Contents

Preface XV
List of Contributors XVII

1 Attachment of Organic Layers to Materials Surfaces by Reduction of Diazonium Salts 1

Jean Pinson

1.1 A Brief Survey of the Chemistry and Electrochemistry of Diazonium Salts 1

1.2 The Different Methods that Permit Grafting of Diazonium Salts 3

1.2.1 Electrochemistry 3

1.2.2 Reducing Substrate, Homolytic Dediazonation, Reaction with the Substrate 4

1.2.3 Reducing Reagent 5

1.2.4 Neutral and Basic Media 6

1.2.5 Ultrasonication 6

1.2.6 Heating and Microwave 6

1.2.7 Mechanical Grafting 7

1.2.8 Photochemistry 7

1.3 The Different Substrates, Diazonium Salts, and Solvents that Can Be Used 7

1.3.1 Substrates 7

1.3.2 Diazonium Salts 9

1.3.3 Solvents 10

1.4 Evidence for the Presence of a Bond between the Substrate and the Organic Layer 11

1.4.1 Stability of the Layer 11

1.4.2 Spectroscopic Evidence for a Bond 12

1.5 From Monolayers to Multilayers 13

1.5.1 Monolayers 14

1.5.2 Layers of Medium Thickness 16

1.5.2.1 Thick Layers 19

1.6 Structure and Formation of Multilayers 21
4.3 UV–VIS Spectroscopy: Transmission, Reflection, and Ellipsometry 72
4.4 IR Spectroscopy 72
4.4.1 Transmission Spectroscopy 73
4.4.2 Reflection Spectroscopy 74
4.4.3 Infrared Spectroscopic Ellipsometry (IRSE) 75
4.4.4 IRSE Surface Characterization 77
4.4.5 In Situ IR Spectroscopy: ATR and IRSE 79
4.5 Raman Spectroscopy and Surface-Enhanced Raman Scattering (SERS) 83
4.6 X-ray Photoelectron Spectroscopy (XPS) 84
4.7 X-ray Standing Waves (XSW) 91
4.8 Rutherford Backscattering 93
4.9 Time of Flight Secondary Ion Mass Spectroscopy 93
4.10 Electrochemistry 94
4.11 Contact Angle Measurements 96
4.12 Conclusion 96
References 98

5 Modification of Nano-objects by Aryl Diazonium Salts 103
Dao-Jun Guo and Fakhradin Mirkhalaf
5.1 Introduction 103
5.2 Electrochemical Modification of Nano-objects by Reduction of Diazonium Salts 105
5.2.1 Surface Modification of Carbon Nano-objects via Electrochemical Reduction of Aryl Diazonium Cations 105
5.2.2 Surface Modification of Metal and Metal Oxide Nano-objects via Electrochemical Reduction of Aryl Diazonium Cations 111
5.3 Chemical Modification of Nano-objects by Reduction of Diazonium Salts 112
5.3.1 Surface Modification of Carbon Nano-objects via Chemical Reduction of Aryl Diazonium Cations 112
5.3.2 Surface Modification of Metal and Metal Oxide Nano-objects via Chemical Reduction of Aryl Diazonium Cations 116
5.4 Summary and Conclusions 119
Acknowledgments 120
References 120

6 Polymer Grafting to Aryl Diazonium-Modified Materials: Methods and Applications 125
Sarra Gam-Derouich, Samia Mahouche-Chergui, Hatem Ben Romdhane, and Mohamed M. Chehimi
6.1 Introduction 125
6.2 Methods for Grafting Coupling Agents from Aryl Diazonium Compounds 127
6.3 Grafting Macromolecules to Surfaces through Aryl Layers 130
6.3.1 Binding Macromolecules to Surfaces by a Grafting from Strategy 130
6.3.1.1 Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) 130
6.3.1.2 Surface-Initiated Reversible Addition–Fragmentation Chain Transfer (SI-RAFT) 142
6.3.1.3 Surface-Initiated Photopolymerization 143
6.3.1.4 Alternative Methods 146
6.3.2 Attachment of Macromolecules through Grafting onto Strategies 147
6.3.2.1 Photochemical Attachment 147
6.3.2.2 Ring Opening 148
6.3.2.3 Acylation 149
6.3.2.4 Click Chemistry 149
6.3.2.5 Diazotation of Substrates and Macromolecules 150
6.4 Adhesion of Polymers to Surfaces through Aryl Layers 151
6.5 Conclusion 153
References 153

7 Grafting Polymer Films onto Material Surfaces: The One-Step Redox Processes 159
Guy Deniau, Serge Palacin, Alice Mesnage, and Lorraine Tessier
7.1 Cathodic Electrografting (CE) in an Organic Medium 160
7.1.1 Direct Cathodic Electrografting of Vinylic Polymers 160
7.1.2 Indirect Cathodic Electrografting 162
7.2 Surface Electroinitiated Emulsion Polymerization (SEEP) 164
7.2.1 Characterization of Poly(Butyl Methacrylate) Films 166
7.2.2 Determination of the Film Structure 167
7.2.3 Reduction of Protons and the Role of Hydrogen Radicals 169
7.2.4 Mechanism of SEEP 170
7.3 Chemical Grafting via Chemical Redox Activation (Graftfast™) 171
7.3.1 Process without Vinylic Monomer 172
7.3.2 Process with Vinylic Monomer 174
7.3.2.1 Type of Materials 174
7.3.2.2 Parameters Controlled in the Process 174
7.4 Summary and Conclusions 177
References 178

8 Electrografting of Conductive Oligomers and Polymers 181
Jean Christophe Lacroix, Jalal Ghilane, Luis Santos, Gaelle Trippe-Allard, Pascal Martin, and Hyacinthe Randriamahazaka
8.1 Introduction 181
8.2 Conjugated Oligomers and Polymers 181
8.3 Surface Grafting Based on Electroreduction of Diazonium Salts 184
8.4 Polyphenylene and Oligophenylene-Tethered Surface Prepared by the Diazonium Reduction of Aniline or 4-Substituted Aniline 187
8.5 n-Doping and Conductance Switching of Grafted Biphenyl, Terphenyl, Nitro-biphenyl and 4-Nitroazobenzene Mono- and Multilayers 187
8.6 p-Doping and Conductance Switching of Grafted Oligo-Phenylthiophene or Oligothiophene Mono- and Multilayers 190
8.7 p-Doping and Conductance Switching of Grafted Oligoaniline Mono- and Multilayers 192
8.8 Conclusion and Outlook 193
References 195

9 The Use of Aryl Diazonium Salts in the Fabrication of Biosensors and Chemical Sensors 197
J. Justin Gooding, Guozhen Liu, and Alicia L. Gui
9.1 Introduction 197
9.1.1 Sensors and Interfacial Design 197
9.1.2 Molecular Level Control over the Fabrication of Sensing Interfaces 198
9.2 The Important Features of Aryl Diazonium Salts with Regard to Sensing 200
9.3 Sensors and Biosensors Fabricated Using Aryl Diazonium Salts 201
9.3.1 Chemical Sensors – Sensors Fabricated via the Immobilization of Chemical Recognition Species 201
9.3.2 Biosensors 205
9.3.2.1 Enzyme Biosensors 206
9.3.2.2 Immunobiosensors 208
9.3.2.3 DNA-Based Biosensors 210
9.3.2.4 Cell-Based Biosensors 213
9.4 Conclusions 213
References 214

10 Diazonium Compounds in Molecular Electronics 219
Richard McCreery and Adam Johan Bergren
10.1 Introduction 219
10.2 Fabrication of Molecular Junctions Using Diazonium Reagents 222
10.2.1 Substrates for Diazonium-Derived Molecular Junctions 222
10.2.2 Surface Modification Using Diazonium Chemistry 223
10.2.3 Application of Top Contacts 225
10.3 Electronic Performance of Diazonium-Derived Molecular Junctions 226
10.3.1 Surface Diffusion Mediated Deposition (SDMD) 227
10.3.2 Structural Control of Molecular Junction Behavior 230
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.3 Redox Reactions in Molecular Junctions</td>
</tr>
<tr>
<td>10.3.4 Microfabricated Molecular Devices Made with Diazonium Chemistry</td>
</tr>
<tr>
<td>10.4 Summary and Outlook</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>11 Electronic Properties of Si Surfaces Modified by Aryl Diazonium Compounds</td>
</tr>
<tr>
<td>Jörg Rappich, Xin Zhang, and Karsten Hinrichs</td>
</tr>
<tr>
<td>11.1 Introduction</td>
</tr>
<tr>
<td>11.2 Experimental Techniques to Characterize Electronic Properties of Si Surfaces in Solutions</td>
</tr>
<tr>
<td>11.2.1 \textit{In Situ} Photoluminescence and Photo Voltage Measurements</td>
</tr>
<tr>
<td>11.2.2 \textit{In Situ} PL and PV Measurements during Electrochemical Grafting</td>
</tr>
<tr>
<td>11.2.3 Reaction Scheme of the Electrochemical Grafting via Diazonium Ions</td>
</tr>
<tr>
<td>11.2.4 Change in I_{PL} and U_{PV} during Electrochemical Grafting onto Si Surfaces</td>
</tr>
<tr>
<td>11.2.5 Change in Band Bending and Work Function after Electrochemical Grafting onto Si Surfaces</td>
</tr>
<tr>
<td>11.2.6 pH Dependence and Enhanced Surface Passivation</td>
</tr>
<tr>
<td>11.3 Conclusion and Outlook</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>12 Non-Diazonium Organic and Organometallic Coupling Agents for Surface Modification</td>
</tr>
<tr>
<td>Fetah I. Podvorica</td>
</tr>
<tr>
<td>12.1 Amines</td>
</tr>
<tr>
<td>12.1.1 Characterization of the Grafted Layer</td>
</tr>
<tr>
<td>12.1.1.1 Electrochemical Methods</td>
</tr>
<tr>
<td>12.1.1.2 Surface Analysis Techniques</td>
</tr>
<tr>
<td>12.1.2 Chemical Grafting</td>
</tr>
<tr>
<td>12.1.3 Localized Electrografting</td>
</tr>
<tr>
<td>12.1.4 Grafting Mechanism</td>
</tr>
<tr>
<td>12.1.5 Applications</td>
</tr>
<tr>
<td>12.2 Arylhydrazines</td>
</tr>
<tr>
<td>12.3 Aryltriazenes</td>
</tr>
<tr>
<td>12.4 Alcohols</td>
</tr>
<tr>
<td>12.4.1 Observation and Characterization of the Film</td>
</tr>
<tr>
<td>12.4.2 Applications</td>
</tr>
<tr>
<td>12.5 Grignard Reagents</td>
</tr>
<tr>
<td>12.5.1 Characterization of the Layers</td>
</tr>
<tr>
<td>12.5.2 Grafting Mechanism</td>
</tr>
</tbody>
</table>
13 Various Electrochemical Strategies for Grafting Electronic Functional Molecules to Silicon

Dinesh K. Aswal, Shankar Prasad Koiry, and Shiv Kumar Gupta

13.1 Introduction 283
13.2 Architecture of Hybrid Devices 284
13.2.1 Molecular Dielectrics and Wires 285
13.2.2 Molecular Diodes 286
13.2.3 Resonant Tunnel Diodes 286
13.2.4 Molecular Transistors 286
13.3 Electrografting of Monolayers to Si 287
13.3.1 Essential Requirements 287
13.3.2 Experimental Process of Electrografting 287
13.4 Negative Differential Resistance Effect in a Monolayer Electrografted Using a Diazonium Complex 288
13.4.1 Electrografting of DHTT 288
13.4.2 NDR Effect in DHTT Monolayers 290
13.5 Dielectric Monolayers Electrografted Using Silanes 293
13.5.1 Mechanism of Electrografting 293
13.5.2 Electrical Characterization 294
13.6 Molecular Diodes Based on C₆₀/Porphyrin-Derivative Bilayers 295
13.6.1 Fabrication Process 296
13.6.1.1 Electrografting of Acceptor C₆₀ Layer on Si 296
13.6.1.2 Self-Assembly of Donor Porphyrin Derivative Layer on C₆₀/Si 297
13.6.2 Rectification Characteristics of D–A Bilayers 298
13.7 Memory Effect in TPP-C₁₁ Monolayers Electrografted Using a C=C Linker 301
13.7.1 Electrografting of TPP-C₁₁ Monolayer 301
13.7.2 Electrical Bistability and Memory Effect 303
13.8 Summary 305

References 305

14 Patents and Industrial Applications of Aryl Diazonium Salts and Other Coupling Agents

James A. Belmont, Christophe Bureau, Mohamed M. Chehimi, Sarra Gam-Derouich, and Jean Pinson

14.1 Introduction 309
14.2 Patents 309
14.2.1 The Surface Chemistry of Diazonium Salts 309
14.2.2 The Surface Chemistry of Other Coupling Agents 310
14.2.3 Post-Modification of the Grafted Layers 310
14.2.4 Composite Materials 310
14.2.5 The Surface Modification of Nano-objects 312
14.2.6 Microelectronics 312
14.2.7 Biomedical Applications 312
14.2.8 Sensors, Biosensors, Surfaces for Biological Applications 312
14.2.9 Energy Conversion 313
14.3 Industrial Applications 313
14.3.1 The Development of Modified Carbon Blacks 313
14.3.2 Industrial Applications of the Electropolymerization of Vinylics: Alchimer and AlchiMedics 314
14.3.2.1 From Research to Development 314
14.3.2.2 Application of eG™ to Drug-Eluting Stents: AlchiMedics 315
14.3.2.3 Application of eG™ to Copper Interconnects: Alchimer 317
14.4 Conclusion 319
References 319

Index 323