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1.1
Introduction

The aim of computational thermochemistry is to describe the energetic properties of
chemical processes within an accuracy of 1 kcalmol�1 or less (0.1–0.2 kcalmol�1 for
the relative energy of conformers). At the same time, themethods applied should not
be too demanding in terms of necessary run times and hardware resources, which
rules out highly accurate ab initiomethods if larger, chemically relevant systems are to
be considered. Whilst Kohn–Sham density functional theory [(KS-)DFT] offers an
ideal solution to this dilemma [1, 2], the number of proposed exchange–correlation
functionals is immense, and most of these suffer from severe problems. Very
prominent examples are the self-interaction-error (SIE; also termed delocaliza-
tion-error in many-electron systems) [3–6], and the lack of adequately describing
long-range correlation effects, such as London-dispersion [7–10]. Moreover, the
applicability of functionals to various problems is not broad but is rather specialized
(see e.g., Ref. [11]) which, on occasion,makes their application very difficult for �non-
experts.� In this chapter, two major contributions made by the authors� laboratories
will be reviewed, both of which should help in identifying the goal of developing
accurate, robust, and broadly applicable methods. These two techniques are:
(i) double-hybrid density functionals (DHDFs) [12]; and (ii) an atom-pair wise
London-dispersion correction scheme (DFT-D, DFT-D3) [13–15].

Both approaches have been implemented into many quantum chemistry codes,
have attracted worldwide interest, and have often been applied very successfully.
The theoretical background of both approaches will be reviewed in the following
sections, with particular attention focused on the very recently developed PWPB95
functional [16] and the newest version of the dispersion correction (DFT-D3) [15].
Three examples are then described demonstrating the benefits of both approaches.
First, a large benchmark study is discussed in Section 1.3.1, with attention focused on
the PWPB95 functional andDFT-D3. Amechanistic study of B2PLYP and the DFT-D
scheme is then detailed (see Section 1.3.2), to help understand the details of a recently
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reported reaction class. Finally, the description of excited states – and particularly
of large chromophores – is shown to benefit from double-hybrid functionals
(see Section 1.3.3).

1.2
Theoretical Background

1.2.1
Double-Hybrid Density Functionals

Double-hybrid density functionals are situated on the fifth rung in Perdew�s scheme
of �Jacob�s ladder� [17], as they include virtual Kohn–Sham orbitals. Compared to
hybrid-GGA functionals (fourth rung), where somepart of the exchange functional is
substituted by �exact� (HF) exchange,DHDFs additionally substitute somepart of the
correlation functional by mixing in a non-local perturbative correlation. This corre-
lation part is basically obtained by a second-order Møller–Plesset (MP2)-type treat-
ment based on KS orbitals and eigenvalues. The first DHDFaccording to this idea is
theB2PLYP functional byGrimme [12]. Thefirst step in a double-hybrid calculation is
the generation of Kohn–Sham orbitals from the hybrid-GGA portion of the DHDF.
In the case of B2PLYP, this portion is denoted as B2LYP.

EB2LYP
XC ¼ ð1�aX ÞEB88

X þ aXE
HF
X þð1�aCÞELYP

C ð1:1Þ

This hybrid-GGA part contains Becke 1988 (B88) [18] exchange EB88
X combined

with non-local Fock-exchangeEHF
X and Lee–Yang–Parr (LYP) [19, 20] correlationELYP

C .
The aX and aC aremixing parameters for the �exact� Fock-exchange and perturbative
correlation, respectively. A second-order perturbation treatment (PT2), based on the
KS-orbitals and eigenvalues resulting from the B2LYP calculation, is carried out
yielding the correlation energy EPT2

C that is scaled by themixing parameter, aC . Thus,
the final form of the B2PLYP exchange correlation energy is given by:

EB2PLYP
XC ¼ EB2ðGPÞ�LYP

XC þ aCE
PT2
C : ð1:2Þ

The two mixing parameters were fitted to the heats of formation (HOFs) of
the G2/97 set; these parameters are aX ¼ 0:53 and aC ¼ 0:27. Due to the pertur-
bative contribution, B2PLYP formally scales with OðN5Þ, with N being the system
size. However, if this step is evaluated using RI (density-fitting) schemes, the most
time-consuming part is usually still the SCF and not the PT2 calculation.

Since B2PLYP, various other approaches have been reported, which are either
modifications of B2PLYP [21–27] or are based on other (pure DFT-) exchange-
correlation functionals [16, 28, 29]. These DHDFs usually differ in their amounts
of Fock-exchange (between 50 and82%). The impact of the Fock-exchange in aDHDF
is depicted in Figure 1.1. Small amounts of EHF

X within common hybrid-functionals
are good for main group thermochemical properties; however, these functionals
suffer more from the SIE which, for example, influences the result for barrier
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heights. Too-large amounts, on the other hand, render density functionals (DFs)
unstable when treating transition metal compounds. Smaller amounts of Fock-
exchange effectively mimic the effect of treating static electron correlation, which
makes the perturbative correction more stable (than e.g., MP2) in electronically
complicated situations. Thus, DHDFs are also applicable to many open-shell
problems for which a Hartree–Fock reference would strongly suffer from spin-
contamination.

As a compromise to treatmain group and transitionmetal chemistry equallywell, a
newDHDFwas recently developed by the present authorswhich just contains 50%of
Fock-exchange [16]. This is dubbedPWPB95, and is based on thePerdew–Wang (PW)
GGA-exchange [30] and the Becke95 (B95) meta-GGA-correlation [31] functionals
(inspired by Zhao�s and Truhlar�s PW6B95 hybrid-meta-GGA [32]). It is, thus, the
first DHDF with meta-GGA ingredients:

EPWPB95
XC ¼ ð1�aX ÞEPW

X þ aXE
HF
X þð1�aCÞEB95

C þ aCE
OS�PT2
C : ð1:3Þ

In contrast to other DHDFs, for which inherent functional parameters (e.g., b in
B88) were not changed, PWPB95 is based on refitted PWand B95 parameters (three
in the PW-exchange and two in the B95-correlation parts). Furthermore, PWPB95
includes a spin-opposite scaled second-order perturbative correlation contribution
(OS-PT2) [33, 34]. Combinedwith an efficient Laplace transformation algorithm [35],
this brings the formal scaling down fromOðN5Þ toOðN4Þwith system size, which is
the same as for conventional hybrid functionals.

The five inherent DFTparameters and the factor ac were fitted on a fit set, covering
various thermochemical energies (including noncovalent interactions). During the
fitting procedure, the most recently developed empirical, atom-pairwise London-
dispersion correction (DFT-D3) was applied [15]. The resulting non-local correlation
scale factor is ac ¼ 0:269.

Figure 1.1 Effect of the amount of Fock-exchange in (double-)hybrid DFT calculations.

1.2 Theoretical Background j5



1.2.2
London-Dispersion-Corrected DFT

For more than a decade it has been recognized that commonly used DFs do not
describe the long-range dispersion interactions correctly [7–10]. Originally, this was
noted for rare gas dimers (e.g., as rediscovered in Ref. [36]), but later it was noticed
also in base-pair stacking [37] or N2 dimers [38]. During these early days some
confusion arose because the problem is highly functional dependent. If equilibrium
distances for common weakly bound complexes are mainly considered, some DFs
(such as PW91 [30]) provide at least qualitatively correct interaction potentials,
whilst for example, the popular BLYP or B3LYP [39, 40] approximations were found
to be purely repulsive. Nowadays it is clear, that all semi-local DFs and conventional
hybrid functionals (that include non-local Fock-exchange) asymptotically cannot
provide the correct �C6=R6 dependence of the dispersion interaction energy on the
interatomic(molecular) distance, R. This is different for intermediate distances,
however, where the fragment electron densities overlap and semi-local DFs may
yield bound states.

The various approaches that currently attempt to deal with that problem can be
grouped into four classes (see Figure 1.2), which include: (i) non-local van der Waals
functionals (vdW-DFs [41, 42]); (ii) �pure� (semi-local(hybrid)) DFs which are highly
parameterized forms of standard meta-hybrid approximations (e.g., the M0XX
family of functionals [43]); (iii) dispersion-correcting atom-centered one-electron
potentials (1ePOT, called DCACP [44] or, in local variants LAP [45] or DCP [46]); and
(iv) DFT-D methods (atom pair-wise sum over �C6R�6 potentials [13–15, 47]).
A recent review on London-dispersion-corrected DFT is available in Ref. [48].

In the following subsection, the DFT-D approach will be discussed in detail. This
provides a dispersion energy EDFT�D

disp , which can be added to the result of a standard
DFT calculation. The general form for the dispersion energy is:

EDFT�D
disp ¼ � 1

2

X

AB

X

n¼6;8;10;...

sn
CAB
n

Rn
AB

fdampðRABÞ: ð1:4Þ

KSV=V +VNL V=VKS V=VKS +V1e

effective one−e
potential

DCACP
LAP/DCP

corrections
dispersion

parameterized
DF

vdW−DF

density based

E=E KS +Epair

C  based6

DFT−D
DFT−D3

Figure 1.2 Overviewof currently used dispersion corrections inDFT. EKS andVKS correspond to the
bare Kohn–Sham total energies and potentials, respectively.
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Here, the sum is over all atom pairs in the system, CAB
n denotes the averaged

(isotropic) nth-order dispersion coefficient (orders n ¼ 6; 8; 10; . . .) for atom pair
AB, and RAB is their internuclear distance. Global (DF-dependent) scaling factors sn
are typically used to adjust the correction to the repulsive behavior of the chosen
DF [13]. If this is done only for n > 6 (as in DFT-D3 [15]), asymptotic exactness is
fulfilled when the CAB

6 are exact. It should be noted that the contribution of the
higher-ranked multipole terms n > 6 is more short-ranged and rather strongly
interferes with the (short-ranged) DF description of electron correlation. The higher
Cn terms can be used to adapt the potential specifically to the chosen DF in this mid-
range region.

In order to avoid near-singularities for small R and double-counting effects of
correlation at intermediate distances, damping functions fdamp are used which
determine the range of the dispersion correction (for a discussion of general
damping functions, see Ref. [49]). If only noncovalent interactions are considered,
the results are only weakly dependent on the specific choice of the function. A typical
expression is [14]:

fdampðRABÞ ¼ 1

1þ e�cðRAB=sr;nRAB
0 �1Þ ; ð1:5Þ

where RAB
0 is a cut-off radius for atom pair AB, sr;n is a DF-dependent (global)

scaling factor (as introduced in Ref. [47]), and c is a global constant that
determines the steepness of the functions for small R. For the cut-off radii,
(averaged) empirical atomic vdW-radii are often used. Currently, the most widely
used DFT-D method is the present authors� version (dating from 2006 [14]; now
termed DFT-D2), which represents an update of DFT-D1 from 2004 [13]. The
method has recently been refined regarding a higher accuracy, a broader range of
applicability, and less empiricism (it is now termed DFT-D3 [15]). The main new
ingredients are atom-pairwise specific dispersion coefficients and a new set of cut-
off radii, both of which are computed from first principles. The coefficients for
8th-order dispersion terms are computed using established recursion relations.
System (geometry) -dependent information is used for the first time in a DFT-D
type approach by employing the new concept of fractional coordination numbers.
This allows a distinction to be made, in a differentiable manner, between the
different hybridization states of atoms in molecules which, in particular for the
first two rows of the Periodic Table, have quite different dispersion coefficients.
The method requires only an adjustment of two global parameters for each density
functional, is asymptotically exact for a gas of weakly interacting neutral atoms,
and easily allows the computation of atomic forces. Accurate dispersion coeffi-
cients and cut-off radii are available for all elements up to Z ¼ 94. The revised
DFT-D3 method can be used as a general tool for the computation of the
dispersion energy in molecules and solids (see e.g., also Ref. [50, 51]) of any
type with DFTand related (low-cost) electronic structure methods for a very recent
modification of DFT-D3, also see Ref. [52]. Results for the DFT-D3 method are
shown in Section 1.3.1 (the older DFT-D version is used in Section 1.3.2).
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1.3
Examples

1.3.1
GMTKN30

In 2010, the present authors published the so-called GMTKN24 database, which is a
collection of 24 previously reported or newly developed benchmark sets for general
main group thermochemistry, kinetics, and noncovalent interactions [53]. Very
recently, this was extended by six additional sets and dubbed GMTKN30 [16].
In total, the system comprises 1218 single point calculations and 841 data points
(relative energies). The subsets ofGMTKN30 canbe divided into threemajor sections
of: (i) basic properties (e.g., atomization energies, electron affinities, ionization
potentials, proton affinities, SIE-related problems, barrier heights); (ii) various
reaction energies (e.g., isomerizations, Diels–Alder reactions, ozonolyses, reactions
involving alkaline metals); and (iii) noncovalent interactions (water clusters, relative
energies between conformers, and inter- and intramolecular interactions). Refer-
ence values for all subsets are based on highly accurate theoretical or experimental
data (for details, see the original reference [16]). GMTKN30 makes it possible to
thoroughly evaluate existing methods, and also fosters the development of new DFs.

As handling the large number of statistical values for such a database can be
unpractical, a so-called weighted total mean absolute deviation (WTMAD) was
defined which combines all 30 mean absolute deviations (MADs) to one final
number. For every subset, the size and �difficulty� is taken into account by a factor
with which each MAD is scaled. Finally, the average is taken for these scaled MADs.
Herein, this idea will be adopted andWTMADs calculated specifically for each of the
three major sections of GMTKN30.

In the following, each of the three sections will first be discussed separately, after
which an examination will be made of the complete benchmark set. Functionals of
different rungs on Jacob�s Ladder will be investigated; these include BLYP and
PBE [54] (GGAs), TPSS [55], and a recently re-fitted version oTPSS [53] (meta-GGAs),
B3LYP and PW6B95 [32] (hybrids), B2PLYP, DSD-BLYP [26] and PWPB95 (DHDFs).

In Figure 1.3, parts (a) to (c) show the WTMADs for the three sections of
GMTKN30 for all functionals, with and without dispersion correction. All of these
results are based on (aug-)def2-QZVP calculations, and were carried out with
TURBOMOLE versions 5.9 and 6.0 [56–61]. Throughout the benchmark set, the
benefit of including the dispersion correction can be clearly seen. For basic prop-
erties,whichusually comprise rather small systems,DFT-D3has the smallest impact,
as expected, whereas for noncovalent interactions it has the largest impact. Further-
more, it is observed that a proper description of the dispersion effects is also very
important for reaction energies. TheWTMADs are lowered by 1 kcalmol�1, ormore.
In all cases, there is a clear benefit from including non-local Fock-exchange, when
passing from (meta-)GGAs to hybrids. An exception to this is the oTPSS functional,
which yields similar results to B3LYPat less computational cost.Moreover, the results
are improved when passing from hybrids to double-hybrids.
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Figure 1.3(d) shows the WTMADs for the complete GMTKN30 set (only those
results including theDFT-D3 correction are shown).Here, twodifferent basis sets are
comparedwith each other– one at triple-f level (usually used in applications) and one
at the quadruple-f level. A comparison between both basis sets shows that (meta-)
GGAs and hybrids are already at the Kohn–Sham limit with the large triple-f basis.
The results differmuch between both bases, with themeta-GGAs outperforming the
GGAs and the hybrids outperforming the meta-GAAs. oTPSS is again an exception,
and is comparable to B3LYP. Based on the present authors� experience, PW6B95 is
the best general-purpose hybrid functional, withWTMADs of 2.6 and 2.5 kcalmol�1,
respectively. Due to the inclusion of a perturbative correction, double-hybrids are
more basis set-dependent than hybrids. For example, B2PLYP-D3 is, with 2.4 kcal
mol�1 on the triple-f level, very close to PW6B95-D3 (2.6 kcalmol�1), but improves
more for the larger basis (2.0 kcalmol�1). The only exception here is PWPB95-D3,
which has a basis set-dependence similar to �conventional� functional; on the triple-
f-level it is the best DHDF, whilst on the quadruple-f level it is the second best and
very similar in many cases to DSD-BLYP-D3. A more thorough comparison with
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Figure 1.3 (a–c) Weighted total mean
deviations (WTMADs) for the three major
sections of GMTKN30 for various density
functionals with (DFT-D3) and without
dispersion correction (DFT). Results are based

on (aug-)def2-QZVP calculations; (d) WTMADs
for the complete GMTKN30 database with
dispersion correction for (aug-)def2-TZVPP and
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Figure 1.4 General reaction scheme and reaction conditions of the considered asymmetric
hydroacylation. Several substituents R1 were considered in the experimental work. The theoretical
study was carried out for R1¼H.

almost 50 functionals (including range-separated hybrids and Truhlar�s M0X classes
of functionals) was very recently undertaken at the authors� laboratories [62]. In
addition, compared to these other more modern approaches, double-hybrids are the
best functionals (they also turned out to bemore accurate than variousMP2methods
at the same computational cost). Results for 3d-transition metals have also shown
much promise [16], indicating that PWPB95-D3 is the best DHDF.

1.3.2
A Mechanistic Study with B2PLYP-D

Arecent example, inwhich aDHDFwas applied to a practically relevant problem,was
reported by Piel et al., who presented an asymmetric hydroacylation reaction of
unactivated olefins (Figure 1.4) [63]. The reaction is aided by the chiral N-heterocyclic
carbene (NHC) 3 as a catalyst. First, an intermediate 1int is formed, which is the result
of a nucleophilic attack of the NHC at the carbonyl group of 1. The following step is a
hydrogen-transfer between the hydroxy group and the terminal carbon atom of the
carbon–carbon double bond to yield the second intermediate 2int, which then reacts
to 2. To better understand this transfer reaction, a theoretical study was carried out
whereby two different reaction pathways were calculated, in which the stereochem-
istry of the reaction was investigated. Consequently, two intermediates are consid-
ered, which were formed by the NHC attacking either the Re- or the Si-side of the
electrophilic carbonyl-C-atom.

BP86-D [64, 65]/TZVP [66] geometry optimizations and subsequent B2PLYP-D/
TZVPP single-point calculations of the intermediates and the transition states were
carried out. In both cases, the transition state structures (2TS1 and 2TS2) are
characterized by a stacked arrangement of the aromatic moieties, which shows the
importance of including a dispersion correction in the treatment (Figure 1.5).
Figure 1.5 also shows the relative energies of the transition states and product
intermediates compared to the substrate intermediates. Qualitatively, BP86-D and
B2PLYP-D give the same result – that is, reaction pathway 1 is favored. The transition
state of pathway 2 lies energetically higher, due to steric hindrance of the benzyl group
of the catalyst, and this in turn explains the high enantioselectivity of this reaction.
The results for both functionals differed quantitatively, however, with the BP86-D
barriers for both pathways being very low because of the SIE (4.0 and 8.7 kcalmol�1).
B2PLYP-D gives higher barriers (10.0 and 15.4 kcalmol�1), which is in much better
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agreement with the experiment, whichmust be carried out at 80 �C in order to obtain
reasonable reaction rates. Thus, the application of a DHDF was crucial for a correct
understanding of the reaction mechanism.

1.3.3
Double-Hybrids for Excited States

The accurate description of the electronically excited states of large organic dyes
represents a challenging task for modern quantum chemistry. One current aim in
this field of research is to correctly predict absolute excitation energies within an
error of �0.1 eV (�chemical accuracy�) for large chromophores (20–30, or more,
non-hydrogen atoms). Moreover, because the human eye can resolve frequency
differences as small as 0.01–0.02 eV, it would be desirable to predict different
chromophores or substituent effects on a similar relative scale of accuracy. Gen-
erally, on the �wish list� here are methods that are accurate, broadly applicable and
do not contain systematic corrections, and which have to be considered by the user
(e.g., the application of red- or blue-shifts dependent on systematic, methodological
errors).

In 2007, Grimme andNeese suggested a way to achieve this aimby treating excited
states with double-hybrid functionals [67]. The resultant TD-DHDF theory proved to

TS2
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Figure 1.5 Calculated relative energies for the
two reaction pathways leading to two
diastereomeric transitions states. Calculations
are based on the B2PLYP-D/TZVPP and BP86-

D/TZVP (values in parentheses) levels of theory.
The structures on the right-hand side show the
two transition states. The dotted lines indicate
the proton transfer.

1.3 Examples j11



be excellent for the calculation of circular dichroism spectra [68] and a general
benchmark of small molecules [69]. Here, the results are presented for the B2PLYP
and B2GPPLYP [22] methods, where the latter differs from the former simply by the
amounts of mixed-in Fock-exchange and perturbative correlation. In a TD-DHDF
calculation, the hybrid-GGA part with 53% (B2PLYP) and 65% of Fock-exchange
(B2GPPLYP) is used for a standard TD-DFT treatment. Subsequently, by using the
resultant excitation amplitudes and the orbitals of the ground-state Kohn–Sham
determinant, a standard CIS(D)-type calculation can be carried out. The resulting
perturbative energy correction is then scaled by the (ground-state) correlation energy
scaling factors of 0.27 (B2PLYP) or 0.36 (B2GPPLYP), respectively, and added to the
TD-DFTexcitation energy. At this point, the performance of double-hybrids for large
organic chromophores will be reviewed and discussed. For such hybrids, conven-
tional TD-DFT methods may fail, while ab initio methods are usually not feasible.
Recently, a benchmark set of 12 large organic dyes was reported (see Figure 1.6)
[69, 70], which were composed of various chromophores, sometimes including
heteroatoms. Of these species, two were positively charged, and one system had a
very prominent charge-transfer excitation. Only the lowest-lying, most bright p!p�

vertical transitions in the gas phasewere considered. The reference valueswere based
on experimental 0-0-transitions in solution that were back-corrected for vibrational
and solvent effects. The accuracy of these data was estimated at �0.1 eV. The mean
deviations (MDs) and mean absolute deviations (MADs) from these reference data
for various TD-DFT and ab initio methods are shown in Figure 1.7.

Functionals such as BLYPandB3LYP yield large systematic errors, as shown by the
strong underestimation of excitation energies (MDs of�0.49 and�0.22 eV) and the
relatively large MAD-values (0.51 and 0.31 eV). With an increasing amount of Fock-
exchangemixing – and thus a reduced self-interaction error as likely source – PBE38
(with 37.5%ofFock-exchange) performedbetter and showed anMDof 0.04 eVand an
MAD of only 0.19 eV. Another possible approach to improving the results is the
application of range-separated functionals, as demonstrated here with CAM-B3LYP
(MAD of 0.18 eV). The double-hybrid B2PLYP is also very promising (MD¼ � 0.11
eV; MAD¼ 0.20 eV), while B2GPPLYP is the most robust functional and yields the
smallest MD (�0.01 eV) and MAD (0.16 eV). B2GPPLYP also competes with the ab
initio approaches SCS-CIS(D), SCS-CC2 and CC2 (which is often regarded as �gold
standard� for large chromophores). Although chemical accuracy on average (0.1 eV
error) has not yet been reached, double-hybrid functionals are clearly pointing into
the right direction, and their further development appears very promising. In
particular, B2GPPLYP seems ideal for treating excited states.

1.4
Summary and Conclusions

An overview has been provided of two recent advances inDFT, namely double-hybrid
DFT and the empirical London-dispersion-correction schemes, DFT-D/DFT-D3.
While discussing three examples, it was shown in a large benchmark study that
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dispersion effects are important not only for an adequate description of noncovalent
interactions, but also for obtaining accurate reaction energies. Double-hybrids, and in
particular the new PWPB95 functional, were shown to be the most robust and best
functionals for main group thermochemistry, kinetics, and noncovalent interactions.
The second example reviewed the application of B2PLYP-D to a chemically relevant
problem. Here, it was found that B2PLYP was necessary for obtaining reasonable
reaction barriers, and the DFT-D correction scheme was crucial for properly describ-
ing intramolecular dispersion effects in geometry optimizations. Finally, the double-
hybridswere shown to be useful not only for electronic ground state-related problems,
but also for excited states. Indeed, in a test set of largedye chromophores theywere able
to compete even with ab initiomethods. In general, the use of double-hybrids and the
DFT-D scheme for obtaining, accurate and reliable results, is strongly recommended.
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