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1.1
Introductory Remarks

Equilibrium binding or association of twomolecules to form a bimolecular complex,
AþB,AB, is a thermodynamic event. This chapter will cover some of the
fundamental thermodynamics and statistical mechanics aspects of this event. The
aim is to introduce general principles and broad theoretical approaches to the
calculation of binding constants, while later chapters will provide examples. Only
the noncovalent, bimolecular association under ambient pressure conditions will be
considered. However, extension to higher order association involves no additional
principles, and extension to high pressure by inclusion of the appropriate pressure–
volume work term is straightforward. In terms of the binding reaction above, the
association anddissociation constants are defined asK¼ [AB]/[A][B] andKD¼ [A][B]/
[AB] respectively, where [] indicates concentration. Either K or KD is the primary
experimental observable measured in binding reactions. KD is sometimes obtained
indirectly by inhibition of binding of a different ligand as aKi. Froma thermodynamic
perspective, the information content from K, KD, and Ki is the same.

1.2
The Binding Constant and Free Energy

To connect the experimental observable K to thermodynamics, one often finds in the
literature the relationship

DGbind ¼ �kT ln K; ð1:1Þ
where k is the Boltzmann constant, T is the absolute temperature, and DGbind is the
�absolute� or �standard� binding free energy. Several comments are given to avoid
misuse of this expression. First, one cannot properly take the logarithm of a quantity
with units such as K, so Eq. (1.1) is implicitly

DGbind ¼ �kT ln
K
Vref

; ð1:2Þ
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whereVref is the reference volume in units consistent with the units of concentration
inK, that is, 1 l/mol or about 1660A

� 3/molecule formolarity units. The choice ofVref is
often referred to as the �standard state� problem. Equivalently, one says thatDGbind is
the free energy change when reactants A and B and the product AB are all at the
reference concentration. Second, although the units of concentration used in K are
almost always moles/liter, this is entirely a convention, so the actual numerical value
for DGbind obtained from Eq. (1.2) is arbitrary. Put another way, any method for
calculating the free energy of bindingmust explicitly account for a particular choice of
Vref before it can meaningfully be compared with experimental values of DGbind

obtained using Eq. (1.2). Furthermore, ligand efficiency-type measures, such as
DGbind/nwhere n is the number of heavy atoms in a ligand or themolecular weight of
a ligand [1], can change radically with (arbitrary) choice of concentration units. Of
course, differences inDGbind can be sensibly compared provided the same reference
state concentration is used. Finally, in Eq. (1.2), the free energy actually depends on
the ratio of activities of reactants and products, not on concentrations. For neutral
ligands andmolecules of low charge density at less thanmicromolar concentrations,
the activity and concentration are nearly equal and little error is introduced.However,
this is not true for high charge density molecules such as nucleic acids and many of
the ligands and proteins that bind to nucleic acids.Here, the activity coefficient can be
substantially different from unity even at infinitely low concentration. Indeed, much
of the salt dependence of ligand–DNAbinding can be treated as an activity coefficient
effect [2–4]. The issue of standard state concentrations, the formal relationship
between the binding constant and the free energy, and the effect of activity
coefficients are all treatable by a consistent statistical mechanical treatment of
binding, as described in Section 1.3.

1.3
A Statistical Mechanical Treatment of Binding

Derivation of a general expression for the binding constant follows closely the
approach of Luo and Sharp [5], although somewhat different treatments
using chemical potentials, which provide the same final result, are given else-
where [6–8]. It is a statistical mechanical principle that any equilibrium observable
can be obtained as an ensemble, or Boltzmann weighted average, of the appropriate
quantity. Here, the binding constant K¼ [AB]/[A][B] is the required observable.
Consider a single molecule each of A and B in some volume V (Figure 1.1) and for
convenience define a coordinate system centered on B (the target) in a fixed
orientation. Over time, the ligand (A) will explore different positions and orientations
(poses) relative to B, where r andV represent the three position and three orientation
coordinates of A with respect to B. Now A and B interact with each other with an
energy that depends not only on their relative position (r,V) but in general also on the
conformations of A, B, and the surrounding solvent. If na, nb, ns are the number of
atoms in A, B, and solvent, then the energy is a function of 3naþ 3nbþ 3ns� 6
coordinates. In principle, one could keep all these degrees of freedomexplicit. Froma
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practical standpoint, this would be a complicated and expensive function to evaluate.
However, one may integrate over the solvent coordinates and the (3na� 6)þ
(3nb� 6) internal coordinates so that the interaction between A and B for a given
(r, V) is described by an interaction potential of mean force (pmf) v(r, V). If one
defines the pmf between A and B at infinite separation in their equilibrium
conformations to be 0, then v(r, V) is the thermodynamic work of bringing A and
B from far apart to some mutual pose (r,V), accounting for both solvent effects and
internal degrees of freedom of A and B. A will sample each pose (r, V) with a
probability given by the Boltzmann factor of the pmf:

pðr;VÞ / e�bvðr;VÞ; ð1:3Þ
whereb¼ 1/kT. Indeed, onemay consider the pmf to be definedby this equation. The
binding constant will then be given by the fraction of time A is in the bound state, fab,
relative to that in the free state, ff:

K ¼ ½AB�
½A�½B� ¼

fab=V
ðff=VÞðff=VÞ �!

V !¥
fabV ; ð1:4Þ

where in the dilute limit ff ! 1. It is convenient to introduce a functionH(r,V) that
takes a value of 1 for poses where A is bound and a value of 0when it is free. Then, the
fraction of the time A is bound is given by the ensemble average of H:

fab ¼
ð
dr dVHðr;VÞe�bvðr;VÞ=

ð
dr dVe�bvðr;VÞ: ð1:5Þ

The integrals are taken over all orientations and over the entire volume of the
solution, so the denominator gives 8p2V. Substituting into Eq. (1.4), the final
expression for the association constant is

Figure 1.1 Schematic illustration of two molecules A and B interacting through solvent with a
potential of mean force v as a function of their relative position r and orientation V.
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K ¼ 1
8p2

ð
dr dVHðr;VÞe�bvðr;VÞ: ð1:6Þ

One may then convert this to an �absolute� binding free energy using Eq. (1.2):

DGbind ¼ kT lnð8p2Vref Þ � kT ln
ð
dr dVHðr;VÞe�bvðr;VÞ: ð1:7Þ

. Equation 1.6 is a general and exact expression for the association constant. The
integral depends explicitly on just six variables describing the pose of A with
respect to B. The other degrees of freedom are included implicitly, but exactly
through the thermodynamic quantity v(r, V), the potential of mean force.

. The different treatment of coordinates for translation/orientation versus the
others is a formal one: Any subset of coordinatesmay in principle be kept explicit,
with the appropriate pmf being used for the rest. For example, one may keep the
internal coordinates of A and B explicit, making the solvent coordinates implicit.
The choice here is designed to highlight the translation/rotation contribution to
binding that has been widely discussed, with some disagreement, in the litera-
ture [5, 6, 9–13]. It also reflects the practical fact that in many docking and
screening applications, a particular pose is generated explicitly, that is, (r, V) is
specified, and then the pose is �scored� in some way. The pmf also provides a
natural way to introduce approximations necessary for any practical calculation of
K in biological systems, for example, in the treatment of solvent.

. The integral has the correct units of volume, with the length scale for the
translation coordinates being determined by the units of concentration used in
K. The first term in Eq. (1.7) is the contribution of the rotation/translation (R/T)
entropy in the unbound state, which depends on the reference concentration. The
integral term in Eq. (1.6) is the Boltzmann phase volume of the bound state.

. Through H(r, V), there is explicit consideration of what constitutes the bound
complex, in terms of the relative position and orientation of A with respect to B.
For example, if B has more than one binding site for A, this would be taken into
account in the specification of where H¼ 1.

. Either Cartesian coordinates or the bond length, bond angle, and dihedral angle
coordinates may be used. The trend now is toward the latter, as they lend
themselves more naturally to the analysis of different internal motions of the
molecules and their contribution to binding.

The meaning of Eq. (1.6) is illustrated by two simple examples.

1.3.1
Binding in a Square Well Potential

Let the pmf be approximated by a simple, three-dimensional square well potential of
depth e and width b in each of the x, y, z directions and the bound complex be the
region in the well only. From Eq. (1.6), the association constant is
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K ¼ b3ebe ð1:8Þ
and Eq. (1.2) yields

DGbind ¼ �eþ kT lnðVref=b
3Þ: ð1:9Þ

The first term, the well depth, makes a direct, linear contribution to the binding
free energy. The second term is positive and comes from the restriction of the ligand
to the square well. It is the translation entropy penalty for binding, and it depends on
the ratio of the volumes available to the ligand in the free state at say 1M (the entire
volume Vref) versus that in the bound state. In this simple example, there is no
rotational entropy penalty because in the bound state the ligand can rotate freely in
8p2 of orientation phase volume, just as in the free state. However, restriction in
rotation in the bound state will add another positive term to DGbind, the rotation
entropy penalty, with a similar form: kT ln(8p2/VV), where VV< 8p2 is the orien-
tation phase volume in the bound state. We can see even from this simple example
that for any meaningful degree of binding, the translational and rotational phase
volumes available to a ligand in the bound state must be less than Vref and 8p2,
respectively, so there is always a R/T entropy penalty to be overcome for binding to
occur. The question is how much is it in specific cases. A related point is that even
though the depth of the well may be known, for example, from some calculation (in
the parlance of the field, from a single point energy determination), this cannot be
directly compared with DGbind because the second term is not included. The
numerical value of the binding free energy depends on the reference concentration,
which is nowhere in the single point calculation.Oneway or another, the residual R/T
entropy of A in the bound state must be accounted for.

1.3.2
Binding in a Harmonic Potential

If one is starting from a known complex structure derived from, for example, X-ray,
NMR, or molecular mechanics minimization, one is presumably close to the
minimum energy (pmf) configuration. The pmf in this region may be close to
harmonic or at least expandable in a Taylor expansion, which to second order is
harmonic. It is, therefore, instructive to consider binding in a harmonic potential,
although this is a simplified model of the real situation. Let the potential well be a
three-dimensional harmonic potential of the form

vðrÞ ¼ e
r
b

� �2
� 1

� �
ðr < bÞ; vðrÞ ¼ 0ðr � bÞ; ð1:10Þ

where e is the depth of the well at the minimum, r is the radial distance from the
minimum, and b defines the width so that for r� b, v¼ 0 (Figure 1.2). Again, the
bound complex is defined to be the region in thewell only. Substituting Eq. (1.10) into
Eq. (1.6) and integrating, the association constant for this truncated harmonic
potential is
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K ¼ b3ebe 4p
X¥
n¼0

�1nðbeÞn
ð2nþ 3Þn!

 !
� b3ebe

p

be

� �3=2

: ð1:11Þ

The approximate equality comes from using an untruncated harmonic potential
(i.e., the potential goes to infinity as the complex is dissociated), which for this case
gives a binding free energy of

DGbind ¼ �eþ kT lnðVref=b
3Þ � 3=2kT lnðp=beÞ: ð1:12Þ

Comparing the square well and harmonic potential models, one sees that the
�depth� and �volume� factors, ebe and b3, contribute in the same way to the
binding constant, the difference being a �well shape� factor. We see from the form
of the expression for the association constant that the lower the pmf, the more the
contribution to the integral by that region, so most of the contribution to binding
should come from the near minimum energy configuration. This is illustrated in
Figure 1.2, using a well half-width of 2 A

�
and a depth of 19.6kT. These parameters

are chosen to give a moderate affinity of 10 mM – typical of the compounds studied
by virtual screening and docking calculations in early lead identification – with a
reasonable degree of motion in the binding pocket. It can be seen that almost all
the contribution to the binding constant comes significantly before reaching the
well boundary. Thus, the problem of giving the exact definition of the complex in

Figure 1.2 Contributions to the binding-phase
integral. Dotted line: Value of the integrand of
Eq. (1.6) at r. Solid line: Value of the resulting
integral from 0 to r. Both are expressed as a
percentage of the total association constant.

Contributions were calculated for a truncated
three-dimensional harmonicwell potential, half-
width 2 A

�
, and depth 19.6kT (inset) that has

Kd¼ 10mM.
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(r, V) space goes away if the binding well is more than a few kT deep, as it usually
is. Under these conditions, the untruncated harmonic well approximation in
Eq. (1.11), with its simpler form, is nearly exact. Note that most of the contribution
to the binding comes from conformations significantly away from the minimum,
here at distances of 0.25–0.75A

�
. This is property of the three-dimensional nature

of the binding well, and it occurs for the same reason that the Maxwell–Boltzmann
distribution of velocities is peaked at 3/2 kT, not at 0: The amount of phase volume
right at the minimum is small, but it increases as r2 as we move away. When
we add in the three degrees of rotational freedom in multiatom ligand binding, we
have a six-dimensional well and this effect will be even greater. The relative
contribution from the minimum will drop even more. The point to be drawn from
these simple models is that accurate calculation of a binding affinity cannot just
rely on the estimation of the well depth or use the minimum energy configuration
alone. Some sampling of configurations around the minimum, either explicit or
implicit, is needed. In docking studies, typically many poses are generated, but the
scoring is based only on the best pose. There is no reason why all the poses could
not be used to build up some estimation of the Boltzmann phase volume or at
least rank equally good Emin candidates accounting for the different number of
nearby poses.

1.4
Strategies for Calculating Binding Free Energies

1.4.1
Direct Association Simulations

Given the fundamental expression for the association constant, Eq. (1.7), the most
direct approach is to calculate the thermodynamic work of bringing the ligand into
the binding site. Starting from the unbound state, one applies a series of harmonic
positional and orientational restraining potentials that gradually maneuver the
ligand into the binding pocket [8, 14]. The probability distributions of the ligand
position/orientation are obtained from molecular dynamics (MD) for each restrain-
ing potential, corrected for the effect of the restraint, and spliced together to provide
the complete probability distribution, from which the change in pmf is obtained as
�kT ln (p(r, V)/punbound(r, V)). In this type of simulation, the ligand in the bound
state feels the harmonic restraint plus the potential from its binding partner. In the
unbound state, the ligand feels just the harmonic restraining potential, for which
one knows the reference state free energy (see Eq. (1.12)). Adding this to the
calculated change in pmf, one obtains the absolute binding free energy. This
approach is computationally intensive as one needs to simulate not only the bound
and free states but also many intermediate states. If an indirect route into the
binding site requires additional incremental restraining potential steps, this will
increase the computation. For this reason, atoms far from the binding site are
usually frozen in the simulation.
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Other approaches to the calculation of absolute binding free energies rely on
splitting up the contributions to DGbind in Eq. (1.7), combined with one or more
approximations. Several examples are presented here.

1.4.2
The Quasi-Harmonic Approximation

If one assumes that fluctuations around the minimum energy configuration are
Gaussian in distribution, which is equivalent to the assumption that the pmf is
harmonic, one may analytically integrate the Boltzmann probability factor in
Eq. (1.7) [15, 16]. Applied to the position and orientation degrees of freedom in
Eq. (1.6), this gives

DGbind ¼ kT lnð8p2Vref Þ þ vmin � kT
2

lnðð2pÞ6 detðCr;VÞÞ; ð1:13Þ

whereCr,V is the 6� 6 fluctuation covariancematrix of the three positional and three
orientation coordinates, namely, x, y, z, and a, sinb, c, when using a Cartesian
orientation angle coordinate set. The determinant is symbolized by det(. . .). The
matrix elements are given by Cx;y ¼ ðx � xÞðy � yÞh i and so on, where hi and the
overbar indicate an ensemble average. The first term of Eq. (1.13) is known.
Calculation of the remaining terms of Eq. (1.13) requires sampling r,V, for example,
bymolecular dynamics, to build upCr, V, in addition to the calculation ofvmin. Here,
vmin is the potential ofmean force at theminimum in r,V space: It contains solvation
terms, contributions from changes in the internal and intermolecular interaction
energies of A and B, and changes in fluctuations of A and B upon binding. Note that
because of this last contribution, vmin here is not just the difference in A and B free
energies evaluated at their conformational minima. In implementation of Eq. (1.13)
and in any of the methods discussed in this section where angular variable correla-
tions are accumulated, it is necessary to deal with the modulo 2p issue, either by
using complex variable representation [17] or by explicit handling of 0–2p crossing
events. Both the quasi-harmonic approximation and Schlitter�s quantummechanical
version of it [18] have been applied to calculate the R/Tentropy contribution of ligand
binding [19]. Both methods gave almost identical results.

One may apply the quasi-harmonic approximation still further to the internal
degrees of freedom of A and B to obtain

DGbind ¼ kT lnð8p2Vref Þ þ v�
min �

kT
2

ln ð2pÞ6 detðCr;V;A;BÞ
detðCAÞdetðCBÞ

� �
; ð1:14Þ

where Cr,V,A,B, CA, and CB are the coordinate fluctuation covariance matrices for the
complex and A and B alone, accounting for fluctuations in r, V in the complex and
internal degrees of freedom inA andB in the bound and free states. The factorization
in the denominator reflects the absence of correlation between A and B motions in
the unbound state. If r, V fluctuations are uncorrelated with internal motions,
Eq. (1.14) becomes
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DGbind ¼ kT ln
8p2Vrefffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ6 detðCr;VÞ
q

0
B@

1
CAþ v�

min �
kT
2

ln
detðCA;BÞ

detðCAÞ detðCBÞ
� �

;

ð1:15Þ
where the first term now represents the contribution from restriction in R/Tmotion
of the ligand upon binding. Implementation of Eqs. (1.14) and (1.15) requires
sampling of conformations of A and B in the bound state, for example, by molecular
dynamics, to build up the correlation matrices. In this form of the quasi-harmonic
model, v�

min is the pmf at the minimum of position, orientation, and internal
coordinates. Thus, it includes only the internal energy changes of A and B upon
binding, the direct interaction energy, and solvation. Application to protein–ligand
and protein–protein binding is relatively feasible. First, the method is in principle
less computationally intensive than the direct simulation of the full association pmf
in that only two states, the bound and free, are simulated. Second, the pmf can be
obtained using a combination of molecular mechanics minimization energy and
some implicit solvent model such as the Poisson–Boltzmann surface area (PBSA)
model [5, 20] or the generalized Born (GB) model [21–23]. The full quasi-harmonic
model has been applied with some success to binding [5, 19, 24], but in many cases
the assumption of Gaussian fluctuations in R/T and internal coordinates is
unrealistic [25].

1.4.3
Estimation of Entropy Contributions to Binding

The main limitation with quasi-harmonic models is in their estimation of R/T and
internal conformational entropy changes. A less restrictive approach can be devel-
oped by using better approximations for conformational entropy. We start by
regrouping the terms arising from fluctuations in Eq. (1.14) and breaking v�

min into
components:

DGbind ¼ ðUAB �UA �UBÞ þ 6kT
2

þ Gsolv
AB �Gsolv

A � Gsolv
B

� �
þkT lnð8p2Vref Þ

� kT
2

lnðð2peÞ3nAþ3nB�6 detðCr;V;A;BÞÞ

� � kT
2

lnðð2peÞ3nA�6 detðCAÞÞ � kT
2

lnðð2peÞ3nB�6 detðCBÞÞ
� �

:

ð1:16Þ

Thefirst line contains the contribution of internal energy and the direct interaction
energy of A and B. In addition, there is 1/2kT of potential energy for each degree
of freedom (by equipartition) acquired by the R/Tmotions upon complex formation.
These are all contributions to the enthalpy of binding. Then, there are solvation
free energy terms. The remaining terms are all entropic. The third line is the
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conformational entropy of the complex arising from internal motions of A and B and
R/T motion of A with respect to B. The last line is the conformational entropy
contributions from internal motions of free A and B. Thus,

DGbind ¼ DU þ 3kT þ DGsolv þ TSfreeR=T � T SconfAB � SconfA � SconfB

� �
: ð1:17Þ

Now we are free to use different approximations for the entropy. The exact
expression for the conformational entropy is

Sconf ¼ �k
ð
dqpðqÞ lnðpðqÞÞ; ð1:18Þ

where the multidimensional integral is taken with respect to all the coordinates q of
A, B, or AB as appropriate. In practice, the integral is of such high dimension that
adequate sampling is a challenge and some approximationsmust be introduced. The
simplest approximation is neglect of all correlations between different degrees of
freedom. Then,

Sconf � �k
Xn
i

ð
dqipðqiÞ lnðpðqiÞÞ; ð1:19Þ

where only one-dimensional probability density functions (pdfs) of each of the n
coordinates qi are needed. This would require the minimal amount of sampling.
Investigation with small ligands shows that correlations contribute significantly to
the entropy of binding [17, 24, 26]. The next step would be to include pairwise
correlations. This can be done within the quasi-harmonic model by factoring out
the leading entropy contribution, replacing it with the exact entropy expression
with no correlation – Eq. (1.19) – and treating only the correlations harmonical-
ly [27]. Thus,

Sconfqh ¼ k
2
lnðð2peÞn detðCijÞÞ ¼ k

2
lnðð2peÞn

Yn
i

CiiÞ þ k
2
lnðdetðRijÞÞ

! � k
Xn
i

ð
dqipðqiÞ lnðpðqiÞÞ þ k

2
lnðdetðRijÞÞ;

ð1:20Þ

where Rij is the correlation coefficient matrix, whose elements are the correlation

coefficients qi�qið Þðqj�qjÞh i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi	

qi�qið Þ2



ðqj�qjÞ2h i
q

. Another approach is to accumulate two-

dimensional and higher pdfs, either directly or as part of some expansion
[28–30]. For example, for a two-dimensional case, with coordinates q and s,

Sconf ðq; sÞ ¼ �k
Ð
d q dspðq; sÞ lnðpðq; sÞÞ

¼ �k
Ð
d q pðqÞ lnðpðqÞÞ � k

Ð
d q pðqÞ Ð d s pðsjqÞ lnðpðsjqÞÞ

¼ SðqÞ þ SðsÞ � Iq;s;

ð1:21Þ

12j 1 Statistical Thermodynamics of Binding and Molecular Recognition Models



where p(q, s) is the full two-dimensional pdf, p(s|q) is the marginal probability of s
given q, S(q) and S(s) are the uncorrelated entropies from q and s obtained from
one-dimensional pdfs as in Eq. (1.19), and Iq,s is the correction ormutual information
arising from the fact that fluctuations in q and s are not independent [31]. This
approach can be carried to higher order, although estimating three-dimensional and
higher pdfs would be extremely challenging for a protein [30]. Note that the true
entropy is always less than that from uncorrelated motions given by Eq. (1.19), thus
det(Rij)< 1, and Iq,s> 0. Avariety of othermethods based on approximating Eq. (1.18)
have been used to calculate molecular conformational entropies. These include the
hypothetical scanning approach [32], the nearest neighbor method [33], mining
minima [24, 34, 35], mode scanning [36], superposition approximations, [28] min-
imum information expansion and nearest neighbor methods [26, 37], and adaptive
density kernels [38, 39].

1.4.4
The Molecule Mechanics Poisson–Boltzmann Surface Area Method

A very practical hybrid method for calculating protein–ligand interactions is the
molecule mechanics Poisson–Boltzmann surface area (MMPBSA) method [40, 41].
One runs a molecular dynamics trajectory on the complex, protein and ligand,
postprocesses the snapshots, and computes the free energy of A, B, or AB as the
average of

G ¼ GPB þ Gnp þ EMM � TSsolute ð1:22Þ
over the snapshots. Since the snapshots are generated from an ensemble, they are
arithmetically averaged. In Eq. (1.22), GPB is the electrostatic solvation free energy
obtained from the Poisson–Boltzmann (PB) two-dielectric continuum electrostatics
model, using 78.6 for the water. Usually the internal dielectric is set to 1 since
orientational polarization effects are accounted for by atomicmotions during theMD
simulation [40], although an internal dielectric of 2 has been used to account for
electronic polarization [42]. Gnp is the nonpolar solvation term obtained from the
molecular surface area times the hydrophobic coefficient (usually�5 cal/(mol A

� �2)).
EMM is the molecular mechanics term, equivalent to the U term in Eq. (1.16). The
solute entropy term can be obtained by minimizing the snapshots and running a
normal mode calculation [43]. From the normal mode analysis, the harmonic model
provides the entropy contributions from the R/T mode frequencies and internal
motionmode frequencies. Then,DGbind¼GAB�GA�GB. To cut down the amount
of computation, the MMPBSA computation is often run only on the complex
trajectory. Uncomplexed structures are generated by omitting atoms of each binding
partner in turn [41]. This effectively omits any contribution of a change in average
conformation of protein and ligand to the binding. Contributions of changes in
internal and R/T entropy to binding would also not be included unless an entropy
calculation from, for example, normal modes is run on the complexed and uncom-
plexed structures.
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1.4.5
Thermodynamic Work Methods

The relative binding free energy of A0 with respect to A is defined as

DDGbind ¼ kT lnðK 0=KÞ; ð1:23Þ
where K0 and K are the two association constants. Here, there is no issue with a
reference state concentration. In addition, A and A0 are often closely related ligands.
Both factors permit a different set of methods to be applied than that in absolute
binding free energy calculations. Use is often made of the thermodynamic cycle:

ΔG1 
B  +  A  → AB 

ΔG3 ↓ ↓ ΔG4

B  +  A′  → A′B 
ΔG2

What is required is the difference DG2 –DG1. Instead, one may calculate the
thermodynamic equivalent DG4 –DG3. This requires only the computation of the
free energy difference due to changing the ligand in the bound and free states rather
than calculation of two binding events. The most exact methods compute the
thermodynamic work necessary to alchemically change A into A0, using either free
energy perturbation (FEP) or thermodynamic integration (TI) [44, 45]. Even for
relatively small differences, both methods usually require breaking up the change
into small steps, in which the Hamiltonian representing the ligand is changed
stepwise from A to A0 by means of a perturbation parameter l:

DG ¼
Xl¼1

l¼0

DGl; ð1:24Þ

where at l¼ 0, the ligand is A and at l¼ 1, the ligand is fully A0, and l is changed in
increments of dl. The free energy for each step is obtained using

DGl ¼ �kT ln ebðHðlþdlÞ�HðlÞÞ
D E

l
ð1:25Þ

for the free energy perturbation method, whereH(l) is the Hamiltonian for a value
of l and hil indicates an ensemble average over configurations generated usingH(l).
In practice, one obtains two DG contributions, forward (using H(lþ dl)) and
backward (usingH(l�dl)) froma single sampling. For thermodynamic integration,
one computes

DGl ¼ dl
dHðlÞ
dl

� �
l

: ð1:26Þ

The free energy obtained from FEP and TI used in this way contains all the terms
involved in binding implicitly, including changes in the R/T term. They are very
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general methods amenable to various levels of treatment, including explicit or
implicit solvent models, all atom models, and coarse-grained models. Since the
accuracy of FEP and TI equations requires rather small changes in l, they are very
computationally intensive, even for quite similar ligand pairs.

1.4.6
Ligand Decoupling

The binding–uncoupling method is also based on computation of thermodynamic
work [46, 47]. Here the parameter l operates on the part of the Hamiltonian that
describes the interaction between A and B. As it is decreased to zero, the binding
partners cease to see each other, and A becomes unbound from B. Again, either FEP
or TI may be used to compute the thermodynamic work of uncoupling. In order for
this method to provide a true free energy change, the unbound ligand must end in a
well-defined state vis-a-vis its translational freedom. A convenient state is a harmonic
translational body restraint. In this case, adding the decoupling work to the binding
free energy for a harmonic well via Eq. (1.12) provides the absolute binding free
energy for the given Vref. A known rotational body constraint in the unbound state
may also be added to enhance sampling and convergence [48].

1.4.7
Linear Interaction Methods

Anothermethod that uses the properties of a harmonicmodel is the linear interaction
energy (LIE) method. If a system is fluctuating in an effective harmonic potential,
then the response to some perturbation is linear. This enables one to approximate the
free energy change due to this perturbation or change in the system as [49]

DG � 1
2

DVah i � DVbh ið Þ; ð1:27Þ

where DV is the fluctuation in the potential energy in states a or b. Generalized
somewhat to binding, LIE expression is of the following form [50, 51]:

DGbind ¼
X
i

ai Vbound
i

	 
� V free
i

	 
� �
; ð1:28Þ

whereVi is a component of the potential energy function and the ensemble average hi
is taken over both the bound state (AB) and the free state for A and B, using, for
example,molecular dynamics. The components in Eq. (1.28) are those involved in the
interaction between A and B, namely, the nonbonded terms. In the original
formulation, these were the van der Waals (vdw) and electrostatic terms. Later an
apolar solvation or hydrophobic term was added [52], although further parameter-
ization shows some redundancy between this and the vdw term, so it is not clear if
both are needed. In a truly linear responsemodel, all the coefficientsaiwould be 1/2.
In practice, these are taken as adjustable parameters obtained byfitting themethod to
experimental binding free energies. An inconsistency in LIE model is that it has no
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explicit R/T term or explicit dependence on Vref, yet the numbers are compared with
absolute experimental binding free energies using the usual 1M reference.However,
themodel has been parameterized on awide range of ligand binding reactions, so it is
possible that the R/T term is implicitly included through the ai terms, which often
vary substantially from 1/2. Examination of Eq. (1.28) shows that themodel only uses
interaction potential terms in the calculated DGbind, although all the usual potential
energy terms are used in the simulations to generate the molecular and solvent
conditions fromwhich the averages are formed. Contributions from conformational
changes and conformational entropy changes upon binding are effectively subsumed
in the linear response by contributing to the change in average value of the different
Vi terms.

1.4.8
Salt Effects on Binding

Binding of charged ligands and proteins to DNA or binding between any kind of
highly charged molecules is strongly affected by salt concentration. As already
discussed, highly chargedmolecules have activity coefficients that differ significantly
fromunity at any concentration. This is because of the electrostatic energy of the ionic
double layer that forms around them. The salt dependence of binding is usually
expressed as

sðKÞ ¼ d ln K
d ln½Salt� ; ð1:29Þ

where s(K) is defined as the slope of a log–log plot of the binding constant versus salt
concentration. In many cases, this is linear over one–two decades of salt concen-
tration. From the dependence of the electrostatic free energy of the molecule on the
salt concentration, s(K) is given by [3, 4]

sðKÞ ¼ PAB �PA �PB; ð1:30Þ
where Px is the sum of the integrated excess/deficit of ions around molecule x:

Px ¼
X
i

ð
drci e�bziewðrÞ � 1
� �

; ð1:31Þ

where e is the unit proton charge. The sum is over all ion types i, of valence zi and bulk
concentration ci. The electrostatic potential at position r isw(r). The integration is over
the entire solvent volume. The ion integral components ofPx are closely related with
the Donnan coefficients and preferential interaction coefficients of that ion [2–4, 53]
and with the salt dependence of the activity coefficient of themolecule. Thesemay be
viewed as alternative descriptions of the same physical effect: enrichment of counter-
ions and depletion of coions near the molecule. s(K) for a particular system may be
obtained by calculatingP for the bound and free states, using the nonlinear Poisson–
Boltzmann model [54, 55] or Monte Carlo simulation of the preferential interaction
coefficients [56, 57]. Simpler models such as the counterion–condensation model
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predict that s(K) is simply the net charge of the ligand [58, 59]. Thismodel requires no
computation, but it fails when applied to a complex ligand such as a protein, where
charges are distributed over distances comparable to the molecular size away from
the binding interface.

Besides calculating s(K), PB model can also be used to calculate the net contri-
bution of salt to binding at a given salt concentration by evaluating the salt
contribution to DGsolv in Eq. (1.17). One simply recalculates the solvation energy
contributions with Salt¼ 0 and takes the difference.

1.4.9
Statistical Potentials

From the general expression for the association constant, Eqs. (1.6) and (1.3), one
finds that the pmf of interaction between the protein and the ligand determines the
relative probability of a pose (r,V). Apose will occur with a high probability if the pmf
is favorable. Since the pmf is a function of the type and arrangement of atomsbrought
together in the complex, it is reasonable to assume that a favorable pose will have an
arrangement of atoms that is seen with higher than average probability in other
protein–ligand complexes. This is the motivation behind the use of statistical or
knowledge-based potentials in binding [60–64]. Specifically, one analyzes the
arrangement of atoms brought together in terms of distances between pairs of
atoms, r(i, j), where one atom is in each of the binding partners. Then, in analogywith
the definition of a pmf, one can define a statistical potential of the form

wijðrÞ ¼ �kT ln pijðrÞ=p0ij
� �

; ð1:32Þ

where pij(r) is the database-derived probability that atoms of type i and j are found at a
distance r. p0ij is the important normalization factor for that pair type derived from the
distribution that one would expect if i and j were randomly distributed. The binding
free energy is then estimated as the sum of statistical potential terms over all ligand–
protein atom pairs.

The normalization constant in Eq. (1.32) must take into account the fact that near
the ligand one would expect less protein atoms on average, since the ligand is
occupying space, and vice versa [61]. Itmust also account for the fact that proteins and
ligands are offinite size, so at longer distances the probability offinding atompairs of
any type decreases [63]. A related aspect is that atoms near the surface of either
molecule will have less pairwise interactions, but more interaction with the solvent.
This latter interaction will greatly affect the binding free energy, but since it is not a
pairwise atomic interaction, it must be added in separately. This can also be done
through a solvent-accessible area-derived statistical potential [63] or implicit solvent
models such as PBSA andGBmodels. As the developers of statistical potentials have
made clear, they are not rigorous thermodynamic pmfs, since they are obtained from
many different static structures, not from a single equilibrium ensemble. Never-
theless, they do encode energetic information about complexes. One may think of
them as statistical similarity measures: A complex with a favorable statistical
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potential-derived free energy will have a strong statistical similarity with other high
affinity complexes.

1.4.10
Empirical Potentials

Equation 1.17 provides a conceptual starting point for more empirical methods for
computing DGbind. We assume that R/T, A, and B contributions to the conforma-
tional entropy of the complex can be separated into three components:
SR=T;A;B ¼ SboundR=T þ SboundA þ SboundB . We also separate the internal and interaction
energy components of the complex AB as UAB ¼ Ubound

A þUbound
B þUA�B. This

gives

DGbind ¼ DUA�B þ DUA þ DUB þ 3kT þ DGsolv � TDSR=T � TDSconfA � TDSconfB ;

ð1:33Þ
whereDUA andDUB are the changes in internal energy of A and B due to changes in
their conformation, and DSA

conf and DSB
conf are changes in the entropy of A and B

due to changes in their fluctuations upon binding. UA–B is the direct (in vacuo)
interaction energy between A and B in the complex.DGsolv is the change in solvation
free energy of A and B as they mutually desolvate each other upon binding.
DSR=T ¼ SboundR=T � Sf reeR=T is the change in ligand R/T entropy upon binding, relative
to the free state at the reference concentration. Typically, empirical binding potentials
assume a fixed value for the 3kTþ�TDSR/T term (to be determined by fitting), they
neglect the internal energy changes, and they use some kind of inventory of
interactions to estimate the net effect of the remaining terms, UA�B þ DGsolv�
TðDSconfA þ DSconfB Þ, by using a binding potential of the form

DGbind �
X

ciDGi þ C; ð1:34Þ

where C is a constant accounting for the R/T contribution, DGi is a free energy
contribution per interaction, and ci quantifies the number or extent of that interac-
tion, depending on how it is defined. So, H-bonding, for example, would be defined
in terms of the number of H-bonds and the strength of a single H-bond, whereas a
hydrophobic interactionmay be defined in terms of the strength per unit area and the
solvent-accessible area. Conformational entropy terms, if included, may be repre-
sented by rotamer counting or inventorying the number of rotatable bonds immo-
bilized by binding. The degree of resolution varies between potentials, so some may
define different classes of H-bonds depending on the groups involved, each with
different strength, or different surface free energy coefficients for different atoms or
groups. Interactions may be defined at the atomic, group, or residue level. Many
variants of empirical binding potentials exist. A seminal example is the SCORE
potential [66]. Despite the manifold forms of empirical potentials, the general
principle behind them is the same: separation of the free energy into a sum of
linear terms and determination of the strength of each interaction type by extensive
parameterization against experimental binding free energies. Because of this,
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empirical potentials are usually most successful when they are parameterized for a
specific subset of ligand–protein complexes and used within that set.

References

1 Hopkins, A.L., Groom, C.R., and Alex, A.
(2004) Ligand efficiency: A useful metric
for lead selection.Drug Discovery Today, 9,
430–431.

2 Record, T., Lohman, T., and de Haseth, P.
(1976) Ion effects on ligand–nucleic acid
interactions. Journal of Molecular Biology,
107, 145–158.

3 Sharp, K.A. (1995) Polyelectrolyte
electrostatics: salt dependence, entropic
and enthalpic contributions to free energy
in the nonlinear Poisson–Boltzmann
model. Biopolymers, 36, 227–243.

4 Sharp, K.A., Friedman, R., Misra, V.,
Hecht, J., andHonig, B. (1995) Salt effects
on polyelectrolyte–ligand binding:
comparison of Poisson–Boltzmann and
limiting law counterion binding models.
Biopolymers, 36, 245–262.

5 Luo, H. and Sharp, K.A. (2002) On the
calculation of absolute binding free
energies. Proceedings of the National
Academy of Sciences of the United States of
America, 99, 10399–10404.

6 Gilson, M.K., Given, J.A., Bush, B.L.,
and McCammon, J.A. (1997) The
statistical–thermodynamic basis for
computation of binding affinities: a
critical review. Biophysical Journal, 72,
1047–1069.

7 Swanson, J.M., Henchman, R., and
McCammon, J.A. (2004) Revisiting free
energy calculations: A theoretical
connection to MM/PBSA and direct
calculation of the association free energy.
Biophysical Journal, 86, 67–74.

8 Woo,H.-J. andRoux,B. (2005)Calculation
of absolute protein–ligand binding free
energy from computer simulations.
Proceedings of the National Academy of
Sciences of theUnitedStates of America,102,
6825–6830.

9 Janin, J. (1995) For Guldberg and Waage,
with love and cratic entropy. Proteins:
Structure, Function, and Genetics, 24,
R1–R2.

10 Tamura, A. and Privalov, P.L. (1997) The
entropy cost of protein association. Journal
of Molecular Biology, 273, 1048–1060.

11 Karplus,M. and Janin, J. (1999) Comment
on: �The entropy cost of protein
association�. Protein Engineering, 12,
185–186.

12 Murphy, K.P., Xie, D., Thompson, K.,
Amzel, M., and Freire, E. (1994) Entropy
loss in biological processes: estimate of
translational entropy loss. Proteins, 18,
63–67.

13 Amzel, L.M. (2000) Calculation of entropy
changes in biological processes: folding,
binding, and oligomerization. Methods in
Enzymology, 323, 167–177.

14 Deng,Y. andRoux,B. (2006)Calculation of
standard binding free energies: aromatic
molecules in the T4 lysozyme L99A
mutant. Journal of Chemical Theory and
Computation, 2, 1255–1273.

15 Karplus,M. andKushick, J. (1981)Method
for estimating the configurational entropy
of macromolecules. Macromolecules, 14,
325–332.

16 Levy, R., Karplus, M., Kushick, J., and
Perahia, D. (1984) Evaluation of the
configurational entropy for proteins:
application to molecular dynamics
simulations of an alpha helix.
Macromolecules, 17, 1370–1374.

17 Wang, J. and Bruschweiler, R. (2006) 2D
entropy of discrete molecular ensembles.
Journal of Chemical Theory and
Computation, 2, 18–24.

18 Schlitter, J. (1993) Estimation of absolute
and relative entropies of macromolecules
using the covariance matrix. Chemical
Physics Letters, 215, 617–621.

19 Carlsson, J. and Aqvist, J. (2005) Absolute
and relative entropies from computer
simulation with application to ligand
binding. The Journal of Physical Chemistry
B, 109, 6448–6456.

20 Prabhu, N.V., Zhu, P.-J., and Sharp, K.A.
(2004) Implementation and testing of

Referencesj19



stable, fast implicit solvation in molecular
dynamics using the smooth-permittivity
finite difference Poisson–Boltzmann
method. Journal of Computational
Chemistry, 25, 2049–2064.

21 Tsui, V. andCase, D.A. (2001) Calculations
of the absolute free energies of binding
between RNA and metal ions using
molecular dynamics simulations and
continuum electrostatics. The Journal of
Physical Chemistry B, 105, 11314–11325.

22 Still, C., Tempczyk, A., Hawley, R., and
Hendrickson, T. (1990) Semianalytical
treatment of solvation for molecular
mechanics and dynamics. Journal of the
American Chemical Society, 112,
6127–6129.

23 Dominy, B. and Brooks, C. (1999)
Development of a generalized Bornmodel
parameterization for proteins and nucleic
acids. The Journal of Physical Chemistry B,
103, 3765–3773.

24 Chang, C.A., Chen, W., and Gilson, M.K.
(2007) Ligand configurational entropy and
protein binding.Proceedings of theNational
Academy of Sciences of the United States of
America, 104, 1534–1539.

25 Chang, C.-E., Chen, W., and Gilson, M.K.
(2005) Evaluating the accuracy of the
quasiharmonic approximation. Journal
of Chemical Theory and Computation, 1,
1017–1028.

26 Killian, B.J., Yudenfreund Kravitz, J.,
Somani, S., Dasgupta, P., Pang, Y.-P., and
Gilson, M.K. (2009) Configurational
entropy in protein–peptide binding.
Journal of Molecular Biology, 389, 315–335.

27 Di Nola, A., Berendsen, H., and
Edholm, O. (1984) Free energy
determination of polypeptide
conformations generated by molecular
dynamics. Molecular Physics, 17,
2044–2050.

28 Killian, B.J., Kravitz, J., and Gilson, M.K.
(2007) Extraction of configurational
entropy from molecular simulations via
an expansion approximation. Journal of
Chemical Physics, 127, 024107.

29 Baron, R., Hunenberger, P.H., and
McCammon, J.A. (2009) Absolute single-
molecule entropies from quasi-harmonic
analysis of microsecond molecular
dynamics: correction terms and

convergence properties. Journal of
Chemical Theory and Computation, 5,
3150–3160.

30 Li, D.-W., Showalter, S., and
Bruschweiler, R. (2010) Entropy
localization in proteins. The Journal of
Physical Chemistry B, 114, 16036–16044.

31 Zhou, H.-X. and Gilson, M. (2009) Theory
of free energy and entropy in noncovalent
binding. Chemical Reviews, 109,
4092–4107.

32 Cheluvaraja, S. and Meirovitch, H. (2006)
Calculation of the entropy and free energy
of peptides by molecular dynamics
simulations using the hypothetical
scanning molecular dynamics method.
Journal of Chemical Physics, 125,
024905–024913.

33 Hnizdo, V., Darian, E., Fedorowicz, A.,
Demchuk, E., Li, S., and Singh, H. (2007)
Nearest-neighbor nonparametric method
for estimating the configurational entropy
of complex molecules. Journal of
Computational Chemistry, 28, 655–668.

34 Head, M.S., Given, J.A., and Gilson, M.K.
(1997) Mining minima: direct
computation of conformational free
energy.The Journal of Physical Chemistry A,
101, 1609–1618.

35 David, L., Luo, R., and Gilson,M.K. (2001)
Ligand–receptor docking with the mining
minima optimizer. Journal of Computer-
Aided Molecular Design, 15, 157–171.

36 Chang, C.-E., Potter, M.J., and
Gilson, M.K. (2003) Calculation of
molecular configuration integrals. Journal
of Physical Chemistry B, 107, 1048–1055.

37 Hnizdo, V., Tan, J., Killian, B.J., and
Gilson,M.K. (2008) Efficient calculation of
configurational entropy from molecular
simulations by combining the mutual-
information expansion and nearest
neighbor methods. Journal of
Computational Chemistry, 29, 1605–1614.

38 Hensen, U., Lange, O.F., and
Grubmuller, H. (2010) Estimating
absolute configurational entropies of
macromolecules: the minimally coupled
subspace approach. PLoS One, 5, e9179.

39 Hensen, U., Grubmuller, H., and
Lange, O.F. (2009) Adaptive anisotropic
kernels for nonparametric estimation of
absolute configurational entropies in

20j 1 Statistical Thermodynamics of Binding and Molecular Recognition Models



high-dimensional configuration spaces.
Physical Review E, 80, 011913.

40 Srinivasan, J., Cheatham Thomas, E., III,
Cieplak, P., Kollman, P.A., and Case, D.
(1998) Continuum solvent studies of the
stability of DNA, RNA and
phosphoramidate. Journal of the American
Chemical Society, 120, 9401–9409.

41 Kuhn, B. and Kollman, P.A. (2000)
Binding of a diverse set of ligands to avidin
and streptavidin. Journal of Medicinal
Chemistry, 43, 3786–3791.

42 Eriksson, M., Pitera, J., and Kollman, P.
(1999) Prediction of the binding free
energies of new TIBO-like HIV-1 reverse
transcriptase inhibitors using a
combination of PROFEC, PB/SA, CMC/
MD, and free energy calculations. Journal
of Medicinal Chemistry, 42, 868–881.

43 Chong, L., Duan, Y., Massova, I., and
Kollman, P. (1999) Molecular dynamics
and free-energy calculations applied to
affinity maturation in antibody 48G7.
Proceedings of the National Academy of
Sciences, 96, 14330–14335.

44 Lybrand, T., McCammon, J.A., and
Wipf, G. (1986) Theoretical calculation of
relative binding affinity in host–guest
system. Proceedings of the National
Academy of Sciences, 83, 833.

45 Beveridge, D. and DiCapua, F.M. (1989)
Free energy via molecular simulations:
applications to chemical and biomolecular
systems. Annual Review of Biophysics and
Biophysical Chemistry, 18, 431.

46 Hermans, J. and Shankar, S. (1986) The
free energy of xenon binding to
myoglobin from molecular dynamics
simulation. Israel Journal of Chemistry, 27,
225–227.

47 Roux, B., Nina, M., Pomes, R., and
Smith, J.C. (1996) Thermodynamic
stability of water molecules in the
bacteriorhodopsin proton channel: a
molecular dynamics free energy
perturbation study.Biophysical Journal, 71,
670–681.

48 Hermans, J. and Wang, L. (1997)
Inclusion of loss of translational and
rotational freedomin theoretical estimates
of free energies of binding. Journal of
the American Chemical Society, 119,
2707–2714.

49 Aqvist, J. and Hansson, T. (1996) On the
validity of electrostatic linear response in
polar solvents. The Journal of Physical
Chemistry, 100, 9512–9521.

50 Hansson, T., Marelius, J., and Aqvist, J.
(1998) Ligand binding affinity prediction
by linear interaction energy methods.
Journal of Computer-Aided Molecular
Design, 12, 27–35.

51 Zhou, R., Friesner, R.A., Ghosh, A.,
Rizzo, R.C., Jorgensen, W.L., and
Levy, R.M. (2001) New linear interaction
method for binding affinity calculations
using a continuum solvent model. The
Journal of Physical Chemistry B, 105,
10388–10397.

52 Jones-Herzog, D. and Jorgensen, W.L.
(1997) Binding affinities for sulfonamide
inhibitors with human thrombin using
Monte Carlo simulations with a linear
response method. Journal of Medicinal
Chemistry, 40, 1539.

53 Stigter, D. (1960) Interactions in aqueous
solutions: III. On statistical
thermodynamics of colloidal electrolytes.
The Journal of Physical Chemistry, 64, 838–
842.

54 Misra, V., Hecht, J., Sharp, K.,
Friedman, R., and Honig, B. (1994) Salt
effects on protein–DNA interactions: the
lambda cI repressor and EcoR1
endonuclease. Journal ofMolecular Biology,
238, 264–280.

55 Misra, V., Sharp, K., Friedman, R., and
Honig, B. (1994) Salt effects on ligand–
DNA binding: minor groove
antibiotics. Journal of Molecular Biology,
238, 245–263.

56 Olmsted, M.C., Anderson, C.F., and
Record, M.T. (1989) Monte Carlo
description of oligoelectrolyte properties
of DNA oligomers. Proceedings of the
National Academy of Sciences of the United
States of America, 86, 7766–7770.

57 Record, T., Olmsted,M., andAnderson, C.
(1990) Theoretical studies of the
thermodynamics of ion interaction with
DNA, in Theoretical Biochemistry and
Molecular Biophysics (eds. D. Beveridge
and R. Lavery), Adenine Press.

58 Manning, G. (1969) Limiting laws and
counterion condensation in
polyelectrolyte solutions 1: colligative

Referencesj21



properties. The Journal of Physical
Chemistry, 51, 924.

59 Friedman, R.A. and Manning, G.S. (1984)
Polyelectrolyte effects on site-binding
equilibria with application to the
intercalation of drugs into DNA.
Biopolymers, 23, 2671–2714.

60 Muegge, I. and Martin, Y.C. (1999) A
general and fast scoring function for
protein–ligand interactions: a simplified
potential approach. Journal of Medicinal
Chemistry, 42, 791–804.

61 Muegge, I. (2006) PMF scoring revisited.
Journal of Medicinal Chemistry, 49, 5895–
5902.

62 Gohlke, H., Hendlich, M., and Klebe, G.
(2000) Knowledge-based scoring function
to predict protein–ligand interactions.
Journal of Molecular Biology, 295, 337–356.

63 Gohlke, H. and Klebe, G. (2001) Statistical
potentials and scoring functions applied to
protein–ligand binding. Current Opinion
in Structural Biology, 11, 231–235.

64 Velec,H.,Gohlke,H., andKlebe,G. (2005)
DrugScore(CSD)-knowledge-based
scoring function derived from small
molecule crystal data with superior
recognition rate of near-native ligand
poses and better affinity prediction.
Journal of Medicinal Chemistry, 48,
6296–6303.

65 Bohm, H.J. (1994) The development of a
simple empirical scoring function to
estimate the binding constant for a
protein–ligand complex of known
three-dimensional structure. Journal
of Computer-Aided Molecular Design, 8,
243–256.

22j 1 Statistical Thermodynamics of Binding and Molecular Recognition Models


