Contents

Preface XV
List of Contributors XVII
Color Plates XXIII

Part One Scaling and Challenge of Si-based CMOS 1

1 Scaling and Limitation of Si-based CMOS 3
 Gang He, Zhaoqi Sun, Mao Liu, and Lide Zhang
 1.1 Introduction 3
 1.2 Scaling and Limitation of CMOS 4
 1.2.1 Device Scaling and Power Dissipation 4
 1.2.2 Gate Oxide Tunneling 7
 1.2.3 Gate Oxide Scaling Trends 8
 1.2.4 Scaling and Limitation of SiO₂ Gate Dielectrics 10
 1.2.5 Silicon Oxynitrides 14
 1.3 Toward Alternative Gate Stacks Technology 16
 1.3.1 Advances and Challenges in Dielectric Development 16
 1.3.2 Advances and Challenges in Electrode Development 19
 1.4 Improvements and Alternative to CMOS Technologies 22
 1.4.1 Improvement to CMOS 22
 1.4.1.1 New Materials 22
 1.4.1.2 New Structures 23
 1.5 Potential Technologies Beyond CMOS 23
 1.6 Conclusions 24
 References 25

Part Two High-k Deposition and Materials Characterization 31

2 Issues in High-k Gate Dielectrics and its Stack Interfaces 33
 Hong-Liang Lu and David Wei Zhang
 2.1 Introduction 33
 2.2 High-k Dielectrics 33
 2.2.1 The Criteria Required for High-k Dielectrics 34
2.2.2 The Challenges of High-k Dielectrics 37
 2.2.2.1 Structural Defects 37
 2.2.2.2 Channel Mobility Degradation 38
 2.2.2.3 Threshold Voltage Control 38
 2.2.2.4 Reliability 39
2.3 Metal Gates 40
 2.3.1 Basic Requirements for Metal Gates 41
 2.3.2 Metal Gate Materials 41
 2.3.2.1 Pure Metals 42
 2.3.2.2 Metallic Alloys 42
 2.3.2.3 Metal Nitrides 42
 2.3.2.4 Metal Silicides 43
 2.3.3 Work Function 43
 2.3.4 Metal Gate Structures 44
 2.3.5 Metal Gate/High-k Integration 44
 2.3.6 Process Integration 44
2.4 Integration of High-k Gate Dielectrics with Alternative
Channel Materials 45
 2.4.1 High-k/Ge Interface 46
 2.4.2 High-k/III–V Interface 49
2.5 Summary 51
References 52

3 UV Engineering of High-k Thin Films 61
Ian W. Boyd
 3.1 Introduction 61
 3.2 Gas Discharge Generation of UV (Excimer) Radiation 61
 3.3 Excimer Lamp Sources Based on Silent Discharges 63
 3.4 Predeposition Surface Cleaning for High-k Layers 65
 3.5 UV Photon Deposition of Ta,O Films 66
 3.6 Photoinduced Deposition of Hf,Ge, ,Si, ,O y Layers 70
 3.7 Summary 73
References 73

4 Atomic Layer Deposition Process of Hf-Based High-k Gate
Dielectric Film on Si Substrate 77
Tae Joo Park, Moonju Cho, Hyung-Suk Jung, and Cheol Seong Hwang
 4.1 Introduction 77
 4.2 Precursor Effect on the HfO2 Characteristics 78
 4.2.1 Hafnium Precursor Effect on the HfO2 Dielectric Characteristics 78
 4.2.1.1 Hafnium Chloride (HfCl) 78
 4.2.1.2 Tetrakis Dimethylamido Hafnium [HfN(CH3)2]4 82
 4.2.1.3 Tetrakis Ethylmethylamino Hafnium (Hf[N(C2H5)(CH3)]4) 85
 4.2.1.4 tert-Butoxytris(Ethylmethylamido) Hafnium (HfO' Bu'[NEtMe]3) 86
 4.2.1.5 tert-Butoxide Hafnium (Hf[OC4H9]4) 87
4.2.2 Oxygen Sources and Reactants 88
4.2.2.1 H₂O versus O₃ 88
4.2.2.2 O₃ Concentration 93
4.2.2.3 Reactants for In Situ N Incorporation 95
4.3 Doped and Mixed High-k 97
4.3.1 Zr-Doped HfO₂ 98
4.3.2 Si-Doped HfO₂ 100
4.3.3 Al-Doped HfO₂ 102
4.4 Summary 105
References 105

5 Structural and Electrical Characteristics of Alternative High-κ Dielectrics for CMOS Applications 111
Fu-Chien Chiu, Somnath Mondal, and Tung-Ming Pan
5.1 Introduction 111
5.2 Requirement of High-κ Oxide Materials 114
5.3 Rare-Earth Oxide as Alternative Gate Dielectrics 117
5.4 Structural Characteristics of High-κ RE Oxide Films 118
5.4.1 Process Compatibility 118
5.4.2 X-Ray Diffraction Analysis 120
5.4.3 Atomic Force Microscope Investigation 122
5.4.4 Transmission Electron Microscopy Technique 125
5.4.5 X-Ray Photoelectron Spectroscopy Analysis 128
5.5 Electrical Characteristics of High-κ RE Oxide Films 132
5.5.1 The Threshold Voltage, Flatband Voltage, Interface Trap, and Fixed Charge 132
5.5.2 Leakage Mechanism 134
5.5.2.1 Schottky or Thermionic Emission 135
5.5.2.2 Fowler–Nordheim Tunneling 137
5.5.2.3 Direct Tunneling 139
5.5.2.4 Thermionic Field Emission 141
5.5.2.5 Poole–Frenkel Emission 141
5.5.2.6 Hopping Conduction 142
5.5.2.7 Ohmic Conduction 144
5.5.2.8 Space Charge-Limited Conduction 145
5.5.2.9 Ionic Conduction 149
5.5.2.10 Grain Boundary-Limited Conduction 149
5.5.3 High-κ Silicon Interface 150
5.5.4 Band Alignment 153
5.5.5 Channel Mobility 163
5.5.6 Dielectric Breakdown 166
5.6 Conclusions and Perspectives 171
References 172
6 Hygroscopic Tolerance and Permittivity Enhancement of Lanthanum Oxide (La$_2$O$_3$) for High-κ Gate Insulators

Yi Zhao

6.1 Introduction 185
6.2 Hygroscopic Phenomenon of La$_2$O$_3$ Films 186
6.2.1 Effect of Moisture Absorption on Surface Roughness of La$_2$O$_3$ Films 187
6.2.2 Effect of Moisture Absorption on Electrical Properties of La$_2$O$_3$ Films 188
6.3 Low Permittivity Phenomenon of La$_2$O$_3$ Films 191
6.3.1 Moisture Absorption-Induced Permittivity Degradation of La$_2$O$_3$ Films 191
6.3.2 Permittivity of La$_2$O$_3$ Films without Moisture Absorption 193
6.4 Hygroscopic Tolerance Enhancement of La$_2$O$_3$ Films 194
6.4.1 Hygroscopic Tolerance Enhancement of La$_2$O$_3$ Films by Y$_2$O$_3$ Doping 194
6.5 Hygroscopic Tolerance Enhancement of La$_2$O$_3$ Films by Ultraviolet Ozone Treatment 198
6.6 Thermodynamic Analysis of Moisture Absorption Phenomenon in High-κ Gate Dielectrics 203
6.7 Permittivity Enhancement of La$_2$O$_3$ Films by Phase Control 205
6.7.1 Experimental Procedures and Characterizations 207
6.7.2 Permittivity Enhancement by Phase Control due to Y$_2$O$_3$ Doping 208
6.7.3 Higher-κ Amorphous La$_{1-x}$Ta$_x$O$_y$ Films 213
6.8 Summary 219
References 221

7 Characterization of High-κ Dielectric Internal Structure by X-Ray Spectroscopy and Reflectometry: New Approaches to Interlayer Identification and Analysis

Elena O. Filatova, Andrey A. Sokolov, and Igor V. Kozhevnikov

7.1 Introduction 225
7.2 Chemical Bonding and Crystalline Structure of Transition Metal Dielectrics 227
7.3 NEXAFS Investigation of Internal Structure 229
7.4 Studying the Internal Structure of High-K Dielectric Films by Hard X-Ray Photoelectron Spectroscopy and TEM 236
7.5 Studying the Internal Structure of High-K Dielectric Films by X-ray Reflectometry 244
7.5.1 Reconstruction of the Dielectric Constant Profile by Hard X-Ray Reflectometry 244
7.5.2 Reconstruction of the Depth Distribution of Chemical Elements Concentration by Soft X-Ray Reflectometry 254
References 266
High-k Insulating Films on Semiconductors and Metals: General Trends in Electron Band Alignment
Valeri V. Afanas’ev, Michel Houssa, and Andre Stesmans

8.1 Introduction 273
8.2 Band Offsets and IPE Spectroscopy 274
8.3 Silicon/Insulator Band Offsets 277
8.4 Band Alignment at Interfaces of High-Mobility Semiconductors 280
8.5 Metal/Insulator Barriers 284
8.6 Conclusions 289

References 289

Part Three Challenge in Interface Engineering and Electrode 293

Interface Engineering in the High-k Dielectric Gate Stacks 295
Shijie Wang, Yuanping Feng, and Alfred C.H. Huan

9.1 Introduction 295
9.2 High-k Oxide/Si Interfaces 295
9.2.1 Growth of Crystalline High-k Oxide on Semiconductors 297
9.2.2 Measurement of Band Alignment at High-k Oxide/Si Interfaces 298
9.3 Metal Gate/High-k Dielectric Interfaces 303
9.4 Chemical Tuning of Band Alignments for Metal Gate/High-k Oxide Interfaces 308
9.5 Summary and Discussion 314

References 315

Interfacial Dipole Effects on High-k Gate Stacks 319
Li Qiang Zhu

10.1 Introduction 319
10.2 Metal Gate Consideration 321
10.3 Interfacial Dipole Effects in High-k Gate Stacks 324
10.3.1 Modification of the Gate Work Function by the Interfacial Dipole 324
10.3.2 Fermi-Level Pinning Effects at Gate/High-k Interfaces 326
10.3.3 Micromodels for the Interfacial Dipole in High-k Stacks 328
10.3.3.1 Fermi-Level Pinning 328
10.3.3.2 Oxygen Vacancy Model 329
10.3.3.3 Pauling Electronegativity Model 330
10.3.3.4 Area Oxygen Density Model 331
10.4 Observation of the Interfacial Dipole in High-k Stacks 332
10.4.1 Flatband Voltage Shifts in Capacitance–Voltage Measurements 333
10.4.2 Core-Level Binding Energy Shift in Photoelectron Spectroscopy 335
10.4.2.1 Band Discontinuities and Schottky Barrier Analysis in Heterostructures 336
10.4.2.2 Interfacial Charge Investigation 337
10.4.2.3 Band Alignment Determination 337
10.4.2.4 Interfacial Dipole Measurement by Photoelectron Spectroscopy 339
10.4.3 Band Alignments Measured by Using Internal Photoemission 345
10.4.4 Potential Shifts in Kelvin Probe Measurements 346
10.5 Summary 348
References 349

11 Metal Gate Electrode for Advanced CMOS Application 355
Wenwu Wang, Xiaolei Wang, and Kai Han
11.1 The Scaling and Improved Performance of MOSFET Devices 355
11.2 Urgent Issues about MOS Gate Materials for Sub-0.1 μm Device Gate Stack 360
11.2.1 SiO₂ Gate Dielectric 360
11.2.2 Polysilicon Electrode 363
11.3 New Requirements of MOS Gate Materials for Sub-0.1 μm Device Gate Stack 365
11.3.1 High-κ Gate Dielectric 365
11.3.2 Metal Gate Electrode 367
11.4 Summary 374
References 374

Part Four Development in non-Si-based CMOS technology 379

12 Metal Gate/High-κ CMOS Evolution from Si to Ge Platform 381
Albert Achin
12.1 Introduction 381
12.2 High-κ/Si CMOSFETs 386
12.2.1 Potential Interface Reaction Mechanism 387
12.2.2 Inserting an Ultrathin SiON 388
12.2.3 Low-Temperature Process 389
12.3 High-κ/Ge CMOSFETs 392
12.3.1 Defect-Free Ge-on-Insulator 392
12.3.2 The Challenge for Ge n-MOS 394
12.3.3 High-Mobility Ge n-MOS Using Novel Technology 395
12.4 Ge Platform 397
12.4.1 Logic and Memory Integration 397
12.4.2 3D GeOI/Si IC 400
12.5 Conclusions 401
References 402

13 Theoretical Progress on GaAs (001) Surface and GaAs/high-κ Interface 407
Weichao Wang, Ka Xiong, Robert M. Wallace, and Kyeongjae Cho
13.1 Introduction 407
13.2 Computational Method 409
13.3 GaAs Surface Oxidation and Passivation 409
13.3.1 Clean GaAs Surface 409
13.3.2 GaAs Surface Oxidation 411
13.3.3 Passivation of the Oxidized GaAs Surface 415
13.3.4 Initial oxidation of the GaAs(001)-β2(2×4) Surface 418
13.4 Origin of Gap States at the High-k/GaAs Interface and Interface Passivation 419
13.4.1 Strained HfO₂/GaAs Interface 419
13.4.2 Strain-Free GaAs/HfO₂ Interfaces 421
13.4.3 Si Passivation of HfO₂/GaAs Interface 423
13.4.4 Sulfur Passivation Effect on HfO₂/GaAs Interface 425
13.5 Conclusions 428
References 428

14 III–V MOSFETs with ALD High-κ Gate Dielectrics 433
Jack C. Lee and Han Zhao
14.1 Introduction 433
14.2 Surface Channel InGaAs MOSFETs with ALD Gate Oxides 436
14.2.1 Effects of Gate-First and Gate-Last Processes on Interface Quality of In₀.₅₃Ga₀.₄₇ As MOSCAPs Using ALD Al₂O₃ and HfO₂ 436
14.2.2 Effect of Channel Doping Concentration and Thickness on Device Performance for In₀.₅₃Ga₀.₄₇ As MOSFETs with ALD Al₂O₃ Dielectrics 441
14.2.3 In₀.₅₃Ga₀.₄₇ As n-MOSFETs with ALD Al₂O₃, HfO₂, and LaAlO₃ Gate Dielectrics 445
14.3 Buried Channel InGaAs MOSFETs 450
14.3.1 High-Performance In₀.₇Ga₀.₃ As MOSFETs with Mobility >4400 cm²/(V s) Using InP Barrier Layer 450
14.3.2 Effects of Barrier Layers on Device Performance of High-Mobility In₀.₇Ga₀.₃ As MOSFETs 455
14.4 Summary 460
References 466

Part Five High-κ Application in Novel Devices 471

15 High-κ Dielectrics in Ferroelectric Gate Field Effect Transistors for Nonvolatile Memory Applications 473
Xubing Lu
15.1 Introduction 473
15.2 Overview of High-κ Dielectric Studies for FeFET Applications 477
15.2.1 Materials Requirements for High-κ Buffer Layers 477
15.2.2 Research Progress of High-κ in the MFIS Devices 478
15.2.3 Issues for High-κ Dielectric Integration into MFIS Devices 481
15.2.3.1 High-κ/Si Interfacial Reaction 481
15.2.3.2 Crystallinity and Interdiffusion with Ferroelectric Film 484
15.2.3.3 Possible Solutions 484
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.6</td>
<td>T_{inv} Scaling and Impacts on Gate Leakage and Effective Work Function</td>
<td>544</td>
</tr>
<tr>
<td>17.7</td>
<td>Ambients and Oxygen Vacancy-Induced Modulation of Threshold Voltage</td>
<td>545</td>
</tr>
<tr>
<td>17.8</td>
<td>Reliability</td>
<td>547</td>
</tr>
<tr>
<td>17.9</td>
<td>Conclusions</td>
<td>550</td>
</tr>
</tbody>
</table>

References 551

Index 557