Contents

Preface XV List of Contributors XVII Color Plates XXIII

Part One Scaling and Challenge of Si-based CMOS 1

- 1 Scaling and Limitation of Si-based CMOS 3
 - Gang He, Zhaoqi Sun, Mao Liu, and Lide Zhang

v

- 1.1 Introduction 3
- 1.2 Scaling and Limitation of CMOS 4
- 1.2.1 Device Scaling and Power Dissipation 4
- 1.2.2 Gate Oxide Tunneling 7
- 1.2.3 Gate Oxide Scaling Trends 8
- 1.2.4 Scaling and Limitation of SiO₂ Gate Dielectrics 10
- 1.2.5 Silicon Oxynitrides 14
- 1.3 Toward Alternative Gate Stacks Technology 16
- 1.3.1 Advances and Challenges in Dielectric Development 16
- 1.3.2 Advances and Challenges in Electrode Development 19
- 1.4 Improvements and Alternative to CMOS Technologies 22
- 1.4.1 Improvement to CMOS 22
- 1.4.1.1 New Materials 22
- 1.4.1.2 New Structures 23
- 1.5 Potential Technologies Beyond CMOS 23
- 1.6 Conclusions 24 References 25

Part Two High-k Deposition and Materials Characterization 31

- 2 Issues in High-k Gate Dielectrics and its Stack Interfaces 33
 - Hong-Liang Lu and David Wei Zhang
- 2.1 Introduction 33
- 2.2 High-k Dielectrics 33
- 2.2.1 The Criteria Required for High-k Dielectrics 34

VI Contents

2.2.2	The Challenges of High- k Dielectrics 37
2.2.2.1	Structural Defects 37
2.2.2.2	Channel Mobility Degradation 38
2.2.2.3	Threshold Voltage Control 38
2.2.2.4	Reliability 39
2.3	Metal Gates 40
2.3.1	Basic Requirements for Metal Gates 41
2.3.2	Metal Gate Materials 41
2.3.2.1	Pure Metals 42
2.3.2.2	Metallic Alloys 42
2.3.2.3	Metal Nitrides 42
2.3.2.4	Metal Silicides 43
2.3.3	Work Function 43
2.3.4	Metal Gate Structures 44
2.3.5	Metal Gate/High-k Integration 44
2.3.6	Process Integration 44
2.4	Integration of High- k Gate Dielectrics with Alternative
	Channel Materials 45
2.4.1	High-k/Ge Interface 46
2.4.2	High-k/III–V Interface 49
2.5	Summary 51
	References 52
3	UV Engineering of High-k Thin Films 61
	Ian W. Boyd
3.1	Introduction 61
3.2	Gas Discharge Generation of UV (Excimer) Radiation 61
3.3	Excimer Lamp Sources Based on Silent Discharges 63
3.4	Predeposition Surface Cleaning for High-k Layers 65
3.5	UV Photon Deposition of Ta_2O_5 Films 66
3.6	Photoinduced Deposition of $Hf_{1-x}Si_xO_y$ Layers 70
3.7	Summary 73
	References 73
4	Atomic Layer Deposition Process of Hf-Based High-k Gate
•	Dielectric Film on Si Substrate 77
	Tae loo Park, Mooniu Cho, Hyung-Suk lung, and Cheol Seong Hwang
4.1	Introduction 77
4.2	Precursor Effect on the HfO ₂ Characteristics 78
4.2.1	
	Hatnum Precursor Effect on the HtO ₂ Dielectric Characteristics
4.2.1.1	Hatnium Precursor Effect on the HfO ₂ Dielectric Characteristics Hafnium Chloride (HfCl ₄) 78
4.2.1.1 4.2.1.2	Hatnium Precursor Effect on the HfO ₂ Dielectric Characteristics Hafnium Chloride (HfCl ₄) 78 Tetrakis Dimethylamido Hafnium [HfN(CH ₄) ₂] ₄ 82
4.2.1.1 4.2.1.2 4.2.1.3	Hatnium Precursor Effect on the HfO ₂ Dielectric Characteristics Hafnium Chloride (HfCl ₄) 78 Tetrakis Dimethylamido Hafnium [HfN(CH ₃) ₂] ₄ 82 Tetrakis Ethylmethylamino Hafnium (HfIN(C ₂ H ₃)(CH ₂)) ₄) 85
4.2.1.1 4.2.1.2 4.2.1.3 4.2.1.4	Hafnium Precursor Effect on the HfO ₂ Dielectric Characteristics Hafnium Chloride (HfCl ₄) 78 Tetrakis Dimethylamido Hafnium [HfN(CH ₃) ₂] ₄ 82 Tetrakis Ethylmethylamino Hafnium (Hf[N(C ₂ H ₅)(CH ₃)] ₄) 85 <i>tert</i> -Butoxytris[Ethylmethylamido] Hafnium (HfO ^t Bu[NEtMel ₃) 86

78

- 4.2.2 Oxygen Sources and Reactants 88
- 4.2.2.1 H₂O versus O₃ 88
- 4.2.2.2 O₃ Concentration 93
- 4.2.2.3 Reactants for In Situ N Incorporation 95
- 4.3 Doped and Mixed High-*k* 97
- 4.3.1 Zr-Doped HfO₂ 98
- 4.3.2 Si-Doped HfO₂ 100
- 4.3.3 Al-Doped HfO₂ 102
- 4.4 Summary 105
 - References 105

5 Structural and Electrical Characteristics of Alternative High-κ Dielectrics for CMOS Applications 111

- Fu-Chien Chiu, Somnath Mondal, and Tung-Ming Pan
- 5.1 Introduction 111
- 5.2 Requirement of High-*k* Oxide Materials 114
- 5.3 Rare-Earth Oxide as Alternative Gate Dielectrics 117
- 5.4 Structural Characteristics of High-κ RE Oxide Films 118
- 5.4.1 Process Compatibility 118
- 5.4.2 X-Ray Diffraction Analysis 120
- 5.4.3 Atomic Force Microscope Investigation 122
- 5.4.4 Transmission Electron Microscopy Technique 125
- 5.4.5 X-Ray Photoelectron Spectroscopy Analysis 128
- 5.5 Electrical Characteristics of High- κ RE Oxide Films 132
- 5.5.1 The Threshold Voltage, Flatband Voltage, Interface Trap, and Fixed Charge *132*
- 5.5.2 Leakage Mechanism 134
- 5.5.2.1 Schottky or Thermionic Emission 135
- 5.5.2.2 Fowler–Nordheim Tunneling 137
- 5.5.2.3 Direct Tunneling 139
- 5.5.2.4 Thermionic Field Emission 141
- 5.5.2.5 Poole–Frenkel Emission 141
- 5.5.2.6 Hopping Conduction 142
- 5.5.2.7 Ohmic Conduction 144
- 5.5.2.8 Space Charge-Limited Conduction 145
- 5.5.2.9 Ionic Conduction 149
- 5.5.2.10 Grain Boundary-Limited Conduction 149
- 5.5.3 High- κ Silicon Interface 150
- 5.5.4 Band Alignment 153
- 5.5.5 Channel Mobility 163
- 5.5.6 Dielectric Breakdown 166
- 5.6 Conclusions and Perspectives 171 References 172

VIII Contents

6	Hygroscopic Tolerance and Permittivity Enhancement of Lanthanum Oxide (La ₂ O ₃) for High- k Gate Insulators 185	
	Yi Zhao	
6.1	Introduction 185	
6.2	Hygroscopic Phenomenon of La ₂ O ₃ Films 186	
6.2.1	Effect of Moisture Absorption on Surface Roughness of La ₂ O ₃ Films 187	
6.2.2	Effect of Moisture Absorption on Electrical Properties of La ₂ O ₃ Films 188	
6.3	Low Permittivity Phenomenon of La ₂ O ₃ Films 191	
6.3.1	Moisture Absorption-Induced Permittivity Degradation of La ₂ O ₃ Films 191	
6.3.2	Permittivity of La ₂ O ₃ Films without Moisture Absorption 193	
6.4	Hygroscopic Tolerance Enhancement of La ₂ O ₃ Films 194	
6.4.1	Hygroscopic Tolerance Enhancement of La_2O_3 Films by Y_2O_3 Doping 194	
6.5	Hygroscopic Tolerance Enhancement of La ₂ O ₃ Films	
6.6	Thermodynamic Analysis of Moisture Absorption	
0.0	Phenomenon in High k Cate Dielectrics 203	
67	Dermittivity Enhancement of Le O. Films by Dhase Control 205	
0.7 6 7 1	Experimental Drocodures and Characterizations 207	
672	Permittivity Enhancement by Phase Control due to V.O. Doping 208	
673	Higher k Amorphous L ₂ . Tr O Films 213	
6.8	Summary 210	
0.8	Deferences 221	
	References 221	
7	Characterization of High-k Dielectric Internal Structure by	
	X-Ray Spectroscopy and Reflectometry: New Approaches to Interlayer	
	Identification and Analysis 225	
	Elena O. Filatova, Andrey A. Sokolov, and Igor V. Kozhevnikov	
7.1	Introduction 225	
7.2	Chemical Bonding and Crystalline Structure of Transition	
	Metal Dielectrics 227	
7.3	NEXAFS Investigation of Internal Structure 229	
7.4	Studying the Internal Structure of High-K Dielectric Films by	
	Hard X-Ray Photoelectron Spectroscopy and TEM 236	
7.5	Studying the Internal Structure of High-K Dielectric Films	
	by X-ray Reflectometry 244	
7.5.1	Reconstruction of the Dielectric Constant Profile by Hard X-Ray	
	Reflectometry 244	
7.5.2	Reconstruction of the Depth Distribution of Chemical Elements	
	Concentration by Soft X-Ray Reflectometry 254	
	References 266	

- 8 High-k Insulating Films on Semiconductors and Metals: General Trends in Electron Band Alignment 273 Valeri V. Afanas'ev, Michel Houssa, and Andre Stesmans
- 8.1 Introduction 273
- 8.2 Band Offsets and IPE Spectroscopy 274
- 8.3 Silicon/Insulator Band Offsets 277
- 8.4 Band Alignment at Interfaces of High-Mobility Semiconductors 280
- 8.5 Metal/Insulator Barriers 284
- 8.6 Conclusions 289 References 289

Part Three Challenge in Interface Engineering and Electrode 293

9	Interface Engineering in the High- <i>k</i> Dielectric Gate Stacks	295
---	--	-----

Shijie Wang, Yuanping Feng, and Alfred C.H. Huan

- 9.1 Introduction 295
- 9.2 High-k Oxide/Si Interfaces 295
- 9.2.1 Growth of Crystalline High-*k* Oxide on Semiconductors 297
- 9.2.2 Measurement of Band Alignment at High-k Oxide/Si Interfaces 298
- 9.3 Metal Gate/High-*k* Dielectric Interfaces 303
- 9.4 Chemical Tuning of Band Alignments for Metal Gate/High-*k* Oxide Interfaces 308
- 9.5 Summary and Discussion 314 References 315

10 Interfacial Dipole Effects on High-k Gate Stacks 319

Li Qiang Zhu

- 10.1 Introduction 319
- 10.2 Metal Gate Consideration 321
- 10.3 Interfacial Dipole Effects in High-*k* Gate Stacks 324
- 10.3.1 Modification of the Gate Work Function by the Interfacial Dipole 324
- 10.3.2 Fermi-Level Pinning Effects at Gate/High-k Interfaces 326
- 10.3.3 Micromodels for the Interfacial Dipole in High-*k* Stacks 328
- 10.3.3.1 Fermi-Level Pinning 328
- 10.3.3.2 Oxygen Vacancy Model 329
- 10.3.3.3 Pauling Electronegativity Model 330
- 10.3.3.4 Area Oxygen Density Model 331
- 10.4 Observation of the Interfacial Dipole in High-*k* Stacks 332
- 10.4.1 Flatband Voltage Shifts in Capacitance–Voltage Measurements 333
- 10.4.2 Core-Level Binding Energy Shift in Photoelectron Spectroscopy 335
- 10.4.2.1 Band Discontinuities and Schottky Barrier Analysis in Heterostructures 336
- 10.4.2.2 Interfacial Charge Investigation 337

X Contents

10.4.2.3	Band Alignment Determination 337
10.4.2.4	Interfacial Dipole Measurement by Photoelectron Spectroscopy 339
10.4.3	Band Alignments Measured by Using Internal Photoemission 345
10.4.4	Potential Shifts in Kelvin Probe Measurements 346
10.5	Summary 348
	References 349
11	Metal Gate Electrode for Advanced CMOS Application 355
	Wenwu Wang, Xiaolei Wang, and Kai Han
11.1	The Scaling and Improved Performance of MOSFET Devices 355
11.2	Urgent Issues about MOS Gate Materials for Sub-0.1 μm
	Device Gate Stack 360
11.2.1	SiO ₂ Gate Dielectric 360
11.2.2	Polysilicon Electrode 363
11.3	New Requirements of MOS Gate Materials for Sub-0.1 μm
	Device Gate Stack 365
11.3.1	High- κ Gate Dielectric 365
11.3.2	Metal Gate Electrode 367
11.4	Summary 374
	References 374

Part Four Development in non-Si-based CMOS technology 379

12	Metal Gate/High-κ CMOS Evolution from Si to Ge Platform	381
	Albert Achin	

- 12.1 Introduction 381
- 12.2 High-κ/Si CMOSFETs 386
- 12.2.1 Potential Interface Reaction Mechanism 387
- 12.2.2 Inserting an Ultrathin SiON 388
- 12.2.3 Low-Temperature Process 389
- 12.3 High-κ/Ge CMOSFETs 392
- 12.3.1 Defect-Free Ge-on-Insulator 392
- 12.3.2 The Challenge for Ge n-MOS 394
- 12.3.3 High-Mobility Ge n-MOS Using Novel Technology 395
- 12.4 Ge Platform 397
- Logic and Memory Integration 397 12.4.1
- 12.4.2 3D GeOI/Si IC 400
- 12.5 Conclusions 401 References 402

13 Theoretical Progress on GaAs (001) Surface and GaAs/high-κ Interface 407

Weichao Wang, Ka Xiong, Robert M. Wallace, and Kyeongjae Cho

- Introduction 407 13.1
- 13.2 Computational Method 409
- GaAs Surface Oxidation and Passivation 13.3 409

- 13.3.1 Clean GaAs Surface 409
- 13.3.2 GaAs Surface Oxidation 411
- 13.3.3 Passivation of the Oxidized GaAs Surface 415
- 13.3.4 Initial oxidation of the GaAs(001)- β 2(2 × 4) Surface 418
- 13.4 Origin of Gap States at the High-*k*/GaAs Interface and Interface Passivation *419*
- 13.4.1 Strained HfO₂/GaAs Interface 419
- 13.4.2 Strain-Free GaAs/HfO₂ Interfaces 421
- 13.4.3 Si Passivation of HfO₂/GaAs Interface 423
- 13.4.4 Sulfur Passivation Effect on HfO₂/GaAs Interface 425
- 13.5 Conclusions 428 References 428

14III-V MOSFETs with ALD High-κ Gate Dielectrics433

- Jack C. Lee and Han Zhao 14.1 Introduction 433
- 14.2 Surface Channel InGaAs MOSFETs with ALD Gate Oxides 436
- 14.2.1 Effects of Gate-First and Gate-Last Processes on Interface Quality of In_{0.53} Ga_{0.47} As MOSCAPs Using ALD Al₂O₃ and HfO₂ 436
- 14.2.2 Effect of Channel Doping Concentration and Thickness on Device Performance for $In_{0.53}Ga_{0.47}$ As MOSFETs with ALD Al_2O_3 Dielectrics 441
- 14.2.3 In_{0.53}Ga_{0.47} As n-MOSFETs with ALD Al₂O₃, HfO₂, and LaAlO₃ Gate Dielectrics 445
- 14.3 Buried Channel InGaAs MOSFETs 450
- 14.3.1 High-Performance $In_{0.7}$ Ga_{0.3} As MOSFETs with Mobility >4400 cm²/(V s) Using InP Barrier Layer 450
- 14.3.2 Effects of Barrier Layers on Device Performance of High-Mobility In_{0.7} Ga_{0.3} As MOSFETs 455
- 14.4 Summary 460 References 466
- Part Five High-k Application in Novel Devices 471

15	High-k Dielectrics in Ferroelectric Gate F	ield Effect Transistors
	for Nonvolatile Memory Applications 4	73

Xubing Lu

- 15.1 Introduction 473
- 15.2 Overview of High-*k* Dielectric Studies for FeFET Applications 477
- 15.2.1 Materials Requirements for High-*k* Buffer Layers 477
- 15.2.2 Research Progress of High-*k* in the MFIS Devices 478
- 15.2.3 Issues for High-*k* Dielectric Integration into MFIS Devices 481
- 15.2.3.1 High-k/Si Interfacial Reaction 481
- 15.2.3.2 Crystallinity and Interdiffusion with Ferroelectric Film 484
- 15.2.3.3 Possible Solutions 484

XII Contents

15.3	Developing of HfT20 Buffer Lovers for FeFFT Applications 485
15.3.1	Introduction 485
15 3 7	Experimental Procedure 485
15.2.2	Crustellization Characteristics of UfTaO Films 486
15.5.5	Electrical Droportica of LIFTO Filma on Si Substrates 480
15.5.4	Electrical Properties of Fillary (DP (CDT (11)TEO/G) Dividers 480
15.3.5	Electrical Characteristics of Pt/SBI/HtTaO/St Diodes 490
15.3.6	Electrical Properties of MFIS FeFEIs with Hf1aO
	Buffer Layers 493
15.4	Summary 496
	References 497
16	Rare-Farth Oxides as High-k Cate Dielectrics for Advanced
	Device Architectures 501
	Pool See Lee Mei Vin Chan and Peter Damanyan
16 1	Introduction 501
16.1	Key Challenges for High k Disloctrics 502
16.2	Laterfaced Departies 502
10.2.1	Thermorel Stability 502
16.2.2	Freed Discourse 502
16.2.3	Fermi-Level Pinning 503
16.2.4	Device Integration 503
16.3	Rare-Earth Oxides as High- κ Dielectrics 506
16.3.1	Lutetium Oxides as High- <i>k</i> Dielectrics 507
16.3.2	Gd_2O_3 as High- κ Dielectric 514
16.3.3	Summary 516
16.4	High- <i>k</i> Dielectrics in Advanced Device Architecture 517
16.4.1	HfO ₂ Alloy with Rare-Earth and Bilayer Stacks 517
16.4.2	Advanced Device Architecture with High- <i>k</i> Dielectrics 519
16.4.2.1	High-k Dielectrics for Advanced CNT and
	Nanowire Devices 519
16.4.2.2	High-k Dielectrics for DRAM and Flash Memory
	Devices 520
	References 522
Part Six	Challenge and Future Directions 531
17	The Interaction Challenges with Novel Materials in Developing
	High-Performance and Low-Leakage High-κ/Metal Gate
	CMOS Transistors 533
	Michael Chudzik, Siddarth Krishnan, Unoh Kwon, Mukesh Khare, Vijay
	Narayanan, Takashi Ando, Ed Cartier, Huiming Bu, and Vamsi Paruchuri
17.1	Introduction 533
17.2	Traditional CMOS Integration Processes 534
17.3	High- κ /Metal Gate Integration Processes 536
17.4	Mobility 536
17.5	Metal Electrodes and Effective Work Function 541

- 17.6 *T*_{inv} Scaling and Impacts on Gate Leakage and Effective Work Function 544
- 17.7 Ambients and Oxygen Vacancy-Induced Modulation of Threshold Voltage 545
- 17.8 Reliability 547
- 17.9 Conclusions 550 References 551

Index 557