1: 134
benzene 1: 87
benzene derivatives 1: 118
– cyclotrimerization 2: 259
benzene–toluene–xylene see BTX
Bergius, F. 1: 5
Berzelius, J.J. 1: 5
Beta vulgaris 2: 410
betaine 2: 410–415
– chemical properties 2: 411
– chemical structure 2: 411
– usage 2: 412–414
betaine esters 2: 414–415
BG 1: 203, 364
BG Supplement 1: 366–367
binder, starch 2: 84
bio-alcohols, sugar conversion 2: 32
bio-based building blocks 2: 453
– emergence 2: 450
biobased consumer products, cosmetics 2: 409–442
biobased economy 2: 138
– 3-pillar model 1: 3
– existing 1: 43
– growth 1: 44–45
– historical outline 1: 42–45
Biobased Industrial Products, initiative group 1: 16
bio-based industry, transition 1: 93–96
bio-based materials 2: 354
biobased oleochemicals, industrial development 2: 291–314
biobased poly(lactic acid) 1: 296
biobased production, integrated 1: 8–12
biobased products
 – market opportunity 2: 353
 – markets 2: 348
biobased technology, current 2: 375–377
bio-cascade, biorefinery concepts 2: 355
biocatalysts 1: 68
 – development 1: 108
 – genetically engineered 2: 37
 – improvement, 3-HPA 2: 35
biocatalytic routes
 – chemicals production 1: 385–406
 – ethanol production 1: 390–393
biochemical refinery, secondary 1: 104–106
biochemicals 1: 13
bio-compatibility 2: 230–232
bioconversion
 – biomass processing 1: 98
 – fermentation 1: 104
 – starch 2: 89–91
bio-counterpart, petroleum-derived polymers 2: 41
biocrude 1: 98, 2: 351
biodegradability
 – general aspects 1: 213
 – intrinsic 2: 348
biodegradable films, gluten 1: 181
biodegradable lubricants, European potential market 2: 301
biodegradable packages 2: 422–423
biodegradable plastics 1: 182
 – sugar cane 1: 212–216
biodegradable polymer 1: 91
biodegradable thermoplastics, programmable 2: 241
biodegradation
 – definition 1: 213
 – white-rot fungi 2: 160
biodiesel 1: 116, 152
 – production 1: 126
bio-ethanol 2: 451–452
bio-fertilizer, grasses 1: 283
biofine char 1: 155–158
 – insoluble components 1: 146
biofine plants
 – byproducts 1: 145
 – costs 1: 159
biofine process 1: 139–164
 – advantages 1: 146
 – economics 1: 158–161
 – yields 1: 145–146
biofuel cells 1: 379
biofuels 1: 182
 – directive 1: 15
 – promotion 1: 94
biogas 1: 30, 377
biogenic amorphous silica see BAS
biological inhibitors, fast pyrolysis 1: 249
biological raw materials, product classes 1: 13
biomass
 – availability 1: 99–101
 – commercialization 1: 317–344
 – components 1: 22
 – composition 1: 16, 119, 359, 2: 108
 – compositional variety 1: 45
 – conversion 2: 151–163, 350, 455–456
 – definition 1: 12–14
 – depolymerization 1: 123
 – diversification 1: 54–55
 – hydrolysis 1: 129–138
 – hydrolyzate 1: 78
 – industrial 1: 13
 – industrial chemicals 2: 347–365
 – key sugars 2: 3–59
 – lignocellulose 2: 97
 – local 1: 56–57
 – multi-quality 1: 92
 – policy targets 1: 85
 – polysaccharide-containing 1: 105
 – pretreatment 1: 107, 361–363
 – recycling 1: 117
 – sustainability 1: 93–97, 106
 – technology 1: 14–16, 93–97
 – thermochemical processing 1: 249
biomass-based industrial products 1: 87
biomass-based products, estimated EU potential 1: 89
biomass carbon resources 1: 116
biomass chemistry, comparison with petroleum 1: 118–122
biomass content, classes 2: 4
biomass feedstocks 1: 45
 – costs 1: 48–50
 – required properties 1: 50
biomass flux, The Netherlands 1: 99
biomass fuels 1: 103
biomass gasifiers, types 1: 231
biomass industry, chemical production numbers 1: 284
biomass-nylon-process 1: 26
Biomass Research and Development Technical Advisory Committee 1: 135
biomass streams 1: 100
biomass substitution volume 1: 85
biomass suppliers 1: 118
Biomass Technical Advisory Committee see BTAC
biomass value 1: 324–328
biomaterials 1: 13
bionics 2: 410
bio-oil
– characteristics 1: 243
– fermentation 1: 229, 244
– yield 1: 241
Biopol 2: 44, 422–424
– biodegradability 2: 424
– future 2: 428–429
biopolymers, synthetic 2: 41
biopolymers 2: 40–47
– cellulose 2: 104
bioprocessing, consolidated 1: 56
bioproduct opportunities, industrial 1: 379
bioproduction
– highlights 2: 223
– mechanistic foundations 2: 217–251
– protein-based polymers 2: 223–227
bioproducts, classification 2: 356–357
bioreactor engineering 1: 108
biorefineries
– basic principles 1: 17
– bio-oil based 1: 229
– Brazil 1: 71
– building-block concept 2: 202–204
– cellulosic 1: 55–56
– chlorophyll disregard 2: 338
– conceptual schematic diagram 1: 239
– definition 1: 19–22, 116, 227, 358
– development 1: 67–83
– disadvantage 1: 46
– fuel-oriented 1: 193
– future integration 1: 380
– generations 1: 19–20
– green see green biorefinery
– integration 2: 201–216
– lignin 2: 177
– lignocelluloses 2: 110–115
– lignocellulosic 1: 115–128
– MAAP 2: 209
– near future production 1: 317
– oats based 1: 183–187
– phase III 1: 19
– plant juice 1: 295–314
– possible products 1: 45–47
– primary research areas 1: 101–103
– principles 1: 16
– raw material 1: 45–47, 253
– sugar-based 1: 209
– supply 1: 45–52
– technological development 1: 53–56
– wet mill-based 1: 28
– wheat based 1: 167–183
– whole-crop 1: 24, 26–29
biorefinery complex, cost estimates 1: 118–122
– definition 1: 166
– elements 1: 81
biorefinery context 2: 315–324
biorefinery evolution 1: 69
biorefinery I, sucrose-based 1: 68
biorefinery II, starch-based 1: 69
biorefinery III 1: 69
biorefinery lignin, substitution 2: 182
biorefinery model 1: 68
biorefinery process, integrated 1: 102
biorefinery products 1: 11
biorefinery research, current 1: 11
biorefinery supply, transport options 1: 338
biorefinery systems 1: 3–40, 23
– history 1: 4–16
– sustainability 1: 56–65, 60–65
– whole crop 1: 165–191
biorefinery technology developments, milling industries 1: 345–353
biorefinery two platforms concept 1: 24
biorefinery wastes 1: 56
biosyngas 1: 98
biosynthesis, poly(3-hydroxybutyric acid) 1: 224
biosynthesis genes, Escherichia coli 2: 44
t.bio-synthetics, car production 1: 9
biotech, industrial 2: 445–462
biotech adoption 2: 447
biotech development, pace 2: 447
biotech strategy 2: 457
biotechnological processes, typical problems 1: 388–389
biotechnology, predictions 2: 32
dibiphenyl units, lignin 2: 158
1,5-biphosphatocarboxylase/oxygenase 1: 255
bisphenol A see BPA
black liquors
– Kraft pulping 2: 170
– soda pulping 2: 171

blood plasma substitutes, starch 2: 89
blue starch 2: 62
Boehringer, A. 1: 7
bonding patterns 2: 156–159
Boudouard reaction, syngas production 1: 230
Bowman–Birk inhibitor see BBI
BPA 1: 148
Brabender viskograph 2: 75
Braconnot, H. 1: 5
bran, wheat milling 1: 170
Branched PLA, melt rheology 2: 397
branching, rheology control 2: 396
branching technology 2: 398
Brassica napus 2: 277
Brazil, agroindustry 1: 209–211
breeding material, fatty acid variants 2: 279
Brevibacterium 2: 35
British gums 2: 62
bromination, LA 1: 150
Brookfield viscometer 2: 75
brown juice (BJ) 1: 271, 274, 300–308
– average composition 1: 301–302
– batch fermentation 1: 299–300
– carbohydrate addition 1: 311
– composition of nutrients 1: 305
– fermentation medium 1: 298
– lactic acid fermentation 1: 305–306
– lactic acid source 1: 295
– quality variations 1: 302–305
– storage alternatives 1: 298
BTAC 1: 14
BTX 2: 29
building-block concept 2: 204
– biorefinery 2: 202
– metabolic engineering 2: 204, 206
building blocks 1: 22–23, 98
– biobased 2: 450, 453
– heterocyclic 2: 26
– protolignins 2: 152
– succinic acid 2: 367–379
– sugar derived chemicals 2: 34
building chemistry 2: 87
bulk chemicals 1: 386
– production routes 1: 385–406
Burkholderia spp., poly(3-hydroxybutyric acid)
biosynthesis 1: 224
business structure 1: 117–118
butadiene
– 1,4-BDO 2: 373
– glucose product family 1: 21
1,4-butanediol 1: 149
2,3-butanediol, glucose product family 1: 21
1,2,4-butanetriol 2: 37
n-butanol, glucose product family 1: 21
Butyribacterium methylotrophicum 1: 228
– representatives 1: 235
γ-butyrolactone see GBL
by-products
– animal feed 1: 100
– biorefinery 1: 23
– brown juice 1: 311
C
C1 compounds 1: 233
– syngas fermentation 1: 228
C3-carbon sugars, product categories 2: 358–360
C4-carbon sugars, product categories 2: 358
C–C coupling, radical 2: 266–269
C–C double bonds, oxidative cleavage 2: 258
C. glutamicum 2: 205, 210
– phosphorus supply 2: 211
C–H bonds, functionalization 2: 269–270
C. milleri 2: 212
C-nucleosides 2: 25
(C-x)-chemicals 1: 21
C2 anions, oxidative coupling 2: 266
C2 building-block chemical, ethanol 2: 132
C3–C5 carboxylic acids, microbial fermentation 2: 33
C3 plants
– protein yield 1: 253
– yield 1: 258
C4 plants
– protein yield 1: 253
– yield 1: 258
C7 plant acids, potential generation 2: 32
CAFI 1: 136
calcium lactate 1: 106
cancer chemopreventive agents 2: 322
cancer therapies, DALA 1: 150
Candida antarctica, lipase B 2: 256
Candida bombolica 2: 274
Candida tropicalis 2: 273
Candida tropicalis DSM 3152 2: 274
Candida tropicalis M 25 2: 274
capital costs, biorefinery 1: 240
carbohydrate-based product lines 2: 3–59
carbohydrate-based surfactants 2: 305
carbohydrate composition, lignocellulosic
feedstock 2: 109
carbohydrate content, changes 1: 266
carbohydrate esters, lipase-catalyzed syntheses 2: 272
carbohydrate homopolysaccharides 1: 139
carbohydrate polymers, cellulose 1: 55
carbohydrate polysaccharides, acid hydrolysis 1: 144
carbohydrate refining 1: 351
carbohydrate source, addition to brown juice 1: 311–312
carbohydrate stream, corn refinery 1: 349
carbohydrates 1: 89–90, 2: 108
– annually renewable 2: 6
– biorefinery 1: 18
– catalytic oxidation 1: 403–404
– chemical catalytic conversion 1: 402
– contained in biomass 2: 3
– heating 2: 24
– recycling 1: 116
– renewable 1: 43
carbon-14-labeled Escherichia coli, purification 2: 228–229
carbon-based plant material, yearly amount 1: 43
carbon dioxide
– glucose product family 1: 21
– recycling 1: 117
carbon dioxide sink, PLA 2: 402
– annual demand 2: 197
– porous 1: 283
– vehicle production 2: 196–197
carbon fiber
– carbon-water reaction, syngas production 1: 230
– carbonate polymerization 2: 398
– carboxylic acids 2: 34–36
– addition 2: 262
– chemical conversion 2: 37–40
– microbial conversion 2: 32–34
– sugar-based 2: 43
– carboxymethylation 2: 77
– cardboard, from press cake fibers 1: 282
– care additives, multifunctional 2: 309
– carotene 1: 257
– industrial production 1: 9
– carotenoids 2: 320
– Carothers, W. H. 1: 8
– carton production 2: 84
– case studies, sustainable production 2: 448
catabolism, chlorophyll 2: 330–331
catalysis technology 2: 349
catalysts
– bio-oil production 1: 244
– carbohydrate conversion 1: 403
– metal-based 1: 228, 233
catalytic decarbonylation, furan 2: 9
catalytic hydrogenation
– LA 1: 151
– sorbitol 2: 130
catalytic pulping, wood 2: 118
catalytic routes, chemicals production 1: 385–406
catalytic transformations 2: 270–272
– succinic acid 2: 372–375
catechol 2: 30
cationic addition, Lewis acid-induced 2: 264–265
cationic polymers, hair 2: 419
cationic surfactants 2: 412
– structure 2: 414
– CBH 1: 203, 364
– CBH-EG-BG System, optimization 1: 366–371
– CBH I 1: 76
– CBH I (Cel7A) variants, thermal activity 1: 368
– CBM, cellulase families 1: 364
– CC 1: 61
– cell contents 1: 265–269
– cell-immobilization 1: 392
– cell removal 2: 388
– cell wall, structural constituents 1: 260–265
– celllobiohydrolase see CBH
– celllobiohydrolase I see CBH I
– cellulase development 1: 366–375
– cellulase enzyme performance 1: 74
– improved 1: 76–77
– cellulase enzyme production 1: 194
– cellulase enzymes 1: 74, 2: 177–178
– costs 1: 72–73
– production 1: 201–202
– superior 1: 205
– thermal stability 1: 76
– cellulase expression inducers, disaccharide sophorose 1: 76
– cellulase mix, lignocellulosic conversion 1: 374
– cellulase production economics, improved 1: 74–77
cellulase production strain, enhancement 1: 374
cellulase saccharification, plant development 1: 134
cellulases
 – biodegradation 1: 364
 – commercial status 1: 202
 – expression 1: 374–375
 – improvements 1: 367
 – novel 1: 367–370
cellulolyteomics 1: 374
cellulolytic fungi
 – protein gels 1: 372
 – secretome 1: 371–373
cellulose 1: 6, 71–73, 90, 121
 – accessibility 1: 55
 – acetate 1: 243
 – acid conversion 1: 129
 – biosynthesis 1: 90
 – chemical composition 1: 359
 – chemical conversion to LA 1: 144
 – chemical structure 2: 418
 – conversion rates 1: 130
 – digestibility 1: 261
 – enzymatic hydrolysis 2: 115
 – fermentation 2: 177–179
 – glucan source 1: 139
 – high-vacuum pyrolysis 2: 23
 – history 2: 100
 – hydrolysis 1: 26, 194, 199, 202–205
 – isolation 2: 127
 – plant content 1: 261
 – cellulose-based biorefinery III 1: 69
 – cellulose-based product family tree, industrial 2: 129
 – cellulose-based product lines 2: 127
 – cellulose-binding modules see CBM
 – cellulose derivatives 2: 357
 – principal 1: 90
 – cellulose fiber, pretreatment 1: 72
 – cellulose-hydrolyzing enzymes 1: 17
 – cellulose saccharification 2: 99
 – cellulosic biomass 1: 68, 197
 – conversion to fuel 1: 52
 – ethanol production 1: 193
 – recalcitrance 1: 56
 – cellulosic biomass conversion 1: 71
 – cellulosic biorefineries, process development 1: 55–56
 – cellulosic feedstocks, hydrolysis 1: 140
 – cement 2: 87
 – CENTURY model 1: 60–65
 – cereal fractionation, advanced 1: 173
cereal fractionation plants, categories 1: 167
cereal fractionation processes see CFP
cereal grains, baling 1: 333
cereal waste, LCF biorefinery 2: 111
cereals 1: 26, 165–191
 – starch sources 2: 63
cetiol CC 2: 311
 – CFP 1: 166
 – chain length, cellulose 1: 195
 – char 1: 145
 – biofine process residual 1: 155
chemical composition, apple-peel wax 2: 433
chemical conversion, sugars 2: 37–40
chemical degradation, chlorophyll 2: 333
chemical digestion, intracellular poly(hydroxyalkanoates) 1: 218
chemical fractions, lignocellulose 1: 24
chemical industry 1: 97
 – biorefineries 1: 85–111
 – renewable raw materials 2: 253–289
chemical modification, naturally produced structures 2: 349
chemical pulping 2: 166
 – environmentally friendly 2: 179
 – LCF 2: 114
chemical sources, grasses 1: 282–283
chemical transformation steps, petrochemical industry 1: 88
chemicals 1: 22–23
 – basic 2: 5
 – biobased 1: 22
 – biomass compounds 1: 119
 – fossil sources 1: 120
 – from biomass 1: 108
 – from renewable resources 2: 367–379
 – glucomannan derived 2: 120
 – lignocellulose-based 2: 97–150
 – low-molecular-weight 2: 160
 – organic 1: 124
 – product family tree 2: 124–126, 132
 – production 1: 386
 – production routes 1: 385–406
 – special 1: 378
chemo-enzymatic epoxidation 2: 254
chemo-enzymatic self epoxidation, reaction principle 2: 256
chemoattractant, peptides 2: 238
chemopreventive agents, cancer 2: 322
chemurgy 1: 9
chil purity, lactic acid 2: 383
chitin 1: 182
 – chemical structure 2: 418
chitosan precursor 2: 415
– deacetylation 2: 417
– occurrence 2: 415–419
– purification 2: 416–417
chitosan 2: 415–422
– chemical structure 2: 418
– production 2: 417
chitosan derivatives 2: 421
chitosonium salts, water vapor sorption 2: 421
chlorophyll 2: 325–343
– biological catabolism 2: 330–334
– breakdown 2: 330
– chemistry 2: 327
– commercial production 1: 257
– degradation 2: 331, 333
– derivatives 2: 335–339
– fundamentals 2: 326
– historical outline 2: 325
– industrial production 1: 9
– isolation 2: 328
– new materials 2: 338
– reactivity 2: 328
– structure 2: 327
chlorophyllin 2: 335
cholesterol level, decrease 1: 180
cholesterol mediation 1: 277
cholesterol reduction, β-glucan 1: 185
chopping, pretreatment 1: 361
Christgas-project 1: 103
Chromatium okenii 2: 424
circuit board resins 2: 194–195
citric acid, glucose product family 1: 21
citrate 1: 91
clostridium acidocaldarium 1: 228
Clostridium methoxybenzovorans SR3 1: 179
Clostridium thermoaceticum 1: 235
Clostridium thermocellum 1: 365
clothing, synthetic fibers 2: 190
CO2 flux 1: 328
CO2 production, MAAP 2: 212
CO2 sequestration 1: 173
copolymerization, starch 1: 27
copolymer, PHV-PHB 2: 426
PhB 1: 215
copper-initiated additions 2: 262–263
corn 1: 26
– phytochemicals 2: 317
– wet milling 1: 28
corn continuous cultivation 1: 61
corn dry milling, biorefinery example 1: 70
corn dry milling industry 1: 345–353
corn grain, export reduction 1: 43
corn oil, corn refinery products 1: 348
corn pricing 2: 368
corn refinery, modern 1: 348
corn refining 1: 346–347
– soybean rotation 1: 61
corn starch, pearl 1: 351
corn-starch liquor 1: 349
corn stover, world production 1: 51
corn stover bale storage 1: 320
corn stover pricing 1: 319
corn stover structure 1: 74
corn syrup, carbohydrate refining 1: 351
competitive prices, biobased products 2: 49
competitors, external challenges 2: 45
components, cereals 1: 166
composite materials, carbon fiber 2: 196
compositional variety, biomass 1: 45
crystallization, lactic acid 2: 390
crystal, all biomass is local 1: 57
crystal, self-leveling 2: 88
crystal admixtures 2: 189–190
crystal, sugar beet 2: 410–415
crystallization agent, natural 2: 436
coniferal alcohol, oxidation 2: 158
consolidated bioprocessing 1: 56
Consoritum for Advanced Fundamentals and Innovation see CAFI
consumer acceptance, external challenges 2: 457
consumer products 2: 409–442
continuous cultivation see CC
continuous fermentation 1: 300
controlled-release devices, design 2: 240
conversion, chlorin 2: 333
conversion efficiency 1: 196
conversion steps
– biorefinery 1: 23
– lignocellulosic biorefinery 1: 24
conversion technologies 1: 108
– primary 1: 270, 2: 350
cooking liquors 2: 166
coordination-insertion mechanism, lactide polymerisation 2: 393
copolymers, PHB 1: 215
copolymer, PHV-PHB 2: 426
copper-initiated additions 2: 262–263
corn 1: 26
– phytochemicals 2: 317
– wet milling 1: 28
corn continuous cultivation 1: 61
corn dry milling, biorefinery example 1: 70
corn dry milling industry 1: 345–353
corn grain, export reduction 1: 43
corn oil, corn refinery products 1: 348
corn pricing 2: 368
corn refinery, modern 1: 348
corn refining 1: 346–347
– soybean rotation 1: 61
corn starch, pearl 1: 351
corn-starch liquor 1: 349
corn stover, world production 1: 51
corn stover bale storage 1: 320
corn stover pricing 1: 319
corn stover structure 1: 74
corn syrup, carbohydrate refining 1: 351
– biorefinery 1: 23
– lignocellulosic biorefinery 1: 24
conversion technologies 1: 108
– primary 1: 270, 2: 350
cooking liquors 2: 166
coordination-insertion mechanism, lactide polymerisation 2: 393
copolymers, PHB 1: 215
copolymer, PHV-PHB 2: 426
copper-initiated additions 2: 262–263
corn 1: 26
– phytochemicals 2: 317
– wet milling 1: 28
corn continuous cultivation 1: 61
corn dry milling, biorefinery example 1: 70
corn dry milling industry 1: 345–353
corn grain, export reduction 1: 43
corn oil, corn refinery products 1: 348
corn pricing 2: 368
corn refinery, modern 1: 348
corn refining 1: 346–347
– soybean rotation 1: 61
corn starch, pearl 1: 351
corn-starch liquor 1: 349
corn stover, world production 1: 51
corn stover bale storage 1: 320
corn stover pricing 1: 319
corn stover structure 1: 74
corn syrup, carbohydrate refining 1: 351
Subject Index
corn tillage practice 1: 330
corn wet milling industry 1: 345–353
corn wet milling process 2: 367
corn cobs 1: 91
corporate action, increasing 2: 451
corrugating industry, starch usage 2: 83–84
Corynebacterium efficiens 1: 80
Corynebacterium 2: 35
cosmetic emulsion, oil-phase components 2: 310
cosmetic lipids, occlusion testing 2: 434
– chitosan 2: 419
– consumer products 2: 409–442
– history 2: 409–410
– ilex resin 2: 439
– starch usage 2: 88–89
cost components, ethanol production 1: 73
cost disadvantage, cellulose-based ethanol 2: 203
cost efficiency 1: 381
cost estimates, biorefinery complex 1: 118
cost generators, waste 1: 96
cost savings, biotechnology 2: 450–451
costs
– antioxidants 2: 188
– biomass vs. petroleum 1: 48–50
– feedstock 1: 196
– MAAP 2: 202
– processing systems 1: 53
– cotton 1: 90
coupling, oxidative 2: 266
cover crops 1: 331
crop-drying industry, grass usage 1: 298
crop residues 1: 45
– commercial 1: 318
– world production 1: 51
cropping system 1: 61
crops, starch sources 2: 63
cross-linking
– free radical 2: 399
– starch modifications 2: 81
cross-reactions 1: 145
crotonaldehyde, glucose product family 1: 21
crude drugs, juice fraction 1: 274
crude fiber, plant content 1: 261
crude oil 2: 292
– high prices 1: 115
crude petroleum, separation 1: 119
crude starch milk 2: 66
crushing, pretreatment 1: 361
crystalline cellulose 1: 195
crystalline melting point, control 2: 394
crystallinity, starch 2: 72
CSL 1: 349
cultivation temperature 2: 213
curl-retention test 2: 420
curled hair, swatches relaxation 2: 419
cycle times, PHB 1: 216
cyclization, methyl 17-octadecanoate 2: 259
cyclodextrins 2: 90
cyclotrimerization, benzene derivatives 2: 259
Cyprus papyrus 2: 98
d
Dactylis glomerata 1: 261
– alkanes 1: 268
– amino acid composition 1: 267
– sugar 1: 265
DALA 1: 149–150
DDGS 1: 71
debranning apparatus 1: 174
decomposition methods, primary refinery 1: 271
decorative laminates 2: 185
deformation energy, recovery 2: 220
degradation, chlorophyll 2: 331, 333
– definition 1: 213
degradation resistance, cellulose fibrils 1: 140
degree of polymerization, cellulose 1: 195
demonstration process, iogen’s 1: 193
density, bales 1: 335
depolymerization, biomass 1: 123
designer proteins 1: 122
development lines, sugar-based chemicals 2: 14
development trap, underdeveloped countries 1: 52
dextrins 2: 79
dextrose 2: 128
– production 1: 44
– starch hydrolysis 1: 5
dextrose syrup, carbohydrate refining 1: 351
DFA III, production 1: 397
diacids, replacement 2: 38
1,4-diacids 2: 34
– basic biobased chemicals 1: 22
dialkyl carbonates 2: 311
– synthesis 2: 311
diamines, sugar-based 2: 42
Subject Index

diammonium succinate 2: 376
diastereomeric forms, lignin 2: 157
dibenzodioxocin structures, lignin 2: 158
Diels-Alder reaction, methyl conjugenate 2: 260
diesel 1: 119
– low-smoke formulation 1: 153
dietary lignin, antidiarrheic effects 2: 195
diethyl ether, glucose product family 1: 21
diffraction patterns, starch 2: 73
difructose anhydride 1: 397–402
digestibility, cellulose 1: 261
diglycerides, lipase-catalyzed syntheses 2: 270–272
dihydropyranones 2: 20
– disaccharide-derived 2: 24
dilactide, glucose product family 1: 21
dilute acid hydrolysis 1: 200
dilute acids
– pretreatment 1: 362
– starch treatment 2: 76
dilute sulfuric acid, biofine process 1: 142
dilute-sulfuric-acid hydrolysis, cellulose
1: 132
dimer acid 2: 297–298
dimerdiols, dimer acid based 2: 297–298
dimerization, radical 2: 267
dimethyltetrahydrofuran see DMTHF
diphenolic acid 1: 148
direct distillation 2: 389
disaccharide sophorose 1: 76
disaccharides, availability 2: 4–7
disposal problems, Biopol 2: 428
dissociation, of industries from petrochemical
1: 94
distillation of lactate ester 2: 389
distillers dried grains and solubles see DDGS
DM 1: 261
DMTHF 1: 152
DOE see department of energy
door binders 2: 185–186
downdraft gasifiers 1: 231
downstream processing
– grass fiber fraction 1: 281
– poly(3-hydroxybutyric acid) 1: 218–220
drilling fluids, starch derivatives 2: 91
drugs, sugar derived 2: 14
dry fractionation, wheat 1: 176–183
dry matter 1: 261
dry mill refinery 1: 346–347
dry milling 1: 27, 70
– operations 1: 166
dry reactions, starch modifications 2: 77
dry storage, bagasse 1: 321
DSM, transition process 1: 93
Duales System, biodegradable bottle 2: 427
Dutch Energy Research Strategy 1: 109
dye dispersants 2: 190–192
dyes
– biorefinery context 2: 315–324
– juice fraction 1: 274
dyestuff 2: 191
e
E. coli see Escherichia coli
E10-Fuel 1: 9
ECN 1: 109
ecological aspects, green biorefinery
1: 283–285
ecological balance, fermentative production 2: 207
ecological compatibility, biobased oleochemicals 2: 293
economic aspects, green biorefinery
1: 283–285
economic barriers, biotechnology 1: 381
economic benefits 2: 452–454
economic clusters, new synthesis 1: 95
economic forces 1: 41
economic potential
– biotechnology 2: 446–451
– industrial biotech 2: 445–462
economics, biofine process 1: 158–161
economies of scale 1: 159
– biodiesel plant 1: 127
economy, biobased 1: 41–66
economy growth 1: 67
economy of scale
– biorefineries 1: 350
– furfural 1: 125
ecosystem modeling 1: 57–60
edible films, gluten 1: 181
efficiencies, biofine process 1: 145–146
efficiency improvements, biotechnology 2: 454
efficient energy conversion, elasticity provides 2: 219
EG (endoglucanase) 1: 203, 364, 2: 133
– structure–function relationship 1: 370–371
Ekman, C. D. 1: 6
EL (ethyl levulinate) 1: 152–153
elastic consilient mechanism 2: 223
– protein-based polymer engineering 2: 217
elastic mechanisms, coupling to hydrophobic mechanism 2: 237–238
elastic moduli, fibers 2: 241
elastic protein-based polymers, temporary functional scaffoldings 2: 239
elasticity, protein-based polymers 2: 219–220
Elbow washing test, betaine 2: 413
electricity 1: 46
– biomass share 1: 14, 16
electricity generation, biomass 1: 44
electrodialysis, lactic acid purification 1: 312
electrophilic substitution, furan 2: 9
emollients 2: 310
emulsifiers
– lecithin 2: 318
– polyglycerol esters 2: 308
– vegetable oil 2: 301
emulsion(co)polymerization process, starch derivatives 2: 90
endoglucanase see EG
endotoxins, removal 2: 230
enediol, dehydration 1: 142
Energie Onderzoeks Strategie see EOS
energy and protein coproduction 1: 55
energy balance, simultaneous processing of sugars 1: 221
energy conversion, efficient 2: 219
energy costs, impacts 1: 115
energy crops, renewable carbon 1: 44
energy efficiency, fossil fuels replacement 2: 449
Energy Research Center of the Netherlands see ECN
energy sources, biomass-based 1: 380
engine efficiency loss, diesel 1: 153
engineered organisms 1: 68
engineering
– mechanistic foundations 2: 217–251
engineering principles
– fundamental 2: 222
– protein-based polymers 2: 220
entire barrel of biomass 1: 54–55
entropic elastic force, proteins 2: 223
environmental aspects, biodegradable plastics 1: 212
environmental benefits 1: 117
environmental consideration, MAAP 2: 205–209
environmental impact, production process 1: 92
environmental improvements 1: 64
environmentally friendly, biotech 2: 448–450
enzymatic conversion 1: 130
enzymatic digestion, poly(3-hydroxybutyrate-co-valerate) 1: 219–221
enzymatic hydrolysis 1: 79, 147
– cellulose 2: 115
– improvements 1: 205
– reactions 1: 203
enzymatic hydrolysis process 1: 134
enzymatic methods, LCF 2: 115
enzymatic oxidizing systems 1: 178
enzymatic processes, starch degradation 2: 79
enzymatic reactions 2: 270–274
enzymatic synthesis, MAAP 2: 202
enzymatic transport, improvements 2: 204
enzyme-based plant development 1: 134
enzyme broth 1: 201
enzyme catalysis, economic barriers 1: 381
enzyme cost reduction, ethanol production 1: 377
enzyme dosage 1: 366
enzyme immobilization 1: 399–402
enzyme performance, cellulase 1: 76–77
enzyme production 1: 202
– bran 1: 172
enzyme recovery 1: 74
enzyme requirement, increase 2: 178
enzyme screening 1: 398
enzyme system, optimisation 1: 74
enzymes 1: 357–383, 2: 90
– biodegradation 1: 363
– biomass conversion 1: 68
– cellulase 1: 201–202
– cost reduction 1: 56
– markets 2: 446
– nonhydrolytic 1: 365
– oxidative 1: 213
– recycling 1: 205
– superior 1: 205
– synergism 1: 365–366
– thermally stable 1: 368
EOS 1: 109
epoxidation
– chemo-enzymatic 2: 254
– new methods 2: 254–257
epoxides 2: 254
– polyols 2: 298–299
– PVC stabilizers 2: 256
equilibrium concentration, protonated glycoside 1: 141
erosion 1: 327
– cover crops 1: 331
– prevention 1: 61
ERRMA 1: 89
erucic acid, high 2: 280
erythro form, lignin 2: 157
Escherichia coli 1: 206, 2: 30
– bioengineered 2: 35–37, 44
– carbon-14-labeled 2: 228–229
– cost of production 2: 242
– fermentation 2: 230
– inulin production 1: 398
– recombinant 1: 399
– transformation 2: 227–230
esparto grass, xylitol source 1: 283
esterification, starch 2: 80
esters, lubricant applications 2: 300
ETBE 2: 7
ethanol 1: 89, 104, 146, 209, 2: 7–8, 132
– additive replacement 1: 357
– fermentation 1: 11, 2: 120, 351
– global market 2: 446
– glucose product family 1: 21
– lignocellulose transformation 2: 115
– predictions 2: 454
– vapor pressure 1: 151
– wood hydrolyses 1: 5
ethanol production 1: 125, 130, 193, 209–210, 389
– advantages 1: 197
– cellulase 1: 201
– costs 1: 72, 246
– enzyme cost reduction 1: 377
– sucrose 1: 70
ethanol production plant, process design 1: 393
ethanol recovery 1: 206–207
ether structures, lignin 2: 158
etherification, starch 1: 27, 2: 80
ethyl t-butyl ether 2: 7
ethyl ester, LA derivatives 2: 10
2-ethyl hexanol, glucose product family 1: 21
ethyl lactate, glucose product family 1: 21
ethyl levulinate (EL), properties 1: 151
ethylene, glucose product family 1: 21
EU directives 1: 94
Eubacterium limosum 1: 235
Europe, biomass conversion 2: 351
European grassland, yield 1: 259
European Renewable Resources and Materials Association see ERRMA
excess water, removal 1: 219
exothermic hydration, apolar groups 2: 218
expansin, enzymatic hydrolysis 1: 365
expressed protein-based polymers 2: 242–245
expression vector, gene 2: 227
external challenges 2: 456
external environment, biotechnology 2: 461
extraction, chlorophyll 2: 328
extraction methods, chlorophyll 2: 337
extraction processes, PHB 1: 218
extrusion cooking, starch modifications 2: 77
extrusion processes, PHB 1: 216
f
fabric coloring 2: 191
FAME 1: 152
farmer value 1: 325–327
FAS 2: 303
– synthesis 2: 303
fast pyrolysis 1: 229, 241
– biorefinery 1: 246–248
– products 1: 242
– reaction pathways 1: 243
fast-pyrolysis plant, schematic diagram 1: 244
fat hardening 1: 7
fats
– microbial conversion 2: 274
– new syntheses 2: 253–289
fatty acid esters, biodegradable 2: 299–301
fatty acid methyl esters see FAME
fatty acid oil seeds variants, commercially available 2: 278
fatty acids 1: 90–92
– anodic coupling 2: 267–269
– apple-peel wax components 2: 433
– chain length 2: 292
– epoxidation 2: 254–257
– juice fraction 1: 274
– microbial oxidation 2: 273–274
– nucleophilic addition 2: 265
– oxidative coupling 2: 266
– triglycerides 1: 122
– unsaturated 2: 272–273
– vic-dihydroxy 2: 257–258
fatty alcohol sulfate 2: 303
fatty alcohol sulfates 2: 303
fatty compounds
– reactions 2: 266–270
– unsaturated 2: 254–266

FDCA (furan-2,5-dicarboxylic acid) 2: 38, 133
– basic biobased chemicals 1: 22
– synthesis 2: 134
feedstocks 1: 100, 105
– alternative 2: 452
– composition 1: 195
– conversion 1: 68–73
– fibrous 1: 239
– insoluble components 1: 146
– pretreatment 2: 167, 178
– pricing 1: 327
– production 1: 181
– quality 1: 196, 334
– selection 1: 194–198
– sucrose-based 1: 197
– supply 1: 317, 2: 368–369
– thermogravimetric analyses 1: 156
fermentable-carbon-cost 1: 68
fermentable carbon source 1: 78
fermentable sugars 1: 67–73
fermentation 1: 74, 85, 123, 146, 2: 356
– E. coli 1: 399
– Escherichia coli transformation 2: 227
– amino acids 2: 203
– biomass processing 1: 98
– bio-oils 1: 229
– cellulose 2: 177–179
– commercial lactic acid production 2: 384
– continuous 1: 300
– economics 2: 369
– ethanol 1: 390–391, 2: 351
– fungal 1: 181
– glucose 1: 31
– guidelines 1: 21–22
– lactic acid 1: 298, 2: 383
– microbial 1: 181
– PHB production 1: 217
– rhizopus-based 2: 388
– succinic acid 2: 369
– syngas 1: 233–239
fermentation broth, no processing 1: 75
fermentation by-products 2: 388
fermentation ethanol 2: 7
fermentation industry, starch 2: 89
fermentation inhibitors, bio-oil 1: 245
fermentation medium
– brown juice 1: 298
– pearled grain flour 1: 176
– plant juice 1: 295–314
– potato juice 1: 309–310
fermentation organisms 1: 77–81
fermentation process 1: 104–106
– inhibitors 1: 78
– performance 1: 78
– PLA 1: 296–297
fermenters, ethanol production 1: 201
fertilizer
– ash 1: 161
– nitrogen 1: 325
ferulic acid 1: 178–179
Festuca arundinacea 1: 261
– alkaloid production 1: 277
– fructans 1: 267
– sugars 1: 266
Festuca pratensis 1: 261
– amino acid composition 1: 267
– sugar 1: 265
Festuca spp, proteins 1: 277
fiber fraction 1: 241
– corn 2: 369
– grass 1: 281
fibers
– biodegradable 2: 10
– corn refinery products 1: 348
– high-performance 2: 41
– improved 2: 241
– Kraft lignin 2: 197–198
– paper 2: 84
– press-cake components 1: 280–282
fibrous biomass, fast pyrolysis 1: 246
film-forming agents, chitosan 2: 419
films, water-retentive properties 2: 420
filter aids, purified biogenic silica 1: 278
fine chemicals 1: 386
– production routes 1: 385–406
finishing agents 2: 86
Fischer glycosidation, APG synthesis 2: 12
Fischer–Tropsch process 1: 158
flocculants, starch derivatives 2: 91
flow dynamics, agricultural ecosystems 1: 60
fluidized bed gasifiers 1: 231
foams, production 2: 9
follow-up chemicals, ethanol 2: 7
follow-up products, biorefinery 1: 24
food 1: 13
food preservative, ferulic acid 1: 179
forage crops 1: 45
forestry ecosystem modeling 1: 57–60
forestry waste, furfural hydrolysis 2: 8
formic acid 1: 153–154, 2: 39
– production 1: 139–164
formulation 1: 74
forward extraction, lactic acid 2: 389
fossil-based raw material substitution 1: 85
fossil carbon-processing industries 1: 42–44
fossil fuel substitution 1: 85
fossil fuels replacement, energy efficiency 2: 449
fossil organic raw materials 2: 347
fossil resources, dependence 1: 92
foundry, starch derivatives 2: 91
foundry resins 2: 184–185
Fowles, G. 1: 6
fraction-I protein 1: 274
– economic interest 1: 255
fraction-II protein 1: 275
fractionation, green crops 1: 272
fractionation process, oats based 1: 183–187
free energy of hydration, repulsive 2: 218
free radical cross-linking 2: 399
friction materials 2: 184
Friedel-Crafts acylation 2: 265
fructans 1: 267
– enzymatic deacylation 1: 302
fructose 2: 131
α-fructose, synthesis 2: 132
frying oil, byproducts 1: 100
fuel additives 1: 150
– ethanol 1: 26
fuel alcohol, production 1: 193
fuel cells 1: 378
fuel ethanol, legislative support 2: 453
fuel ethanol program, Brazil 1: 210
fuel gas 1: 102
fuel-oriented biorefineries 1: 193–208
fuel production 1: 53
– starch 1: 181
fuel source, sustainable 1: 115–128
fuels 1: 13
– biobased products 1: 376
– biofine char 1: 155
fumaric acid 2: 35
functional foods 1: 180
functional group transformations, side chains 2: 333
functional groups 2: 156–159
– addition to hydrocarbons 1: 119
– LA 1: 147
functionalization, C–H bonds 2: 269–270
fungal cellulolytic system 1: 365
fungal fermentations 1: 181
fungal genes, schematic representation 1: 373
fungi, cellulolytic 1: 371–373
fungicides, lignin-based dispersants 2: 193
fungus, wood-rotting 1: 201
fungus Z proteins 1: 373
furan 2: 19
– hydrophilic 2: 20
– polyesters 2: 44
furan commodity chemicals 2: 8
furan compounds 2: 16
furan derivatives 2: 98
furan-2,5-dicarboxylic acid (FDCA) 2: 38, 133
– basic biobased chemicals 1: 22
– synthesis 2: 134
furan polyamides 2: 46
furan resins 1: 154
furancoid sugar derivatives 2: 48
furfural 1: 6, 78, 91, 124–125, 154, 199, 2: 8, 121–127
– biomass building blocks 1: 22
– chemical structure 1: 143
– formation 2: 123
– history 2: 101
– lignocellulosic products 1: 25
– mass yield 1: 145
– production 1: 142
– yields 2: 102
furfural production 1: 125, 133, 139–164
furfuryl alcohol 1: 154
furfurylamines, conversion 2: 28
future biorefineries, lignocellulosic materials processing 2: 166
future development lines, sugars 2: 3–59

galactan 2: 108
gas-phase chlorination, photochemical 2: 269
gas to liquids see GTL
gasiification 1: 31, 85, 101, 123, 227, 2: 350
– air-blown 1: 232
– bioproducts 2: 361
– bran 1: 172
– coal 1: 157
– fundamentals 1: 230
– separation of value components 1: 103
gasiification-based systems, hybrid processing 1: 230–241
gasifier temperatures 1: 232
gasoline 1: 119
– replacement 1: 49
gasoline market, USA 1: 71
GBL 1: 149, 2: 373, 375
GEGVP, repulsive free energy 2: 237
gelatinization, starch 2: 78
gelatinization temperature 2: 75
gene constructions 2: 225–227
 – expressed protein-based polymers 2: 242–245
gene ladder 2: 229
 – GVGVP 2: 226
gene technology, plant breeding 2: 275, 281
Genencor International 1: 74, 77
generation-I biorefinery 1: 19
generation-II biorefinery 1: 19
generation-III biorefinery 1: 19–20
genetic engineering 1: 374, 398
 – ethanol production 1: 391
genetically engineered organisms, fermentation 2: 7
genetically modified crops 1: 96
geographical distribution, refineries 1: 57
geoporphyrins 2: 331
germs, corn refinery products 1: 348
GGAP, biocompatibility 2: 232
GH 1: 364
GH families, *Trichoderma reesei* 1: 373
Gibbs free energy, change 2: 218, 222, 232
 – phase transition 2: 234
GJ see green juice
glass fiber, resins 2: 185
GLNC, juice fraction 1: 274
global warming 1: 94
GLU see glutamic acid (GLU)
glucan 1: 139, 2: 108
 – basic biobased chemicals 1: 22
d-glucose residues, *Lolium perenne* 1: 264
glucose yields 2: 177
β-glucosidase see BG
glucosides 2: 130–133
5-(glucosyloxymethyl)furfural 2: 16
glutamate, markets 2: 207
glutamic acid (GLU) 2: 34, 304
 – basic biobased chemicals 1: 22
gluten, corn refinery products 1: 348
glycans 2: 108
glycerol 2: 271
 – basic biobased chemicals 1: 22
 – biocatalytic route 1: 393–397
glycine, chemical structure 2: 411
Glycine max 2: 277
glycolipids, microbial conversion 2: 274
glycoside hydrolase family classification system see GH
glycosidic bonds 1: 140
GMF 2: 17, 25
gold catalysts 1: 403
grain 1: 45
grain wet-milling, biorefinery example 1: 70
grass
 – composition 1: 262–263
 – key components 1: 260–269
 – production costs 1: 284
 – downstream processing 1: 281
 – products 1: 282
grass press cake, major components 1: 279
grass silage juice, physicochemical characteristics 1: 276
grassland feedstocks, availability 1: 259–260
gravity separator, acid hydrolysis 1: 145
green biorefiner concept 1: 253–294
green biorefineries 1: 19, 24, 29–31
 – concept 1: 269–273, 296–297
 – ecological aspects 1: 283–285
 – economic aspects 1: 283–285
 – products 1: 31
 – raw materials 1: 258–269
green chemistry, chlorophyll 2: 325–343
green crop-drying plant 1: 270
green crops, industrial use 1: 9
green cycle, sugar cane industry 1: 210–211
green harvesting residue material 1: 258
green house gases 2: 402
green juice (GJ) 1: 30, 269, 271, 273–277
green leaf nutrient concentrate 1: 274
green natural gas 1: 103
green pellets, production amount 1: 260
green plant material, composition 1: 258
green plant parts, fractionation 1: 256
greenhouse gas reduction 1: 62
greenhouse gases, emission 1: 197
gross visualization, phase separated product 2: 229
ground water pollution, brown juice 1: 298
growth, biorefining industry’s 1: 317
growth phase, fermentation 1: 218
GTL technology 1: 158
guerbet alcohols 2: 311
– synthesis 2: 312
guinea-pig, protein-based polymer injection 2: 231
gum arabic, substitute 2: 62
GVGIP 2: 240
– patches 2: 241
GVGVP 2: 223
– adhesions prevention 2: 238
– biocompatibility 2: 232
GVL 1: 151
gypsum 1: 106, 2: 87, 386
h
Haarmann, W. 1: 7
hair, protection 2: 429–437
hair care 2: 434–436
– ilex resin 2: 439–440
hair conditioners, betaine derivatives 2: 414
hair-setting agent 2: 415–422
hair surface, cationic compound deposition 2: 413
hair swatches, standardized 2: 435
Hale, W.J. 1: 9
half esters, homocoupling 2: 268
Halobacterium sp NRC-1 1: 80
2-halocarboxylates, copper-initiated additions 2: 262–263
hammer mill 1: 176
hardwood, composition 2: 106
hardwood lignins 2: 154, 157
harvest cost 1: 333
harvest transport 1: 338–339
3-HBL see 3-hydroxybutyrolactone
heating value, biofine char 1: 155
Helianthus annuus 2: 277
heliogerme 1: 179
hemicellulases 1: 364
hemicellulose 1: 72, 121, 198, 2: 104
– accessibility 1: 55
– chemical composition 1: 360
– feedstock content 1: 359
– history 2: 101
– hydrolysis 1: 362
– isolation 2: 119
– plant content 1: 261
– quantities 1: 264
– removal 1: 199
hemicellulose removal, advantages 2: 177–179
hemicellulose-based product lines 2: 119
hemicellulose concentrations, forage grasses 1: 264
hemicellulose content, stem tissue 1: 265
hemicellulose polysaccharides, hydrolysis 1: 141
herbaceous species 1: 50
herbicidal treatment, highly selective 1: 150
herbicides 1: 149
– lignin-based dispersants 2: 193–194
heterocoupling, fatty acids 2: 267–269
heteropolymeric sugars, hemicellulose 1: 360
hexadecanedioic acid, yield 2: 274
hexose sugars 1: 78
HFCS 1: 351
HFRR 1: 153
high frequency reciprocating ring test see HFRR
high-performance fiber 2: 41
high-value-added products, sugar-derived 2: 14–15
high value pharmaceuticals 2: 40
higher-value products, levulinic acid 2: 39
HMF (hydroxymethylfurfural) 1: 130, 133, 142, 2: 16, 133
– levulinic acid process 2: 100
– manufacture 2: 131
HMF based family tree 2: 135
Holly 2: 437–438
holocellulose change, wet storage 1: 336
homocoupling, fatty acids 2: 267–269
homofermentative strain, Lactobacillus sali-
varius 1: 307
hot-wash, pretreatment 1: 362
3-HPA 2: 34–35
HTU process, liquid biofuels 2: 351
Humicola grisea var thermoidea 1: 77
Humicola insolens 1: 375
Humicola 1: 202
hybrid processing, biomass 1: 227
hybrid thermochemical-biological processing 1: 227–252
hydration
 – microbial 2: 272–273
 – repulsive free energy 2: 237–238
hydrocarbons
 – apple-peel wax components 2: 433
 – fossil 2: 6
 – linear 1: 118
hydrochloric acid, carbon hydrolysis 1: 131
hydrogen bonding, cellulose 1: 360
hydrogenation reaction, syngas production 1: 230
hydrolyses 1: 373–375
hydrolysability, biopol 2: 425
hydrolysis
 – biomass 1: 129–138
 – furfural 2: 8
 – hemicellulose 1: 362
 – starch 1: 5
hydrolysis reactors, novel 1: 205
hydrolytic enzymes, costs 1: 105
hydrolytic liquefaction 1: 123
hydrolyzate, biomass 1: 78
hydrophilic imidazoles, D-fructose-derived 2: 27
hydrophilic side-chains 2: 24
hydrophilic/hydrophobic balance, sorbitan esters 2: 11
hydrophobic association, Gibbs free energy 2: 218, 232
 – input energy 2: 219
 – inverse temperature transition 2: 219
hydrophobic coating 2: 434
hydrophobic consilient mechanism 2: 222
hydrophobic effect, comprehensive 2: 237
hydrophobic hydration 2: 218
hydrophobic mechanism, protein-based polymer engineering 2: 217
hydrophobicity scale
 – Gibbs free energy 2: 234–235
 – prosthetic groups 2: 235–236
hydrothermal conditioning, granular starch 2: 78
hydrothermolysis 2: 351
hydroxy cyclic ester 2: 398
hydroxyalkylation, starch 2: 80
3-hydroxybutyrolactone (3-HBL) 2: 38, 40
 – basic biobased chemicals 1: 22
hydroxymethylfurfural (HMF) 1: 78, 2: 16, 133
 – formation 1: 143
 – hydration 1: 143
lignocellulosic products 1: 25
3-hydroxypropionic acid (3-HPA) 2: 34–35
 – basic biobased chemicals 1: 22
hydroxypropylation 2: 77
3-hydroxyvalerate see PHV

i
IA see itaconic acid
ideal elasticity 2: 219
 – mechanism 2: 220
ift gene 1: 398
IgG 2: 230
Ilex aquifolium 2: 437–438
Ilex paraguariensis 2: 438
Ilex resin 2: 437
Ilex species 2: 437
imidazoles 2: 27
 – hydrophilic 2: 27
immobilization 1: 389
 – enzyme 1: 399–402
 – lipase B 2: 256
immobilization technology 1: 392
immunoblot technique, western 2: 230–231
immunoglobulin G 2: 230
income generator 1: 96
inducing sugar 1: 201
industrial biobased products 2: 359
industrial biomass 1: 13
industrial bioproducts, opportunities 2: 357
industrial biotech 2: 445–462
industrial chemicals
 – fossil sources 1: 120
 – sustainable 1: 115–128
industrial concepts
 – biobased materials 2: 354–362
 – biomass 2: 347–365
industrial feedstock, baling 1: 333
industrial product family, development 1: 18
industrial products, biomass-based 1: 87
industrial resources, historical 1: 4–8
industrial starch platform 2: 61–95
industrial uses, sugars 2: 7–14
industries, fossil carbon-processing 1: 42–44
infection, natural 2: 275
infrastructure investment 1: 340
inhibitors, enzyme activity 2: 322–323
initiators 2: 398
injection processes, PHB 1: 216
injections, histological sections 2: 231
innovation potential, fossil-based building blocks 2: 450
Subject Index

insulation materials, resins 2: 185
integrated biorefinery applications 1: 125
integrated biorefinery process, detailed view 1: 102
integrated biorefining systems, sustainability 1: 56–65, 60–65
integrated process chain approach, biomass processing 1: 98
integrated processing facility 1: 45
integrated production, sugar 1: 209
intergeneric hybridization, plant breeding 2: 276
intermediate chemicals, HMF derived 2: 16
intermediate products, biorefineries 1: 46
intermediates 1: 386
 – biofine process 1: 145
intermolecular order, proteins 2: 221
internal obstacles 2: 456
intracellular poly(3-hydroxybutyric acid) 1: 218–219
intracellular reserve material, PHB 2: 424
intramolecular cyclization, addition 2: 263
inulase II gene 1: 398
inulin 1: 267
 – biocatalytic route 1: 397–402
 – fructose source 2: 131
inulase II, immobilization 1: 399
inverse temperature transition 2: 219
 – hydrophobic association 2: 227
 – purification 2: 228–229
investment costs, poly(3-hydroxybutyric acid) 1: 222–223
investments, biomass supplies 1: 318
Igerri’s demonstration process 1: 193
 – schematic 1: 194
Iowa corn stover collection project 1: 319–321
isamyl alcohol, extraction of PHB 1: 219
isoascorbinic acid, glucose product family 1: 21
isolation, lignin 2: 116
isomaltooctose, industrial production 2: 17
isosorbide dinitrate 2: 14
itaconic acid (IA) 2: 34, 36
 – basic biobased chemicals 1: 22
 – glucose product family 1: 21
k
Kevlar 2: 46
key chemicals, cellulose-based 2: 128
key intermediates
 – chlorophyll chemistry 2: 338
 – HMF 2: 133
key sugars 2: 3–59
 – exploitation 2: 14
Kirchhoff, G. S. C. 1: 5
Kirchoff 2: 62
Klebsiella pneumoniae 2: 36
Klebsiella 1: 206
kojic acid 2: 20
 – glucose product family 1: 21
Kolbe electrolysis 2: 267–269
Kraft black liquor 2: 175
Kraft lignin, producers 2: 175
Kraft lignin recovery 2: 175
Kraft pulping 2: 175
Kraft pulping industry, lignin 2: 169–170
Kyoto objectives, dutch 1: 85
I
LA see lactic acid, levulinic acid lactate ester, distillation 2: 389
lactic acid (LA) 1: 7, 11, 91, 2: 10–11, 382
 – biomass building blocks 1: 22
 – composition 1: 308
 – glucose product family 1: 21
 – manufacturers 2: 383
 – production 1: 306, 312, 2: 382
 – sources 1: 296
 – usage 2: 10
lactide, polymerization 2: 392–396
Lactobacillus buchneri, 1,2-propanediol 2: 37
Lactobacillus delbrueckii 2: 210
Lactobacillus paracasei subspecies paracasei 1: 302
Lactobacillus plantarum 1: 302, 2: 273
Lactobacillus salivarius 1: 305
Lactococcus lactus 2: 210
laundry starches 2: 89–91
lauric oils 2: 292
Lb salivarius BC 1001, fermentation 1: 299–300
LCA, polylactic acid 1: 284
LCF see lignocellulosic feedstock
LCF-mannan 2: 120
LCI, PLA 2: 402
leaf dyes, first production 1: 257–258
leaf nutrient concentrate 1: 274
leaf protein concentrate 1: 254
learning from nature, bionics 2: 410
leaves, Ilex resin 2: 437
Leblanc, N. 1: 7
lecithin 2: 318
levoglucosan 1: 229, 243, 247
levoglucosan hydrolysis, alternative 1: 245
levoglucosenone 2: 21
levuglucosan, biomass building blocks 1: 22
levulinic acid esters 1: 153
levulinic acid (LA) 1: 6–7, 143–144, 2: 38–39, 134, 361
– basic biobased chemicals 1: 22
– bromination 1: 150
– catalytic hydrogenation 1: 151
– history 2: 100
– maximum theoretical yield 1: 145
– oxidation 1: 149
– production 1: 139–164, 2: 111
– reaction to diphenolic acid 1: 148
levulinic acid-based family tree 2: 135
Lewis acid-induced cationic addition 2: 264–265
life cycle analysis 1: 57
life cycle assessment see LCA
life-cycle inventory 2: 402
lignin 1: 7, 72, 121, 195, 2: 104
– antioxidant 2: 187–189
– approximate composition 2: 154
– biodegradation 2: 160
– cell wall constituents 2: 151
– chemical composition 1: 360
– chemical linkages 2: 182
– commercially available 2: 176
– emerging markets 2: 194–198
– feedstock content 1: 359
– gasification 2: 118
– history 2: 101
– hydrolysis 2: 118
– Kraft pulping industry 2: 169–170
– markets 2: 166, 175, 181, 198
– organosolv biorefinery 2: 179–181
– plant content 1: 261
– presscake component 1: 279
– purified 2: 167
– pyrolytic 1: 241
– soda pulping industry 2: 170–172
– structural units 2: 105
– structure 2: 152–159
– utilization 2: 117
– water-soluble 2: 189–194
lignin-based product lines 2: 116–118
lignin chemistry, biomass conversion 2: 151–163
lignin content 1: 265
lignin isolation 2: 116
lignin polymer 2: 155
– growth 2: 154
lignin precipitation system 2: 171
lignin processing 1: 194, 205–206
lignin production
– historical outline 2: 168–172
– industrial 2: 165–200
lignin products 2: 152
– existing 2: 172–177
lignin recovery process 2: 171
lignin removal, advantages 2: 177–179
lignin unit, different types 2: 156–159
lignocellulose 1: 74
– biorefinery 2: 111
– enzymatic sequence 2: 210
– history 2: 102
lignocellulose-based chemical products 2: 97–150
lignocellulose chemistry, historical outline 2: 98–99
lignocellulose structure 1: 121
lignocellulose utilization
– industrial 2: 102
– technical aspects 2: 98
lignocelluloses 1: 10
– carbohydrates 2: 108
lignocellulosic, raw material 2: 103
lignocellulosic biomass, pretreatment 1: 361
lignocellulosic biorefineries, PLA 2: 403
lignocellulosic biorefinery 1: 115–128
– chemistry 1: 122–125
lignocellulosic feedstock (LCF) 1: 24, 125, 139–164
– chemical composition 2: 106–108
– conversion methods 2: 113–115
– definition 2: 103
– major groups 2: 103
– sources 2: 105
lignocellulosic fractionation 1: 139–144
lignocellulosic materials 1: 45, 105
lignocellulosic technology, conventional 1: 146–147
lignosulfonate, dye dispersants 2: 191
lignosulfonate producers 2: 173–174
lignosulfonates 2: 168–169, 172–175
– markets 2: 174
Subject Index

lignosulfonic acid, vanillin production 1: 7
linear hydrocarbons 1: 118
linear polymer, melt rheology 2: 397
β-1 linkage, phenylpropene units 2: 159
β-β linkage, phenylpropane units 2: 157
β-O-4 linkage, arylglycerol units 2: 156
linseed 2: 281
Linum usitatissimum 2: 277
lipase-catalyzed syntheses 2: 270–272
– carbohydrate esters 2: 272
lipase-catalyzed transformations 2: 270–272
lipid based bioproducts 2: 361
lipid layer enhancing effect, evaluation 2: 310
lipids 1: 7
– chemical composition 1: 361
lipotropic factor, betaine 2: 411
liquefaction 1: 123, 126
liquid biofuels 1: 49
liquid epoxy polyol esters 2: 298
liquid fuel production, missing part 1: 55
liquid transportation fuels 1: 46
LNC, composition 1: 274
load-and-go wagon 1: 320
local ownership, biorefinery 1: 56
Lolium hybridum, press cake fibers 1: 281
Lolium multiflorum
– alkanes 1: 268
– silica 1: 268
Lolium perenne 1: 261, 264
– alkaloid production 1: 277
– alkanes 1: 268
– amino acid composition 1: 267
– antifreeze protein 1: 269
– fructans 1: 267
– minerals 1: 268
– silica 1: 268
– sugar 1: 265
– water-soluble carbohydrate 1: 266
low-cost production 2: 242
low nutrient conditions, succinate fermentation 2: 370
LPC 1: 268
– first industrial process 1: 256
– first production 1: 254–257
– quality 1: 258
LPS process 2: 171
lubricants, fatty acid esters 2: 299–301
lubricants industry, antioxidants 2: 188
lucerne, protein fractions 1: 275
lyocell 1: 90
lyondell propylene oxide, 1,4-BDO 2: 373
lysine
– biomass building blocks 1: 22
– markets 2: 207
lysine fermentation 1: 11
lysine preparations, commercially available 2: 208
lysine yield, C. glutamicum 2: 210

m

MAAP 2: 201–202
– ecological impact 2: 207
– environmental and commercial consideration 2: 205–209
– technical constraints 2: 209
MAAP processes
– cultivation temperature 2: 213
– major steps 2: 208
– nitrogen source 2: 211
macrocycle 2: 334
macrocyclic ring system, reactions 2: 333
Madison-Scholler process 1: 132
Maillard reaction 2: 24
maize starch production 2: 66, 67
MALDI-TOF, polymer size 2: 229
maleic acid, conversion 2: 375
malic acid 2: 35
– glucose product family 1: 21
malonic acid, biomass building blocks 1: 22
maltol, glucose product family 1: 21
managing uncertainties, biotechnology 2: 459
mannon 2: 108
mannan/mannose product lines 2: 119
D-mannitol 1: 267
margarine 1: 7
Marggraf, A. S. 1: 5
market development, biotechnology 2: 460
market launch
– apple-peel wax 2: 436–437
– biodegradable bottle 2: 427–428
market potential 2: 446
– LA 1: 147
– succinic acid 1: 149
market price, furfural 1: 154
markets, lignin 2: 198
mass spectra, polymer size 2: 229–230
material sources
– biomass-based 1: 380
– renewable 2: 355
materials design 1: 108
matrices, natural fibers 2: 295
matrix assisted laser desorption time-of-flight spectrometry 2: 229
MBTE 1: 357
MDI 2: 299
mechanical pulping 1: 280
mechanical separation, cereals 1: 26
mechanistic foundations 2: 217–251
media cost 2: 370
Medicago sativa L 1: 255
– press cake fibers 1: 281
medical grade purity 2: 230
Mellier, M.A.C. 1: 6
Melsens, G. F. 1: 5
melt, polylactic acid synthesis 2: 391
melt rheology
– branched PLA 2: 397
– linear PLA 2: 397
melt stability, PLA 2: 399
melting enthalpy, PLA 2: 401
membrane electrodialysis 1: 106
membrane process, lactic acid purification 1: 312
metabolic engineering 2: 204
metabolic flux distributions, C. glutamicum 2: 205
metabolic pathways
– optimize 2: 212
– PHB synthesis 1: 238
– syngas fermentation 1: 234
metal-based catalysts 1: 228, 233
metal catalysts, aqueous phase hydrogenation 2: 375
metal complexes, chlorophyllin 2: 335
methanation, syngas production 1: 231
methane, glucose product family 1: 21
methanol, glucose product family 1: 21
methanol synthesis, syngas 1: 158
methyl 17-octadecanoate, cyclization 2: 259
methyl 2-iodopetroselinate, radical cyclization 2: 263
methyl conjugate, Diels-Alder reaction 2: 260–261
methyl elaidate, enantioselective oxidation 2: 258
methyl epiminoctadecanoate, synthesis 2: 257
methyl oleate
– co-metathesis 2: 260
– oxidative cleavage 2: 258
methyl tertiary butyl ether 1: 357
1-methylamino-1-deoxy-n-glucitol 2: 11
methylene di(phenylisocyanate) 2: 299
methylglucoside, synthesis 2: 131
methyltetrahydrofuran see MTHF
Michael addition 2: 81
Michaelis-Menten constant 1: 77
Michaelis-Menten kinetics, enzymatic hydrolysis 1: 204
microbial activity, wet storage 1: 334
microbial amino acid production see MAAP
microbial bioconversions, milling byproducts 1: 172
microbial biomass 1: 106
microbial biosynthesis 1: 104
microbial conversions
– oils/fats and glucose 2: 274
– six-carbon sugars 2: 32–34
– sugar 2: 30
– sugar-based 2: 36–37
microbial fermentation, drying bales 1: 321
microbial oxidation, fatty acids 2: 273–274
microbial polyesters 2: 44–45
microbial transformations 2: 272–274
microfibril 1: 195
microorganisms
– acetyl-coa forming 1: 233
– commercial lactic acid production 2: 384–385
– important 1: 80
– usage 1: 146
middlings 1: 170
mill water 1: 348
milled wood lignin 2: 155
milling
– industries 1: 345–353
– pretreatment 1: 361
– process flow diagrams 1: 347
milling byproducts, wheat flour 1: 169–173
milling efficiency, increase 1: 173
milling operations 1: 166
minerals 1: 268
– analysis 1: 299
– brown juice content 1: 304
Mitscherlich, A. 1: 8
mix-polymerization, starch 1: 27
mixed sugars 1: 98
model building block, succinic acid 2: 367–379
modeling, ecosystem 1: 57–60
modern corn refinery 1: 348–350
molasses 1: 222
molasses fermentation 1: 131
mold temperature, PHB 1: 216
molecular weight, rheology control 2: 396
monitoring technologies, toxicity 2: 212
monosaccharides 1: 180
– availability 2: 4–7
– conversion 2: 28
MSW Management, coupling with fuel production 1: 126
MTBE 1: 71
MTHF 1: 150, 2: 135
– formation from LA 1: 152
mulch till 1: 329
Mulder, G. J. 1: 6
multi-cyclic carbonate comonomers 2: 398
multi-cyclic epoxy comonomers 2: 398
multi-cyclic ester comonomers 2: 398
multi-functional polymerization initiators, branching 2: 398
multi-quality biomass 1: 92
multifunctional care additives 2: 309
multifunctional compounds 2: 135
multimer genes 2: 226
multiple feedstock capability 1: 68
municipal solid waste 1: 116–117
– management 1: 125
mutagenesis 1: 75–77
mutated spores, fermentation 1: 75
MWL 2: 155

N-heterocycles, sugar-derived 2: 24
Naegeli 2: 62
naltrexone, controlled-release devices 2: 240
naphtha 1: 86
naphthalene sulfonate, dye dispersants 2: 191
naphthenic compounds 1: 118
National Farm Chemurgic Council 1: 9
National Renewable Energy Laboratory process see NREL
natural fibers 1: 90
natural oils
– formaldehyde additions 2: 264
– improvements 2: 275–281
– industrial processing 2: 295
– polymer building blocks 2: 296
natural substance, definition 2: 422
natural vector transformation systems 2: 275
NatureWorks 2: 10
near ideal elasticity 2: 219
– mechanism 2: 220
net corn cost 1: 50
network polymer, lignin 1: 121
neutralizing agent, lactic acid 2: 385
nitrocellulose, history 2: 99
nitrogen leaching 1: 63
nitrogen source 2: 211
NMGA 2: 11–12
NMP 2: 373, 375–376
– rhodium catalytical production 2: 377
NMR, purity 2: 229
Nocardiia cholesteriolicum 2: 273
non-carbohydrate natural products, synthesis 2: 20
non-food products
– manufacture 1: 165–191
– renewable resources 1: 11
non-food uses, sugars 2: 3–59
non-recyclable organic solid waste materials see NROSW
non-starch polysaccharides 1: 175
non-wood fibers 1: 280
nonactivated C–H bonds, oxidation 2: 269
nonhydrolytic proteins 1: 374
nontraditional microorganisms 1: 80
Normann, W. 1: 7
novel fatty acids synthesis, starting materials 2: 255
novel plastics, 1,3-propanediol 1: 182
novolacs 2: 181
novozym 435 2: 256
novozymes 1: 77
NREL 1: 19, 22, 72, 74, 150
NROSW 1: 126
NSP 1: 175
nuclear magnetic resonance 2: 229
nucleophilic addition, unsaturated fatty acids 2: 265
nucleus exchange method, lignin 2: 154
nutrient replacement 1: 324–325
nutrients 2: 388
– lactic acid 2: 385
Subject Index

- oat 1: 183
- replenishment 1: 327
- wheat 1: 168
- nutritional value, re-growth 1: 261
- nylon 6, markets 2: 113
- nylon-6,6 2: 45
- nylon process, furfural-based 2: 123

o
- oat based biorefinery, schematic 1: 184
- oat bran-rich fractions, value-added byproducts 1: 185–187
- oat composition 1: 183
- oat gum 1: 185
- occurrence, betaine 2: 410–411
- OFP 1: 151
- oil 1: 98
 - microbial conversion 2: 274
 - new syntheses 2: 253–289
 - thermochemical conversion 2: 361
- oil and lipid-based bioproducts 2: 356
- oil-based surfactants 1: 90
- oil crisis 2: 348
- oil fruits, FAS 2: 304
- oil industry, sections 1: 86
- oil-like proteins, repulsion 2: 218
- oil production, permanent decline 1: 42
- oil qualities 2: 276–277
- oils and fats, world production 2: 292
- oilseeds 1: 45
- olefin, metathesis 2: 259–260
- olefinic polymers, sugar-based 2: 47
- olefins, monosaccharide-derived 2: 47
- oleic acid 2: 254
- oлеоchemical base materials 2: 294
- oлеоchemical-based dicarboxylic acids 2: 296
- олеоchemical industry 1: 122
- олеохимicals
 - biobased 2: 291–314
 - polymer applications 2: 295
- one-pass collection 1: 333–335
- one-pass harvest 1: 332
- one step biochemical modification, naturally produced structures 2: 349
- one-way cycle, oil and gas feedstock 2: 449
- OP 2: 395
- PLA 2: 401
- operating costs
 - biofine plants 1: 160
 - biorefinery 1: 240
- optical purity 2: 395
- organic acids 1: 78
- analysis 1: 299
- brown juice content 1: 304
- commercially important 1: 79
- production 1: 234–235
- organic chemicals
 - bioproduction 1: 182
 - fossil sources 1: 120
 - industrial 1: 115–128, 124
 - levulinic acid 2: 134
 - renewable carbon 1: 44
 - organisms, engineered 1: 68
- organization infrastructure 1: 340
- organosolv biorefinery, lignin 2: 179–181
- organosolv lignin, products 2: 183
- organosolv pretreatment, lignin 2: 178
- oseltamir phosphate, synthesis 2: 30
- oxalic acid 2: 99
- oxidation 2: 254–258
 - enantioselective 2: 258
 - fatty compounds 2: 257–258
 - selective 2: 38
 - starch 2: 79
- β-oxidation, fatty acids 2: 273–274
- ω-oxidation, fatty acids 2: 273–274
- oxidation technology, development 2: 38
- oxidative cleavage 2: 258
- transition metal-catalyzed 2: 258
- oxidative coupling 2: 266
- oxidative enzymes, biodegradable plastics 1: 213
- oxidative metabolism, phosphorus supply 2: 211
- oxidative polymerization, lignin polymerization 2: 153
- oxidative states, changes 2: 236
- 4-oxopentanoic acid 1: 6
- oxygen supply 2: 212
- ozone, cleavage of fatty compounds 2: 258
- ozone-forming potential, P-Series fuels see OFP

P
- P-Series fuels 1: 151
- Pachysolen tannophilus 1: 147
- Pacific Northwest Laboratory see PNL
- Pacific Northwest National Laboratory see PNNL
- palm kernel oil 2: 292
- panel binders 2: 185
- panelboard adhesives 2: 183–184
- paper
 - adhesion 2: 87
 - from press cake fibers 1: 282
paper industries, starch usage 2: 83
paper mill waste 1: 134
parasorbic acid, glucose product family 1: 21
partial glycerides 2: 270
particle size, feedstock materials 1: 144
paste reactions, starch modifications 2: 77
pasture lands 1: 52
patents
– protein-based polymers 2: 245–249
– reexamination request 2: 245–249
Payen, A. 1: 6
PC 1: 30, 269, 271
– downstream processing 1: 281
PCB, lignin containing 2: 194
PCR technique 2: 225
PCS-hydrolyzing cellulases, improvements 1: 367
PD 1: 393–397
PDLA 2: 395
PDO 1: 11
peanut 2: 281
pearl corn starch, carbohydrate refining 1: 351
pearling 1: 173–176
– oat grain 1: 183
pectin substances 1: 265
Penicillium 1: 202
pentaerythritol esters 2: 308
2,3-pentane dione, glucose product family 1: 21
“pentanes-plus” 1: 151
pentosan change, wet storage 1: 336
pentosans, conversion 2: 28
pentose fermentation 1: 206
pentose sugars 1: 78
pentoses 1: 91
– conversion 2: 28
peptide sequences, repeating 2: 217
Peptostreptococcus productus 1: 235
perfluoroalkyl iodides, addition 2: 263–264
perfluoroalkylated products, synthesis 2: 263
performic acid procedure 2: 254
pericarp 1: 183
– wheat 1: 167
pericyclic reactions 2: 260–261
pesticides, lignin-based dispersants 2: 193
PET 2: 133
petrochemical industry 1: 86
– transformation steps 1: 88
petrochemical technology 2: 373
petroleum
– dependence 1: 115
– structural shift 1: 116
petroleum-based pathways, polyamides 2: 45
petroleum chemistry, comparison with biomass 1: 118–122
petroleum costs 1: 48–50
petroleum dependence, reduction 1: 71
petroleum feedstocks 1: 45
petroleum refineries 1: 16
petroleum refining industry, development 1: 41
petroleum reserves, prognoses 1: 387
petroporphyrin formation 2: 332
petroporphyrins 2: 331–332
PF 2: 181
PF resins, markets 2: 183
pH adjustment 1: 79
PHA 1: 182, 214, 236, 239, 2: 44
– accumulation 1: 236
pharmaceuticals 1: 13, 2: 14–15
– intermediate 2: 40
– preparation 2: 26
– purification target level 2: 230
– starch usage 2: 88–89
phase III-biorefineries 1: 19–20
phase separated product, gross visualization 2: 229
phase separation, purification 2: 228
phase transition, Gibbs free energy 2: 234
PHB 1: 209, 238
– chemical structure 1: 214
– copolymers 1: 215
– intracellular reserve material 2: 423
– lifetime of products 1: 214
– synthesis 1: 237–238
– yield determination 1: 238
PHB-PHV copolymer, brittleness 2: 426
phenol–formaldehyde resin 2: 181
phenol–formaldehyde resin markets, lignin 2: 187
phenolic acids 1: 178
phenolic–carbohydrate complexes, Lolium perenne 1: 264
phenolic molding compound market 2: 184
phenolic resins 2: 16, 181, 185
– biorefinery lignin 2: 181–183
phenomenological axioms, engineering protein-based polymers 2: 232–234
phenyl-propanoid units, crosslinked 2: 181
phenylpropane units 2: 157, 159
– bonding 2: 153–156
Subject Index

Phloroglucinol, biosynthesis 2: 30
Phospholipids 1: 361
Phosphorus source 2: 211
Phosphorylation, changes 2: 236
Photochemical gas-phase chlorination 2: 269
Photodynamic therapy, chlorophyll derivatives 2: 336
Photosensitizer, chlorophyll 2: 334
Photosynthesis 1: 12, 42
Photosynthesis enzyme, plant content 1: 255
Photosynthetic bacteria 1: 229
Photosynthetic pigments 1: 257, 2: 326
Phthalo green 2: 338
PHV 1: 237, 2: 426
Phylogenetic tree, gene sequences 1: 367
Phytic acid 1: 170
Phytochemicals, biorefinery context 2: 315–324
Phytoestrogens 2: 321–322
Phytosterols 2: 317–318
Pichia yeast 1: 206
Picrophilus torridus 1: 80
Pigments
– biorefinery context 2: 315–324
– carotenoids 2: 320
– chlorophyll 2: 336
Pilot plants, biomass fermentation 1: 135
Pirie, N. W. 1: 9
PLA 2: 10–11, 41, 381
– biobased 1: 296–299
– high polymer 2: 391
– melt rheology 2: 397
– production 2: 390–396
– properties 2: 400
– resins 2: 400
– semi-crystalline 2: 394
– stereocomplex 2: 401
Plant breeding, oil improvement 2: 275–281
Plant cuticle, schematic 2: 431
Plant development, biomass hydrolysis 1: 129–138
Plant infection, fungal endophytes 1: 277
Plant material
– usage 1: 90
– yearly amount 1: 43
Plant resources 2: 353
Plant usage, historical 1: 254
Plasma cholesterol, reduction 2: 317–318, 321
Plasticization, starch 1: 27
Plasticizer, biodegradable bottle 2: 427
Plastics
– biodegradable 1: 182, 212–216
– novel 1: 182
Platform chemical 1: 147
Platform molecules 1: 182
PLLA 2: 395
Plug-flow reactor 1: 144
PNL process 1: 151–152
PNNL 1: 22
Poly(3-hydroxybutyric acid) polymer 1: 214–216
Poly(3-hydroxyalkanoate) production, future milestone 1: 224
Poly(3-hydroxyalkanoates) 1: 238, 2: 44
Poly(3-hydroxybutyrate-co-valerate), enzymatic digestion 1: 219
Poly(hydroxybutyrate)
– monomer 1: 237
– processing 1: 215–216
– switchgrass 1: 283
Poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) 1: 214–215
Poly(3-hydroxybutyric acid) 1: 212–213
– biosynthesis 1: 224
– downstream processing 1: 218–219
– production process 1: 217–223
– sugar fermentation 1: 217
Poly(β-hydroxy butyric acid) 2: 423
Poly(lactic acid) 1: 8, 296
Poly(tetramethylene ether glycol) see PTMEG
Poly(vinyl chloride), cements see PVC
Polyamides 1: 122, 2: 45–47
Polyesters
– fiber 2: 36
– furan containing 2: 44
– microbial 2: 44–45
– production 1: 236–239
Polyetherpolyls, biodegradable 2: 9
Polyglycamides, stereoregular 2: 46
Polyglycerol ester, emulsifier 2: 308
Polyactic acid 2: 10, 41
– non-solvent process 2: 392
– polymerization routes 2: 391
– production capacity 1: 284
– renewable resources 2: 381–407
Polymer building blocks, natural oils 2: 296
Polymer development, protein-based 2: 221–222
Polymer industry, starch 1: 28
Polymer size, mass spectra 2: 229–230
polymerase chain reaction 2: 225
polymeric materials, protein-based 2: 220–221
polymeric products, polymeric lignin 2: 160
polymerizable sugar derivatives 2: 40–47
polymerization initiators, multi-functional 2: 398
polymers 1: 46
− biobased 1: 11
− oils and fats 2: 291
− oleochemicals 2: 295
− PHB 1: 209
− protein-based 2: 217–251
polyol esters 2: 307
polylols, epoxides based 2: 298–299
polylases, history 2: 101
polypeptide, protein definition 2: 217
poly saccharides 1: 89, 121, 277
− acid hydrolysis 1: 141–142
− repeating unit 2: 4
polytrimethylene terephthalate see PTT
polyurethane foams, production 2: 9
polyurethane stretch fibers 1: 149
polyurethanes, oleochemical building blocks 2: 298
polyvinylsaccharides 2: 47
pomace 2: 432
porous carbon fibers 1: 283
potato 2: 69–70
potato juice 1: 309–310
− lactic acid source 1: 295
− quality 1: 300
potato starch crystals 2: 73
potato starch industry, lactic acid producer 1: 310
potato starch production 2: 69
potential future market, formic acid 1: 154
potential screening 1: 22–23
power technologies, renewable 1: 139
precursors, biomass targets 1: 17
preprocessing, biomass 1: 46
press cake 1: 257, 269
press cake fibers, basic properties 1: 281
press juice 1: 257
pressure ulcers, prevention 2: 240
pretreatment 1: 135, 198–200
− biomass 1: 107
− cornstover 1: 245
− dilute acid 1: 246
− LCF 2: 113
− lignocellulosic biomass 1: 361
− solvent-based 1: 200
− straw 1: 193
price changes, external challenges 2: 457
price difference, fossil fuel feedstocks 2: 446
price swings, oil 1: 48, 52
prices, renewable carbon feedstock 1: 50
primary antioxidants 2: 187
primary conversion technologies 1: 270, 2: 350
primary refinery 1: 269, 272
− wet fractionation 1: 271–273
primary starch 2: 85
primary streams, raw materials 1: 92
prime starch 2: 68
printed circuit boards 2: 194
process economics 1: 53
process optimization, lignocellulose-based operation 2: 203
process scheme, integrated 1: 127
processing technologies, necessary for bio refineries 1: 46
processor value, stover 1: 327
product development, biodegradable bottle 2: 426–427
product diversification, biomass 1: 54–55
product family tree 2: 97–150
− amino acid-based 2: 201–216
− glucose 1: 21–22
− hemicellulose-based 2: 121
− HMF and levulinic acid-based 2: 136–138
− lignin-based 2: 117–118
− syngas 1: 33
product flow-chart, biobased 1: 23
product innovation, biotechnology 2: 450
product integrity, verification 2: 229–230
product lines
− biobased 1: 375
− carbohydrate-based 2: 3–59
− hemicellulose-based 2: 119
product spectrum, chemical compounds 1: 105–106
product yield 1: 53–54
prognoses 1: 387
propanediol, glucose product family 1: 21
1,2-propanediol, racemic form 2: 37
1,3-propanediol 2: 36
propionic acid, biomass building blocks 1: 22
propylene, glucose product family 1: 21
prosthetic groups, hydrophobicity scale 2: 235
protease inhibitors 2: 322
Subject Index

490

protection action, hair keratin 2: 436
protective film, skin care 2: 439
protein-based polymers 2: 217–251
– charged side chains 2: 240
– development 2: 221–222
– elasticity 2: 219–220
– expression 2: 227–230
– gene constructions 2: 242–245
– materials 2: 220–221
– order 2: 219
– patents 2: 245–249
– purification 2: 227–230
protein content, comparison between plants and animals 1: 255
protein–fatty acid condensates 2: 304
protein gels, cellulolytic fungi 1: 372
protein generation, ethanol 2: 133
protein-hydrolyzates, extraction 2: 202
protein line 2: 201–216
protein repulsion 2: 218
protein–xanthophylls 1: 271
proteins 1: 46, 122, 268, 277, 2: 217
– acylated 2: 304
– analysis 1: 299
– aqueous media 2: 218
– biomass conversion 1: 371–375
– brown juice content 1: 305
– chemical composition 1: 361
– crude starch milk 2: 66
– juice fraction 1: 274
– potato starch production 2: 70
– thermodynamics 2: 218
protolignin 2: 152
protonated glycoside, cellulose hydrolysis 1: 141
Pseudomonas fluorescens 2: 30
Pseudomonas putida 1: 245, 2: 37
PTMEG 1: 149
PTT production 1: 393–396
pulp 1: 6
pulping
– environmentally friendly 2: 179
– mechanical 1: 280
– semi-chemical 1: 280
pure chemicals, xylan derived 2: 122
purification 1: 218–219, 2: 388
– chitin 2: 416–417
– inverse temperature transition 2: 228–229
– lactic acid 1: 312
– phase separation 2: 228
– PHB 1: 218

purification 2: 227–230
– protein-based polymers 2: 227–230
purity
– evaluation 2: 229
– medical grade 2: 231
PVC 1: 149
PVC stabilizers, vegetable oil epoxides 2: 256
PX (protein-xanthophylls), production numbers 1: 271
pyran, building blocks 2: 21
pyranoid, building blocks 2: 23
pyranoid sugar derivatives 2: 48
pyrazoles 2: 26
3-pyridinols 2: 28
pyrogallol 2: 30
pyrolysis 1: 123, 230
– bioproducts 2: 362
pyrolysis oil 1: 98
– production 1: 244
pyrolysis products, cornstover 1: 246
pyrolytic char 1: 247
pyrolytic lignin 1: 241
pyrolytic liquid, yield 1: 241
pyrones 2: 20
pyrroles 2: 24
pyrroldione solvents, manufacture 1: 149

q
quasi-aromatic monomers, sugar-based
2: 46
quinonoxalines 2: 28
– sugar derivative 2: 24

r
racemic mixture, lactic acid 2: 382
radical additions 2: 261
– malonic acid 2: 261
– perfluoroalkyl iodides 2: 263
radical C–C coupling 2: 266–269
radical cyclization, methyl 2-iodopetroselinate 2: 263
rail transport, feedstock 1: 339
Ralstonia eutropha 1: 217, 237
ranitidine 2: 14
rapeseed 2: 277
rapeseed oil, industrial use 2: 280
rapid pyrolysis 1: 227
– cellulose 1: 243
rate of biodegradation 1: 213
raw material costs 1: 53
raw materials
– appropriate 1: 165
– aromatic compounds 2: 259
– biomass 1: 12–14
– biorefineries 1: 45–47
– costs 2: 110
– oleochemicals 2: 292–293
– renewable 2: 253–289
– sterilization 2: 209
– world market prices 2: 356
RBAEF Project 1: 43, 52
reaction system costs 1: 53
reactive sites, triglycerides 2: 294
recombinant DNA technologies
– application 2: 204
– gene construction 2: 225–227
– protein-based polymers 2: 217
recovery 1: 218–219
recycling 1: 106
– plastics 1: 212
refined biomass 1: 98
refineries
– hybrid biomass processing 1: 227–252
– thermochemical 1: 101–103
refinery economy 1: 350
refining, biomass 1: 41–66, 107
reformulated gasoline see RFG
regioselective syntheses, ricinoleic acid 2: 254
re-growth, nutritional value 1: 261
regulatory framework, biotechnology 2: 447
regulatory situation, external challenges 2: 457
reinforcers, lignin 2: 186
renewable carbon feedstock prices 1: 50
renewable energy law 1: 15
renewable material, definition 2: 422
renewable-power technologies 1: 139
renewable raw materials 2: 355
– oils and fats 2: 253–289
– optimized by breeding 2: 277–281
renewable resources 2: 347
– industrial conversion 1: 5
– integrated utilization 1: 10–11
– non-food products 1: 11
– polylactic acid 2: 381–407
– prognoses 1: 387
– sources 1: 385
repulsive free energy 2: 222
– apolar–polar 2: 218
– hydration 2: 237
residual biomass, importance 2: 452–457
residual sugars, separation 2: 388
residue utilization 1: 283–285
resin binders 2: 183
resin fraction, holly 2: 438–439
resin industry 2: 182
resins
– PCB 2: 194
– thermoset 2: 184
resols 2: 181
retroaldolization, imidazoles 2: 27
retrogradation 2: 75
reversed-polarity unsaturated fatty acids, nucleophilic addition 2: 265
RFG 1: 151
rheological properties
– β-glucan 1: 185
– NSP 1: 175
rheology control 2: 396
Rhizomucor miehei 2: 271
Rhizopus arrhizus 2: 35
rizhopsis-based fermentation 2: 388
rhodium catalyst, NMP production 2: 377
Rhodopseudomonas gelatinosa 1: 237
Rhodospirillum rubrum 1: 237, 239
Rhodospirillus rubrum 1: 229
ribulose 1: 255
rice, starch production 2: 71
rice straw, world production 1: 51
ricinoleic acid 2: 254
ridge-till 1: 329
right opportunities, biotechnology 2: 458
ring-opening
– chlorophyll 2: 330
– nucleophilic 2: 257
ring-opening polymerization 2: 394
ring structures, saccharides 1: 121
rings, lignin polymer 2: 155
Ritter, E.A. 1: 323
rocket fuels 2: 37
Role of Biomass in America's Energy Future see RBAEF Project
ROP 2: 394
Rothamsted process 1: 256
Roule, H.M. 1: 254
rubber industry, antioxidants 2: 188
rubber processing, lignin 2: 186
rubisco 1: 274
– plant content 1: 255
Rubrivivax gelatinosus 1: 236–237
rye grasses, digestibility 1: 261
ryegrass, fiber properties 1: 281
saccharides 1: 121
saccharification 1: 32, 2: 128, 177–179
– cellulose 2: 99
Subject Index

– wood 1: 5–6
Saccharomyces 1: 194
Saccharomyces cerevisiae 1: 7, 146, 2: 209
Saccharomyces yeast 1: 206
saccharose, fructose source 2: 131
Saccharum officinarum 1: 210
salt splitting technology, lactic acid 2: 387
saponins 2: 321–322
satake pearling system 1: 174
saturated fatty compounds, reactions 2: 266–270
SAXS, lamellar thickness 2: 395
scaffoldings, temporary functional 2: 239
scenarios, integration of industries 1: 94
Scholler process 1: 131
Scholten, W.A. 2: 62
screening 1: 22–23, 77
screening methods 1: 75–76
scutellum, wheat 1: 169
SDS–PAGE 2: 228
– purification 2: 228
SEC 2: 72
second-grade starch 2: 68
secondary biochemical refinery 1: 104–106
secondary biorefining processes, thermo-chemical 1: 103
secondary starch
secondary streams, raw materials 1: 92
secretome, cellulolytic fungi 1: 371–373
sectoral integration, bio-based industry 1: 93–96
seed, wheat 1: 167
selective oxidation, carboxylic acids 2: 38
self-leveling concrete 2: 87
semi-chemical pulping, lignin extraction 1: 280
separation of biomass, technically feasible 1: 17
separation system costs 1: 53
sequence integrity, evaluation 2: 229
sequence verification 2: 226
sequenced genomes, microorganisms 1: 80
sequestration, carbon 1: 62
serine, biomass building blocks 1: 22
shampoo bottle
– Biopol 2: 422
– degradation 2: 425
– market launch 2: 427
Shell, transition process 1: 93
shellfish industry, chitin source 2: 416
shikimic acid, metabolic engineering 2: 31
side-chain, oxidativ shortening 2: 25
side-streams, fermentation 1: 106
signal peptide effect 1: 375
silage additive, formic acid 1: 153
silage juice 1: 276–277
silage residues, reuseage 1: 283
silage wet-fractionation, primary refinery 1: 271
silica 1: 268, 277
silicon carbide, rye grass 1: 278
simultaneous saccharification and fermentation 1: 134
sitosterol 2: 317
six-carbon sugars, microbial conversion 2: 32–34
sixth framework program, EU 1: 103
size-exclusion chromatography 2: 72
sizing agents 2: 85
skin, protection 2: 429–437
skin care, ilex resin 2: 439
skin cosmetics 2: 434
slaughterhouse wastes, byproducts 1: 100
slurry process, starch modifications 2: 76–78
small-angle X-ray scattering 2: 395
small-scale extractions, chlorophyll 2: 329
smell, obnoxious 1: 310
soap 2: 409
soap production, history 1: 7
soda process, lignin 2: 176
soda pulping industry, lignin 2: 170–172
sodium dodecyl sulfate polyacrylamide gel electrophoresis 2: 228
sodium lactate, salt splitting 2: 387
soft tissue augmentation 2: 238
soft tissue reconstruction 2: 239
soft tissue restoration 2: 238
softwood, composition 2: 106
softwood lignins 2: 157
soil bioactivators, grass juices 1: 283
soil carbon equilibrium 1: 325
soil carbon loss 1: 328
soil coverage, stover 1: 329
soil erosion control 1: 329
soil organic material 1: 328–329
soil organic matter see SOM
soil quality 1: 324
– models 1: 324
solid state bioprocessing see SSB
solubilization, cellulose 1: 359
solubles removal, wet storage 1: 336
solvent, selective 2: 9
solvent extraction 1: 219–221, 2: 388
SOM, loss 1: 324, 328
sorbic acid, glucose product family 1: 21
sorbitan esters 2: 11, 272
sorbitol 2: 129–130
 – basic biobased chemicals 1: 22
 ν-sorbitol 2: 9
 – dehydration 2: 11
Sorghum dochna 1: 255
sorona 2: 41
sorvernol 2: 299
soybean 2: 277
 – phytochemicals 2: 317
 – processing 2: 316
 – saponins 2: 321
spandex 1: 149
special ingredients 2: 315–324
special sugars, juice fraction 1: 274
specialties 1: 386
specialty chemicals, bio-based 1: 91
Spirulina, chlorophyll extraction 2: 329
spores, mutated 1: 75
SSB, fungal 1: 172
SSF 1: 71, 146, 203
 – process 1: 79
starch 1: 27, 67, 70–71, 121, 181, 268
 – acetylated 2: 80
 – bioconversion 2: 89–91
 – chemical composition 1: 360
 – chemical source 1: 50
 – commercial 2: 71–76
 – common sources 2: 62
 – composition 2: 74
 – corn refinery products 1: 348
 – degraded 2: 79
 – ethanol raw material 1: 197–198
 – glucan source 1: 139
 – history 2: 61
 – industrial production 2: 65
 – modification 2: 61–95
 – nitric acid oxidation product 2: 38
 – production 2: 61–95
 – properties changes 2: 78
 – quality 2: 73
 – raw materials composition 2: 65
 – syrups 2: 89
 – tailor-made 2: 92–93
 – total consumption 2: 82
 – world market 2: 64
 – yield 2: 69
starch-based biorefinery II 1: 69
starch derivatives 2: 82–91
starch ethers, building chemistry 2: 87
starch–gluten slurry, corn refinery 1: 349
starch granules, reshaping 2: 75
starch hydrolysis 1: 5
starch modification, types 2: 81
starch modification technology 2: 76
starch platform, industrial 2: 61–95
starch saccharification 2: 178
starch water, modification 2: 76–81
steam 1: 46
steam-alkaline pulping, lignocelluloses 2: 114
steam explosion 1: 280
 – pretreatment 1: 198
steam gasification 1: 156
stearic acid, photochemical gas-phase chlorination 2: 269
steep liquor 1: 349
steeping, corn 1: 348
steepwater 1: 349
stereoregular polyglucaramides 2: 46
stereoselective syntheses, ricinoleic acid 2: 254
steric hindrance, enzymatic hydrolysis 1: 147
sterigel 1: 178
sterols, soybeans 2: 317
storage 1: 334
 – bagasse 1: 321
 – baling dry material 1: 332
 – brown juice 1: 298
 – potato juice 1:
 – storage area, square bales 1: 335
 – storage investment cost 1: 337
 – storage loss 1: 335
storage polymer, PHA 1: 239
stover, economic benefit 1: 325
stover field value 1: 326
stover revenue, farmers income 1: 319
strain development 2: 371
straw 1: 333
 – baling 1: 333
 – LCF biorefinery 1: 26
 – world production 1: 51
straw species 2: 107
straw waste, wood saccharification 1: 10
Streptomyces setonii 1: 179, 245
strip till 1: 329
strong acid addition, lactic acid 2: 386
structural features, lignin 2: 155
structure-based design, enzyme improvement 1: 369
structure–function relationship, EG 1: 370
styling, ilex resin 2: 440
substance classes, apple-peel wax 2: 433
substrate recalcitrance 1: 204
succinate fermentation 2: 369
succinate strain FZ 21 2: 371
succinic acid 1: 149, 2: 35
– catalytic transformations 2: 372
– conversion 2: 375
– derivatives 2: 373
– fermentation 1: 378, 2: 369–372
– model building block 2: 367–379
– wheat flour milling byproducts 1: 172
sucrose 1: 70
– catalytic oxidation 2: 39
– conversion 2: 18
– ethanol raw material 1: 197–198
– sucrose-6,6′-dicarboxylic acid 2: 46
– sucrose-based biorefinery 1: 68
– sucrose fatty acid monoesters 2: 13
sugar 1: 209
– analysis 1: 299
– bulk-quantity prices 2: 4
– chemical conversion 2: 37–40
– contained in biomass 2: 3–59
– fermentable 1: 68
– fermentation problems 1: 146
– increasing demand 1: 67
– juice fraction 1: 274
– mixed 1: 98
– non-food industrial uses 2: 7–14
– nonionic surfactants raw materials 2: 306
– plant contents 1: 265
– simple 2: 5
– thermochemical conversion 2: 360
– yield 1: 130
sugar acids, chemical route 1: 402–405
sugar and starch bioproducts 2: 356
sugar-based biorefinery 1: 209
sugar-based chemicals 1: 14
sugar-based olefinic polymers 2: 47
sugar-based surfactants 2: 11–12
sugar beet 2: 410
sugar biorefinery 1: 70
sugar cane industry, Brazil 1: 209–211
sugar cane processing 1: 211
– steps 1: 222
sugar composition, dependence on harvesting time 1: 265
sugar content, brown juice 1: 303
sugar conversion, efficiency 1: 136
sugar crops 1: 45
sugar derivatives 2: 48
– polymerizable 2: 40–47
sugar feedstock, carbohydrate sources 2: 385
sugar fermentation 1: 194, 206–207
– poly(3-hydroxybutyric acid) 1: 217
– sulfite pulp process 1: 8
sugar mill 1: 210
– poly(3-hydroxybutyric acid) production 1: 221
sugar platform 1: 32
– intermediate 1: 31
sugar production 1: 5
sugar residues, Lolium perenne 1: 264
sugar syrup 1: 222
sugar transformations, prototype 2: 19
sugarcane bagasse 1: 74
sulfite pulp process, historical improvement 1: 8
sulfite pulping industry 2: 189
– lignosulfonates 2: 168–169
sulfite pulping process 2: 172
Sulfolobus sulfataricus P2 1: 80
Sulfolobus tokodaii strain 7 1: 80
sulfonated Kraft lignin, dye dispersants 2: 191
sulfur, lignin structure 2: 171
sulfur-bearing gases, catalyst poisoning 1: 234
sulfur-containing components, removal 2: 350
sulfur emissions, diesel 1: 153
sulfuric acid, hydrolysis of cellulose 1: 130
sunflower 2: 280
surface cover, fields 1: 324
surfactants
– carbohydrate-based 2: 305
– cationic 2: 412
– classification 2: 301
– nonionic 2: 272
– oil-based 1: 90
– production 2: 302
– sugar-based 2: 11–12
– vegetable oil 2: 301
– worldwide market 2: 303
sustainability 1: 92, 96
– biomass 1: 106
– biorefining systems 1: 56–65
– economic drivers 1: 381
– integrated biorefining systems 1: 60–65
– sustainable development 2: 253
sustainable production 2: 448
sweet potato, starch production 2: 71
sweeteners, alternative 2: 62
switchgrass, polyhydroxybutyrate source 1: 283
swollenin, enzymatic hydrolysis 1: 365
syngas 1: 26, 30–31, 46, 98, 126, 157, 2: 361
 – composition 1: 232
 – platform 1: 31–32
 – product family tree 1: 33
 – technology 1: 240–241
syntheses 1: 123
 – lactic acid 2: 382
 – lipase-catalyzed 2: 270–272
 – petroleum compounds 1: 119
 – with oils and fats 2: 253–289
synthesis gas 1: 182
synthesis of structure, petrochemistry 1: 123
synthetic biofuels 1: 30
synthetic biopolymesters 2: 41
synthetic rubber 1: 131

tablet coatings 2: 88
tack 2: 186
tall oil fatty acid 2: 297
Tamilflu, synthesis 2: 30
tapioca 2: 70–71
tapioca starch production 2: 70
tar-formation, acid hydrolysis 1: 144
target chemicals, biobased 1: 14, 16
target crops, feedstock production 1: 15
tars, undesirable 1: 231
technical constraints, MAAP 2: 209
technical prerequisite, cellulosic biorefineries 1: 55–56
technoeconomic factor, dominant 1: 53–54
technological outline, biorefinery systems 1: 4–8
technological pathways, transformation process 1: 87
temperature adjustment 1: 79
temperature transition, inverse 2: 219
temporary functional scaffoldings 2: 239
terpenes 1: 91
terrestrial biomass, content 2: 3
tetrahydrofuran see THF
tetrahydroxybutyl side-chain, furans 2: 19
tetrapyrrrole structures 2: 328
TEWL 2: 434
textile-glass-fiber-industry, starch usage 2: 91
textile industry, starch usage 2: 85
The Netherlands, bio-based industry 1: 93–96
thermal addition of alkanes 2: 264

Thermatoga maritima 1: 80
thermochemical biorefinery concept,
ECN 1: 104
thermochemical conversion 1: 31
 – biomass processing 1: 98
 – catalytic 2: 356
 – oils 2: 361
 – optimization 1: 108
 – sugars 2: 360
thermochemical liquefaction 1: 123
thermochemical processing, biomass 1: 249
thermochemical refinery 1: 101–103
thermogravimetric analyses, feedstock 1: 156
Thermoplasma acidophilum, microorganisms 1: 80
thermoplastic polymer, PLA 2: 381
thermoplastics 2: 225
 – adhesive film 1: 282
 – thermoplastic 1: 215
thermoset resins 2: 184
THF 1: 149, 2: 373
thickeners, textile-printing 2: 86
threonine
 – biomass building blocks 1: 22
 – markets 2: 207
Tiemann, F. 1: 7
Tilgham, B.C. 1: 6
tillage effect, soil carbon loss 1: 328
tillage practice 1: 330–331
tin-catalyzed lactide polymerization 2: 391
tin hydride radical chemistry 2: 261
tin octoate catalyzed polymerization, lactide 2: 393
TNPP, melt stability improvement 2: 399
tocopherols 2: 319–320
toxicity 2: 212
TPA, synthesis 2: 134
traffic congestion 1: 338
traffic problems, feedstock 1: 338–339
tragacanth, substitute 2: 62
transepidermal water loss 2: 434
transesterification, sucrose fatty acid monoesters production 2: 13
transition metal-catalyzed syntheses, aromatic compounds 2: 259
transition metal metathesis, olefins 2: 259
transport
 – baling dry material 1: 332
 – crops 1: 337
transportation fuels, biomass share 1: 14, 16
Treibs’s scheme, petroporphyrin formation 2: 332
Subject Index

496

triacylglycerides 1: 121–122
Trichoderma 1: 201–202
Trichoderma cellulase 1: 75
– enzymes 1: 204
Trichoderma reesi 1: 77, 130, 134, 365, 375
– cellulase development 1: 366
– enzyme improvement 1: 369
– GH families 1: 373
– protein secretion 1: 372
Trichoderma viride 1: 134
Trichomes 1: 183
Trifolium pratense
– economic importance 1: 284
– press cake fibers 1: 281
triglyceride oils, hydroxyl-functional 2: 298
triglycerides 1: 121–122, 2: 294
tris(nonylphenyl) phosphite 2: 399
truck transport, feedstock 1: 338
tunneling, dry-jet process 2: 88
turpentine, crude 1: 91
two platforms concept 1: 31
– biorefinery 1: 24
two-use ethic 1: 116
two-uses ethics, MSW 1: 126

u
Udic–Rheinau process 1: 131
Umbellularia californica 2: 280
unicarbonotroph 1: 239
unicarbonotrophic acetogens, syngas fermentation 1: 233
United States, biomass conversion 2: 352–353
unsaturated fatty acids
– dimerization 2: 297
– epoxidation 2: 254–257
– microbial hydration 2: 272–273
– nucleophilic addition 2: 265
unsaturated fatty compounds, reactions 2: 254–266
unsaturated N-heterocycles, sugar-derived 2: 24
updraft gasifiers 1: 231
US patent and trademark office 2: 245–249
USPTO 2: 245–249
Ustilago maydis DSM 4500 2: 274

v
γ-valerolactone see GVL
value-added byproducts
– bran-rich wheat fractions 1: 178
– oat bran-rich fractions 1: 185–187
value-added components, bran-rich wheat fractions 1: 175
value-added products 2: 360
value chain approach, biomass processing 1: 97
vanillin 1: 7, 179, 2: 30
vegetable oil
– emulsifiers 2: 301
– nonionic surfactants raw materials 2: 306
vegetable oil epoxides, PVC stabilizers 2: 256
vegetable oils 1: 121, 2: 254, 291
– chemo-enzymatic epoxidation 2: 256
vehicle production, lignin 2: 196–197
Vertec 2: 10
vic-dihydroxy fatty acids 2: 257–258
vigorizing mixing, starch modifications 2: 77
vinegar-like proteins, repulsion 2: 218
vinyl acetate, glucose product family 1: 21
vinylsaccharides 2: 47
viscosity, starch 2: 73
viskose process, history 2: 102
vital wheat gluten 1: 180
vitamin A source, carotenoids 2: 320
vitamin E source 2: 319
vitamins 2: 14–15
– analysis 1: 299
– juice fraction 1: 274
– wheat 1: 169
vitriol oil 2: 99
von Walden, P. 1: 8

wagnons, self loading and unloading 1: 319
waste biomass 1: 259, 2: 452
– biorefinery products 1: 11
waste-products, processing 1: 8
waste streams, cost generator 1: 96
waste treatment costs 1: 53
waste water treatment 1: 347
wastes, biorefinery 1: 56
water, enantioselective addition 2: 273
water-gas shift reaction, syngas production 1: 230
water-retentive properties, chitosonium salts 2: 420
water-solubility, chitosan 2: 417
water-splitting electrodialysis 2: 387
watersoluble carbohydrates see WSC
wax, isolating 2: 432
wax coating, apple 2: 431
wax esters, apple-peel wax components 2: 433
waxy maize, starch production 2: 66
western immunoblot technique, purity 2: 230–231
wet fractionation 1: 257, 271–273
– green biomass 1: 29–30
wet mill-based biorefinery
– products 1: 29–31
– whole crop 1: 28
wet mill refinery 1: 346–347
wet-milling 1: 48, 70
– corn 2: 367
wet oxidation, pretreatment 1: 363
wet storage
– bagasse 1: 323
– silage 1: 334
wheat 2: 66
– chemical composition 1: 169
– composition 1: 167
wheat-based biorefinery, schematic 1: 177
wheat flour, secondary processing 1: 169–173
wheat flour milling byproducts
– annual amount 1: 173
– biorefinery 1: 171
wheat germ 1: 179
wheat germ oil, purified 1: 179
wheat kernel
– exploitation 1: 180–183
– morphology 1: 168
wheat milling efficiency, increase 1: 173
wheat separation processes, advanced 1: 173–176
wheat starch production 2: 68
wheat straw
– ethanol production 1: 193
– world production 1: 51
wheat tillage practice 1: 331
wheatfeed 1: 296
whey 1: 296
white biotechnology 2: 445
white-rot fungi 2: 151
whole-crop biorefinery 1: 24, 26–29, 165–191
– products 1: 27
window of processibility, PHB 1: 216
winter cover crop 1: 216
wood chemicals 2: 357
wood chemistry, origin 1: 10
wood hydrolysies 1: 5
wood-hydrolysis pilot plant, US 1: 131
wood processing, LCF biorefinery 2: 112
wood saccharification 1: 5–6
woody biomass 1: 245
woody crops 1: 45
WSC 1: 146
– press cake 1: 257
x
xanthophylls 1: 257, 2: 321
XPS 2: 435
X-ray photoelectron spectroscopy 2: 435
xylan 1: 129, 2: 108
xylan/xylose product line 2: 120
xylitol 2: 121
xylitol/arabinitol, basic biobased chemicals 1: 22
xylitol source, esparto grass 1: 283
xyloglucan 1: 360
xyloloidin, history 2: 99
xylonic acid, biomass building blocks 1: 22
xylose
– crystals 2: 121
– fermentation problems 1: 146
– monomeric 1: 198
x-xylene, pyrazole synthesis 2: 26
y
yeast
– ascomycetous 2: 7
– ethanol production 1: 194, 206
yeast extract, MAAP processes 2: 211
z
Z. mobilis see Zymomonas mobilis
zeolites 1: 278
zwitterion, betaine 2: 411
Zymomonas 1: 206
Zymomonas mobilis 1: 133, 2: 7, 108, 210