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Protein Structural Databases in Drug Discovery
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1.1
The Protein Data Bank: The Unique Public Archive of Protein Structures

1.1.1
History and Background: A Wealthy Resource for Structure-Based
Computer-Aided Drug Design

The Protein Data Bank (PDB) was founded in the early 1970s to provide a
repository of three-dimensional (3D) structures of biological macromolecules.
Since then, scientists from around the world submit coordinates and informa-
tion to mirror sites in the Unites States, Europe, and Asia. In 2003, the Research
Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB,
USA), the Protein Data Bank in Europe (PDBe) – the Macromolecular Structure
Database at the European Bioinformatics Institute (MSD-EBI) before 2009, and
the Protein Data Bank Japan (PDBj) at the Osaka University formally merged into
a single standardized archive, named the worldwide PDB (wwPDB, http://www
.wwpdb.org/) [1]. At its creation in 1971 at the Brookhaven National Laboratory,
the PDB registered seven structures. With more than 75 000 entries in 2011, the
number of structures being deposited each year in PDB has been constantly
increasing (Figure 1.1).
The growth rate was especially boosted in the 2000s by structural genomics

initiatives [2,3]. Research centers from around the globe made joint efforts to
overexpress, crystallize, and solve the protein structures at a high throughput
for a reduced cost. Particular attention was paid to the quality and the utility of
the structures, thereby resulting in supplementation of the PDB with new folds
(i.e., three-dimensional organization of secondary structures) and new functional
families [4,5].
The TargetTrack archive (http://sbkb.org) registers the status of macromolecules

currently under investigation by all contributing centers (Table 1.1) and illustrates
the difficulty in getting high-resolution crystal structures, since only 5% targets
undergo the multistep process from cloning to deposition in the PDB.
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If only 450 complexes between an FDA-approved drug and a relevant target are
available according to the DrugBank [6], the PDB provides structural information
for a wealth of potential druggable proteins, with more than 40 000 different
sequences that cover about 18 000 clusters of similar sequences (more than 30%
identity).
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Figure 1.1 Yearly growth of deposited structures in the Protein Data Bank (accessed August 2011).

Table 1.1 TargetTrack status statistics.

Status Total
number
of targets

Relative to
“cloned”
targets (%)

Relative to
“expressed”
targets (%)

Relative to
“purified”
targets (%)

Relative to
“crystallized”
targets (%)

Cloned 192 735 100.0 — — —

Expressed 120 526 62.5 100.0 — —

Soluble 35 436 18.4 29.4 — —

Purified 45 105 23.4 37.4 100.0 —

Crystallized 14 472 7.5 12.0 32.1 100.0
Diffraction-quality
crystals

7059 3.7 5.9 15.7 48.8

Diffraction 7522 3.9 6.2 16.7 52.0
NMR assigned 2262 1.2 1.9 5.0 —

HSQC 3409 1.8 2.8 7.6 —

Crystal structure 4953 2.6 4.1 11.0 34.2
NMR structure 2136 1.1 1.8 4.7 —

In PDB 8618 4.5 7.2 19.1 45

Accessed August 2011.
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1.1.2
Content, Format, and Quality of Data: Pitfalls and Challenges
When Using PDB Files

1.1.2.1 The Content
The PDB stores 3D structures of biological macromolecules, mainly proteins (about
92% of the database), nucleic acids, or complexes between proteins and nucleic
acids. The PDB depositions are restricted to coordinates that are obtained using
experimental data. More than 87% of PDB entries are determined by X-ray
diffraction. About 12% of the structures have been computed from nuclearmagnetic
resonance (NMR) measurements. Few hundreds of structures were built from
electron microscopy data. The purely theoretical models, such as ab initio or
homology models, are no more accepted since 2006. For most entries, the PDB
provides access to the original biophysical data, structure factors and restraints files
for X-ray andNMR structures, respectively. During the past two decades, advances in
experimental devices and computational methods have considerably improved the
quality of acquired data and have allowed characterization of large and complex
biological specimens [7,8]. As an example, the largest set of coordinates in the PDB
describes a bacterial ribosomal termination complex (Figure 1.2) [9]. Its structure
determined by electron microscopy includes 45 chains of proteins and nucleic acids
for a total molecular weight exceeding 2 million Da.

Figure 1.2 Comparative display of the largest macromolecule in the PDB (Escherichia coli
ribosomal termination complex, PDB code 1ml5, left) and of a prototypical drug (aspirin, PDB
code 2qqt, right).
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To stress the quality issue, one can note the recent increase in the number of crystal
structures solved at very high resolution: 90% of the 438 structures with a resolution

better than 1A
�
was deposited after year 2000.More generally, the enhancement in the

structure accuracy translates into a more precise representation of the biopolymer
details (e.g., alternative conformations of an amino acid side chain) and into the
enlarged description of the molecular environment of the biopolymer, that is, of
the nonbiopolymer molecules, also named ligands. Ligands can be any component of
the crystallization solution (ions, buffers, detergents, crystallization agents, etc.), but it
can alsobebiologically relevantmolecules (cofactors andprosthetic groups, inhibitors,
allosteric modulators, and drugs). Approximately 11 000 different free ligands are
spread across 70% of the PDB files.

1.1.2.2 The Format
The conception of a standardized representation of structural data was a requisite of
thedatabase creation. ThePDBformatwas thusborn in the1970s andwasdesigned as
a human-readable format. Initially based on the 80 columns of a punch card, it has not
much evolved over time and still consists in a flat file divided into two sections
organized into labeled fields (see the latest PDB file format definition at http://www
.wwpdb.org/docs.html). The first section, or header, is dedicated to the technical
description and the annotation (e.g., authors, citation, biopolymer name, and
sequence). The second one contains the coordinates of biopolymer atoms (ATOM
records), the coordinates of ligand atoms (HETATM records), and the bonds within
atoms (CONECTrecords). The PDB format is roughly similar to the connection table
of MOL and SD files [10], but with an incomplete description of the molecular
structure. In practice, no information is provided in the CONECTrecords for atomic
bondswithin biopolymer residues. Bond orders in ligands (simple, double, triple, and
aromatic) are not specified and the connectivity data may be missing or wrong. In
the HETATM records, each atom is defined by an arbitrary name and an atomic
element (as in the periodic table). Because the hydrogen atoms are usually not
represented in crystal structures, there are often atomic valence ambiguities in the
structure of ligands.
To overcome limits in data handling and storage capacity for very large biological

molecules, two new formats were introduced in 1997 (the macromolecular crystal-
lographic information file or mmCIF) and 2005 [the PDB markup language
(PDBML), an XML format derivative] [11,12]. They better suit the description of
ligands, but are however not widely used by the scientific community. There are
actually few programs able to read mmCIF and PDBML formats, whereas almost all
programs can display molecules from PDB input coordinates.

1.1.2.3 The Quality and Uniformity of Data
Errors and inconsistencies are still frequent in PDB data (see examples in Table 1.2).
Some of them are due to evolution in time of collection, curation, and processing of
the data [13]. Others are directly introduced by the depositors because of the limits in
experimental methods or because of an incomplete knowledge of the chemistry and/
or biology of the studied sample. In 2007, the wwPDB released a complete
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remediated archive [14]. In practice, sequence database references and taxonomies
were updated and primary citations were verified. Significant efforts have also been
devoted to chemical description and nomenclature of the biopolymers and ligands.
The PDB file format was upgraded (v3.0) to integrate uniformity and remediation
data and a reference dictionary called the Chemical Component Dictionary has
been established to provide an accurate description of all the molecular entities
found in the database. To date, however, only a few modeling programs (e.g., MOE1)

and SYBYL2)) make use of the dictionary to complement the ligand information
encoded in PDB files.
The remediation by the wwPDB yielded in March 2009 to the version 3.2 of the

PDB archive, with a focus on detailed chemistry of biopolymers and bound ligands.
Remediation is still ongoing and the last remediated archive was released in July
2011. There are nevertheless still structural errors in the database. Some are easily
detectable, for example, erroneous bond lengths and bond angles, steric clashes, or
missing atoms. These errors are very frequent (e.g., the number of atomic clashes in
the PDB was estimated to be 13 million in 2010), but in principle can be fixed by
recomputing coordinates from structure factors or NMR restraints using a proper
force field [15]. Other structural errors are not obvious. For example, a wrong protein
topology is identified only if new coordinates supersede the obsolete structure or if
the structure is retracted [16]. Hopefully, these errors are rare. More common and
yet undisclosed structural ambiguities concern the ionization and the tautomeriza-
tion of biopolymers and ligands (e.g., three different protonation states are possible
for histidine residues).

Table 1.2 Common errors in PDB files and effect of the wwPDB remediation.

Description of errors Impacted data Status upon
remediation

Invalid source organism Annotation Fixed
Invalid reference to protein sequence databases Annotation Fixed
Inconsistencies in protein sequencesa) Annotation Fixed
Violation of nomenclature in proteinb) Structure Fixed
Incomplete CONECTrecord for ligand residues Structure Partly solved
Wrong chemistry in ligand residues Structure Partly solved
Violation of nomenclature in ligandc) Structure Unfixed
Wrong coordinatesd) Structure Unfixed

a) In HEADER and ATOM records.
b) For example, residue or atom names.
c) Discrepancy between the structure described in the PDB file and the definition in the Chemical

Component Dictionary.
d) For example, wrong side chain rotamers in proteins.

1) Chemical Computing Group, Montreal, Quebec, Canada H3A 2R7.
2) Tripos, St. Louis, MO 63144-2319, USA.
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To evaluate the accuracy of a PDB structure, querying the PDB-related databases
PDBREPORTand PDB_REDO is a good start [15]. PDBREPORT (http://swift.cmbi
.ru.nl/gv/pdbreport/) registers, for each PDB entry, all structural anomalies in
biopolymers. PDB_REDO (http://www.cmbi.ru.nl/pdb_redo/) holds rerefined cop-
ies of the PDB structures solved by X-ray crystallography (Figure 1.3).

Figure 1.3 PDB_REDO characteristics of the 3rte PDB entry.
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The quality issue was recently discussed in a drug design perspective with
benchmarks for structure-based computer-aided methods [17–19]. A consensual
conclusion is that the PDB is an invaluable resource of structural information
provided that data quality is not overstated.

1.2
PDB-Related Databases for Exploring Ligand–Protein Recognition

The bioactive structure of ligands in complex with relevant target is of special
interest for drug design. During the last decade, many databases of ligand/protein
information have been derived from the PDB. Their creation was always motivated
by the ever-growing amount of structural data. Each database however has its own
focus, which can be a large-scale analysis of ligands and/or proteins in PDB
complexes, or training and/or testing affinity prediction, or other structure-based
drug design methods (e.g., docking). Accordingly, ligands are either thoroughly
collected across all PDB complexes or only retained if satisfying predefined
requirements. As a consequence, the number of entries in PDB-related databases
ranges from a few thousands to over 50 000 entries. These databases also differ
greatly in their content. This section does not intend to establish an exhaustive list.
We have chosen to discuss only the recent or widely used databases and to group
them according to their main purposes (Table 1.3).

1.2.1
Databases in Parallel to the PDB

The wwPDB contributors have developed free Web-based tools to match chemical
structures in the PDB files to entities in the Chemical Component Dictionary; the
Ligand Expo and PDBeChem resources are linked to the RCSB PDB and PDBe,
respectively, and provide the chemical structure of all ligands of every PDB file
[20,21]. A few other databases also hold one entry for each PDB entry. The Het-PDB
database was designed in 2003 at the Nagahama Institute of Bio-Science and
Technology to survey the nonbiopolymermolecules in the PDB and to draw statistics
about their frequency and interaction mode [22]. It is still monthly updated and
covers 12 000 ligands in the PDB. It revealed that the most repeated ligands in the
PDB were metal ions, sugars, and nucleotides, all of which can be considered as part
of the functional protein as a result of a posttraductional modification or as cofactors.
Another important database was developed at Uppsala University to provide
structural biologists with topology and parameters file for ligands [23]. This database
named HIC-Up was maintained until 2008 by G. Kleywegt, who now leads the
PDBe. Another useful service has been offered by the Structural Bioinformatics
group in Berlin: the Web interface of the SuperLigands database allows the search
for 2D and 3D similar ligands in the PDB [24]. The last update of SuperLigands was
made in December 2009. Other PDB ligand warehouses have been developed
during the last decade, but, like HIC-Up and SuperLigands, are not actively
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Table 1.3 Representative examples of PDB-related databases useful for drug design.

Databases Datesa) Content Web site

Repository of PDB ligands
Ligand Expo 2004- >13 000 different ligands ligand-expo.rcsb.org

Experimental and ideal coordinates of
ligands (PDB, SD, mmCIF formats)

PDBeChem 2005- >13 000 different ligands www.ebi.ac.uk/pdbe/
Experimental and ideal coordinates of
ligands (PDB, SD, mmCIF formats)

HET-PDB 2004- 12 262 different ligands in 74 732 PDB
files (August 2011)

hetpdbnavi.nagahama-i-
bio.ac.jp

Navigator only, no download
HiC-Up 1997–2008 7870 different ligands (March 2008) xray.bmc.uu.se/hiccup

Experimental and ideal coordinates of
ligands in PDB format. Dictionary files
(X-PLOR/CNS, O, TNT)

SuperLigands 2005–2009 10 085 different ligands in 401 300
complexes

bioinformatics.charite.de/
superligands/

Experimental coordinates of ligands in
PDB and MOL formats

Experimental binding affinities
PDBBind 2004- Affinity data for 7986 PDB complexes http://www.pdbbind.org.cn
Binding
MOAD

2005- Affinity data for 4782 PDB complexes www.bindingmoad.org

BindingDB 2001- 721 721 affinity data for 60 179
proteins and 316 172 ligands,
including PDB complexes

www.bindingdb.org/bind

ChEMBL 2008- >5 million affinity data for 8603
proteins and >1 million ligands,
including PDB complexes

www.ebi.ac.uk/chembl

Structural description of protein-ligand complexes
Relibase 2003- Experimental coordinates of the

complex (in PDB and MOL2 format) or
of the isolated ligand (in SD and MOL2
format)

relibase.ccdc.cam.ac.uk

sc-PDB 2006- 9891 protein–ligand complexes with
refined hydrogen atom positions

bioinfo-pharma.u-strasbg
.fr/scPDB/

Separate coordinates for ligands (SD
and MOL2 format), protein (PDB and
MOL2 format), and active site (MOL2
format)

PSMDB 5266 nonredundant protein–ligand
complexes

compbio.cs.toronto.edu/
psmdb

Separate coordinates for ligands (SD
format) and proteins (PDB format)

a) The year of database creation is that of relative primary publication. It is followed by the year of the
database last updated (- indicates that the database is still updated).
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maintained, since the RCSB PDB and the PDBe directly integrate most of their data
or services.

1.2.2
Collection of Binding Affinity Data

A few databases collect binding affinities such as experimentally determined
inhibition (IC50, Ki) or dissociation (Kd) constant for PDB complexes. The larger
ones are Binding MOAD, PDBbind, and BindingDB [25–27]. Both Binding MOAD
and PDBbind were developed at the University of Michigan, and have in common
the separation of biologically relevant PDB ligands from invalid ones, such as salts
and buffers. Their focuses are however different. For example, PDBbind disregards
any complex without binding data, whereas Binding MOAD groups proteins into
functional families and chooses the highest affinity complex as a representative.
BindingDB considers only potential drug targets in the PDB, but collects data for
many ligands that are not represented in the PDB.
In all cases, data gathering implies the manual review of the reference

publications in PDB files and, more generally, expert parsing of scientific litera-
ture. BindingDB also contains data extracted from two other Web resources,
PubChem BioAssay and ChEMBL. PubChem BioAssay database at the National
Center for Biotechnology Information (NIH) contains biological screening
results. ChEMBL is the chemogenomics data resource at the European Molecular
Biology Laboratory. It contains binding data and other bioactivities extracted from
scientific literature for more than a million bioactive small molecules, including
many PDB ligands.
Affinity databases were recently made available from two of the wwPDB mirror

sites. The RCSB PDB Web site now includes hyperlinks to the actively maintained
ones, BindingDB and BindingMOAD. The PDBe Web site communicates with
ChEMBL.

1.2.3
Focus on Protein–Ligand Binding Sites

As already described, RCSB PDB and PDBe resources currently provide chemical
description and 3D coordinates for all ligands in the PDB. They also provide tools for
inspection of protein–ligand binding (Ligand Explorer at RCSB PDB and PDBe-
Motifs at PDBe). But as already discussed in this chapter, PDB data are prone to
chemical ambiguities and not directly suitable to finely describe nonbonded inter-
molecular interactions. Several initiatives aimed at the structural characterization of
protein–ligand interactions at the PDB scale. Among the oldest one is Relibase that
automatically analyzes all PDB entries, identifies all complexes involving non-
biopolymer groups, and supplies the structural data with additional information,
such as atom and bond types [28]. Relibase allows various types of queries (text
searching, 2D substructure searching, 3D protein–ligand interaction searching, and
ligand similarity searching) and complex analyses, such as automatic superposition
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of related binding sites to compare ligand binding modes. The Web version of
Relibase is freely available to academic users, but does not include all possibilities for
exploration of PDB complexes.
If Relibase holds as many entries as PDB holds ligand–protein complexes, other

databases were built using only a subset of the PDB information. For example, the
sc-PDB is a nonredundant assembly of 3D structures for “druggable” PDB com-
plexes [29]. The druggability here does not imply the existence of a drug–protein
complex, but that both the binding site and the bound ligand obey topological and
physicochemical rules typical of pharmaceutical targets and drug candidates,
respectively. Strict selection rules and extensive manual verifications ensure the
selection in the PDB of binary complexes between a small biologically relevant
ligand and a druggable protein binding site. The preparation, content, and appli-
cations of the sc-PDB are detailed in Section 1.3.
Along the same lines, the PSMDB database endeavors to set up a smaller and yet

most diverse data set of PDB ligand–protein complexes [30]. Full PDB entries are
parsed to select structures determined by X-ray diffraction with a resolution lower

than 2A
�
, with at least one protein chain longer than 50 amino acids, and a

noncovalently bound small ligand. The PDB file of each selected complex was split
into free protein structure and bound ligand(s). The added value of PSMDB does not
consists in these output structure files that contain the original PDB coordinates, but
in the handling of redundancy at both the protein and ligand levels.
With the growing interest of the pharmaceutical industry for fragment-based

approach to drug design [31], several applications focusing on individual fragments
derived from PDB ligands have recently emerged. Algorithms for molecule frag-
mentation were applied to a selection of PDB ligands defining a library of fragment
binding sites [32] to map the amino acid preference of such fragments [33] or to
extract possible bioisosteres [34].

1.3
The sc-PDB, a Collection of Pharmacologically Relevant Protein–Ligand Complexes

We decided in 2002 to set up a collection of protein–ligand binding sites called
sc-PDB, originally designed for reverse docking applications [35]. While docking a
set of ligands to a single protein was already a well-established computational
technique for identifying potentially interesting novel ligands, the reverse paradigm
(docking a single ligand to a set of protein active sites) was still a marginal approach.
Themain difficulty was indeed to automate the setup of protein–ligand binding sites
with appropriate attributes, such as physicochemical (e.g., ionization and tautome-
rization states) and pharmacological properties of the ligand. It was not our
intention to cover all ligand–protein complexes in the PDB, but rather to compile
a large and yet not redundant set of experimental structures for known or potential
therapeutic targets that had been cocrystallized with a known drug/inhibitor/
activator or with a small endogenous ligand that could be replaced by a drug/
inhibitor/activator (e.g., sildenafil in phosphodiesterase-5 is an adenosine mimic).
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Selection rules as well as the applicability domain of the database have considerably
evolved over time and are reviewed in the following sections.

1.3.1
Database Setup and Content

In brief, the selection scheme is made of simple and intelligible selection rules for
the function and properties of the protein, the physicochemical properties of its
ligand, and its binding mode (Figure 1.4).
The first publicly available version of the database was released in 2004 [35]. The

database was named sc-PDB (acronym for screening the Protein Data Bank)
(Table 1.4). At that time, it contained the atomic coordinates of proteins and their
“druggable” binding sites. The protein was defined as all biopolymer chains, ions,
and cofactors in the vicinity of the ligand. The binding site includes only the protein

residues less than 6.5A
�
away from the ligand. Noteworthy, all atoms were repre-

sented, including the hydrogen atoms not described in crystal structures. From 2005
onward, the sc-PDB has also provided the atomic coordinates of ligands. The ligand
chemistry has been validated using an in-house dictionary, manually built from

X-ray structure
with resolu�on <3Å

PDB
one PDB file

1. Filtering and
cleaning

2. Detec�on of
all molecules

(bonding residues)

Biopolymers
Long chains

(ATOM records)

Biopolymers
Other chains

(ATOM records)

Ligands
(HETATM records)

3. Classifica�on
of molecules

Cofactor

Ion

Protein chain

Ligand
small nucleic acid,

pep�de, lipid, natural
product, synthe�c

organic compounds

Unwanted
prosthe�c group,

metallic compound,
water, sugar, detergent,
salts, buffer, and so on

The bioligand
cofactor if  no other ligand

The binding protein
including Ions and cofactors

4. Ligand selec�on
iden�fica�on of
bound protein

-Atom typing (dic�onary of ligands)

3D MOL2 files (protein, ligand, binding site)
2D SD file (ligand)
Tex�ile (Annota�ons)

Obsolete

No protein

Alternate atom
loca�on

Selenium to
sulfur

No side chain

-Coordinate op�miza�on (polar H in protein, all in ligand)
-Detec�on of intermolecular interac�ons
-Func�onal annota�on
-Elimina�on of duplicates
-Clustering of similar sites

Figure 1.4 Flowchart to select sc-PDB entries
from the PDB. Unwanted molecules at step 3
are identified using a dictionary or simple filters
(based on ligand molecular weight, ligand
surface area buried into the protein, number of

amino acids close to the ligand, number of rings,
and number of rotatable bonds of ligand). The
bioligand in step 4 is the ligand that passes step
3 and maximizes the product of ligand molecular
weight and surface area buried into the protein.
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scratch then supplemented since 2007 by manually checked entries of the PDB
Chemical Component Dictionary. The all-atoms representation of both partners of
sc-PDB complexes have allowed us to refine the position of polar hydrogen atoms in
the protein binding site and to compute an optimized pose of the bound ligand [29].

Table 1.4 Annotation and available search options in the Web interface to the sc-PDB.

Object Properties

PDB X-ray structure PDB identifier
Resolution
Deposition date

Ligand HETcode
Chemical structure
Formula
Molecular weight
LogP
LogS
Polar surface area
H-Bond donor count
H-Bond acceptor count
Number of rotatable bonds
Number of rings
Rule-of-five number of violations

Protein Name
EC number
Uniprot accession number
Uniprot name
Source organism name
Source organism taxonomy
Source organism kingdom
Mutant/wild type

Ligand binding site Ion/cofactor
Number of residues
Number of nonstandard amino acids
Number of chains
Average B-factor
Center of mass

Protein–ligand interactions Number of hydrophobic interactions
Aromatic face-to-face interactions
Aromatic face-to-edge interactions
H-Bond (donor in protein or ligand)
Ionic interaction (cation in protein or ligand)
Metal coordination
Affinity data (Ki, Kd, IC50, or pKd)
Ligand buried surface area
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The sc-PDB is annually updated and regularly enriched with new information
(ligand descriptors, binding mode encoded into an interaction fingerprint (IFP)
[36], and cavity volume) and new functionalities (classification of similar binding
sites [37]). A Web interface enables querying the database by combining requests
about ligand chemical structures and properties, protein function and source
organism, binding site properties, and ligand/protein binding properties
(Figure 1.5).
The current version of the database contains 9891 entries corresponding to 3039

different proteins (according to protein sc-PDB name [37]) and 5505 different ligands
(according to canonical SMILES strings). The sc-PDB protein space is redundant.
There are 395 different proteins with more than 5 copies and single-copy proteins
represent 55% of the database entries. Noteworthy is the complex nature of many
proteins: a cofactor is bound to 219proteins; calcium,magnesium,manganese, cobalt,
zinc, or iron ions are found in 981 different proteins. No sc-PDB ligands are located at
the interface of a protein–protein complex. The functional and species distribution of
sc-PDBproteins reflects the bias in protein function space of the PDB itself, yet the sc-
PDB is enriched in enzymes. The sc-PDB ligands space is also redundant and most
prevalent ligands are cofactors and other nucleotides, which are also the most
promiscuous ligands (e.g., more than 100 different protein targets for adenoside
50-diphosphate or nicotinamide adenine dinucleotide). About 75% of the sc-PDB
ligands is not primary bioorganic metabolites (nucleic acids, peptides, amino acids,
sugars, or lipids) or their derivatives.Most of thempass the Lipinksi’s rule offive (69%

Figure 1.5 sc-PDB output for PDB protein–ligand complexes (3 hits) between an indole-containing
ligand (blue substructure) of molecular weight <350 and a human kinase to which the ligand
donates at least one hydrogen bond.
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with no violations and 20%with a single violation). The sc-PDB ligand space does not
match that of commercial drugs because of a bias toward polar and flexible ligands.
Finally, the sc-PDB ligand ensemble is not very diverse: for more than half of sc-PDB
ligands, the ligand molecule is highly similar to at least one molecule in the pool of
nonidentical ligands (with similarity evaluated by the Tanimoto coefficient, computed
on feature-based circular 2D FCFP4 fingerprints, higher than 0.6).

1.3.2
Applications to Drug Design

1.3.2.1 Protein–Ligand Docking
The sc-PDB database has been developed for reverse docking applications [35] and is
therefore an invaluable source for establishing large-scale docking benchmarks.
Most validation studies, which flourished in the literature in the last decade, have
been applied to a restricted set of a few hundred PDB targets [38–41] and in the best
cases to a “clean” set of high-resolution protein structures in which erroneous PDB
data (Table 1.2) have been removed [42]. In daily drug discovery programs, many
targets under investigation do not obey such strict rules. Assessing the robustness of
docking algorithms against a larger and more representative set of protein 3D
structures is therefore of interest. The sc-PDB provides a unique source for such
benchmarks since ligand, protein, and active site coordinates have been prepro-
cessed and are ready for automated docking. When applied to a collection of 5681
complexes, Tietze and Apostoklasis reported with the GlamDock software [43] an

accuracy (RMSD to the X-ray structure below 2.0A
�
) significantly lower than that

obtained with restricted protein sets with only 77% of sampling accuracy (RMSD of

the best pose <2.0A
�
) and 47% of scoring accuracy (RMSD of the top-ranked pose

<2A
�
). Along the same lines, we reported the accuracy of four docking algorithms

in posing low molecular weight fragments into druggable sc-PDB binding sites
and observed that ranking poses by a pure topological scoring function based on
protein–ligand interaction fingerprints were much superior to poses by classical
energy-based scoring functions [36].
Coming back to the seminal application for which the sc-PDB archive was initially

developed (reverse docking), it appeared quite soon that the concept could be easily
applied to a large and heterogeneous set of binding sites with a naïve target ranking
scheme consisting of simple docking scores. Serial docking of four test ligands
(biotin, methotrexate, 4-hydroxytamoxifen, and 6-hydroxy-1,6-dihydropurine ribo-
nucleoside) to a collection of 2148 binding sites enabled recovering the known
target(s) of the later ligands within the top 1% scoring entries, using the GOLD
docking algorithm. These results were quite encouraging since these validated per se
the reverse docking concept and notably the automated binding site setup protocol
despite well-known insufficiencies regarding, for example, ionization/tautomeriza-
tion of binding site residues as well as water-mediated ligand binding effects. These
initial trials were applied to high-affinity ligands, which were relatively selective
for very few targets. When applied to smaller and more permissive compounds
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(e.g., AMP), a larger list of potential targets (top 5 to 10%) had to be selected to fish
the correct protein targets [35]. The main reason was an inaccurate scoring of the
“good” binding sites, which was not a real surprise with regard to the abundant
literature about the limitations of fast scoring functions utilized in docking
algorithms [19,44]. In order to overcome these severe limitations, alternative target
ranking schemes independent of any energy calculation have been developed. One
particular problem in docking-based target fishing is that the distribution of docking
scores may be quite heterogeneous across different binding sites with diverse
physicochemical properties. Therefore, score normalization according to either
ligand and/or target properties is necessary to get rid of frequent target hitters
[45–47]. Another promising approach consists in the conversion of protein–ligand
coordinates (docking poses) into simple 1D IFPs [36]. Assuming that a virtual hit is
more likely to be a true hit if it shares a similar target–ligand interaction profile with
a known ligand, docking poses can be ranked by decreasing similarity of the IFP to
that of the reference compound(s). Combining docking scores with IFP similarities
allows removing many false positives (wrong targets with high docking scores),
while still selecting the true targets in the final hit list [48].

1.3.2.2 Binding Site Detection and Comparisons
The sc-PDB provides, for each entry, all-atom Cartesian coordinates for the ligand,
the target, and the binding site. By “binding site” we mean any monomer (amino

acid, ion, cofactor, or prosthetic group) within 6.5A
�
of any ligand heavy atom.

Although the definition is conservative and excludes many potentially interesting
pockets, it presents the advantage to favor cavities with well-described ligand
occupancy. sc-PDB entries, therefore, can be used by cavity detection algorithms
[49] to predict the most likely ligand binding sites and whether they are druggable or
not, in other words, if the pocket could accommodate an orally available rule of five
compliant drug-like molecule. When applied to 4915 sc-PDB protein structures,
Volkamer et al. reported that the ligand is present in one of the three largest pockets
in 90% of cases [50]. We used a grid-based cavity detection method (VolSite) to map
cavity points with pharmacophoric properties of the closest protein atom, thus
defining an ideal virtual ligand for each binding site (Figure 1.6).
Predicting the druggability of a given target from its three-dimensional structure

is an intense field of research in order to reduce attrition rates in pharmaceutical
discovery [51]. As druggability is by farmore complex than the simple propensity of a
particular protein cavity to accommodate high-affinity drug-like compounds, other
terms, such as “bindability” [52] or “ligandability” [51] have been proposed recently,
since they better capture target property ranges (cavity volume, polarity, and
buriedness) known to be important for druggable targets [52–56]. Since these
important properties are theoretically encoded in the aforementioned cavity site
points, we investigated whether the present cavity descriptors might be suitable for
predicting the ligandability of cavities from their 3D structures. A training set of
62 cavities (50% druggable and 50% undruggable) was assembled from literature
[53,57] and the distribution of site point properties was given as input for a support
vector machine (SVM) classifier. The best cross-validated classification model
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achieves a very good accuracy of 80% and a Matthews correlation coefficient (MCC)
of 0.62. Of course, larger sets of proteins of known (non)druggability are necessary
to draw general conclusions, but the observed trend is quite promising and suggests
that druggable target triage may be considered at an early level of drug discovery
programs on condition that a high-resolution X-ray structure is available.
A second interesting application of the sc-PDB is the quantitative measure of its

binding sites. Assuming that similar binding sites recognize similar ligands, comparing
binding sites notably in the absence of 3D structure conservation permits identifying
unexpected secondary targets for bioactive ligands. Several alignment-dependent or
alignment-independent binding site comparison methods have been benchmarked on
diverse collections of sc-PDB ligand binding sites [58–61] and have enabled the
definition of global and local similarity thresholds for defining two sites as similar.
Screeninga libraryof binding sites for similarity to anygivenquery is, therefore, possible
and has already yielded the identification of an unexpected off-target (Synapsin I) for
some but not all serine/threonine protein kinase inhibitors (Figure 1.7) [62].
Interestingly, only inhibitors of bindingsites (cyclin-dependent kinase type2, pim-1,

and casein kinase II) predicted similar to that of Synapsin I were indeed found to bind
to Synapsin I, sometimes with nanomolar affinities, whereas inhibitors of binding
sitesdistant to that of Synapsin I (e.g., checkpoint kinase 1, protein kinaseA,HSP-90a,
DAG kinase, and DNA topoisomerase II) were not recognized by the enzyme [62].

Figure 1.6 Detection and pharmacophoric
annotation of VolSite cavity points in the X-ray
structure of Lactobacillus dihydrofolate
reductase (PDB code 4dfr). The cognate ligand
(methotrexate, sticks) is shown in the binding
site of the protein (green transparent surface).

Cavity points are colored by pharmacophoric
properties (H-bond acceptor and negative
ionizable, red: H-bond donor and positive
ionizable, blue: hydrophobe, white: aromatic,
cyan: null, magenta).
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1.3.2.3 Prediction of Protein Hot Spots
The structural knowledge encoded by 3500 protein–ligand complexes in the sc-PDB
has been used to derive a model able to discriminate, from simple 1D cavity
fingerprints, 120 000 ligands interacting from 500 000 ligand-noninteracting protein
atoms [63]. When applied to a novel complex, themodel was able to predict with 70%
accuracy the protein atoms that are likely to interact with a ligand and, therefore,
prioritize protein structure-based pharmacophore queries specifically targeting
these hot spots.

1.3.2.4 Relationships between Ligands and Their Targets
The sc-PDB data set offers the opportunity to delineate evolutionary relationships
between ligands and their targets or binding sites. By examining the distribution
patterns of sc-PDB ligands in the protein universe, Ji et al. reported that synthetic
compounds (e.g., enzyme inhibitors) tend to bind to a single protein fold, whereas
“superligands” (metabolites) are much more permissive and can be accommodated
by more than 10 different protein folds [64]. Target fold promiscuity was almost
found for ancestral ligands (e.g., nucleotide-containing metabolites) that appeared
quite early in the evolution and behave as hubs of metabolic networks. Interestingly,

Figure 1.7 Computational protocol used to
detect local similarities between ATP-binding
sites in pim-1 kinase and Synapsin I. The ATP-
binding site in pim-1 kinase (occupied by the
ligand staurosporine) is compared with
SiteAlign [58] (step a) to 6415 binding sites
stored in the sc-PDB database. Among the top
scoring entries (step b), Synapsin I is the only

protein not belonging to the protein kinase
target family (step c) and present in numerous
copies (step d). A systematic SiteAlign
comparison (step e) of the ATP-binding site in
Synapsin I with 978 other ATP-binding sites
(from the sc-PDB) suggests that some but not
all ATP-binding sites of protein kinases (steps f
and g) resemble that of Synapsin I [62].
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these ligands share common physicochemical properties (high flexibility and
polarity) responsible for their promiscuity. Likewise, the analysis of cofactor usage
(organic molecules and transition metal ions) by primitive redox proteins in the sc-
PDB clearly shows that organic cofactors (NAD and NADP) are much more used
than metals, probably because of the abundance of neutral residues at the border of
the corresponding binding sites [65]. Finally, a survey of known interactions between
phenolic ligands and their sc-PDB targets provides some explanations for the
classically observed discrepancy between potent in vitro and moderate in vivo
antioxidant properties of phenols [66]. A tight hydrogen bonding of phenolic
moieties to many sc-PDB proteins suggests that reactive oxidative species (ROS)
cannot be scavenged by phenols if they are already engaged in interactions with
surrounding proteins.
Relationships between ligands and their targets could also be integrated in

rational drug discovery programs. For example, retrieving from the sc-PDB, 171
diverse protein kinases cocrystallized with ATP competitors and aligning their
binding sites led to the observation that crystal water patterns (position, hydrogen
bond network to the kinase, and known inhibitor) were not necessarily conserved
despite very high binding site similarities, thus suggesting novel avenues for
optimizing the fine selectivity of kinases inhibitors [67]. By comparing the structure
of unrelated targets binding to the same natural flavonoids, Quinn and coworkers
introduced the concept of protein fold topology (PFT) [68] characterized by short
stretches of not necessarily conserved secondary structures providing shared
anchoring points to a common ligand. The concept was demonstrated for natural
products binding to both biosynthetic enzymes and therapeutic targets and may
explain why natural compounds are abundant among existing drugs [69].

1.3.2.5 Chemogenomic Screening for Protein–Ligand Fingerprints
In a recent report, Meslamani and Rognan describe a novel protein cavity kernel able
to quantitatively measure the 3D similarity between two sc-PDB binding sites. A
novel chemogenomic screening method based on a SVM was designed to browse
the sc-PDB protein–ligand space and predict binary protein–ligand interactions
from separate ligand and cavity fingerprints. The best SVM model was able to
predict with a high recall (70%) and exquisite specificity (99%) and precision (99%)
the binding of 14 117 external ligands to a set of 531 sc-PDB targets [70].

1.4
Conclusions

Exploiting structural knowledge on known protein–ligand complexes is a key step in
the rational design of bioactive compounds. This knowledge has gained considera-
ble value in the recent years, thanks to parallel endeavors of structural biologists and
computational biologists/chemists to release an ever-increasing number of high-
quality data. Many smart algorithms to parse and analyze the PDB have been
described in the last couple of years with a large spectrum of applications ranging
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from hit identification and optimization to massive ligand profiling against a large
array of possible targets. With the expected better coverage of the therapeutic target
space by the PDB in the coming years, we anticipate a significant boost of rational
drug discovery and notably a better interplay between protein structure-based and
ligand-centric methods.
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