
Chapter 1

Basic Principles of Chemical
Kinetics

1.1 Symbols, terminology and abbreviations

This book follows as far as possible the recommendations
of the International Union of Biochemistry and Molecular
Biology. However, as these allow some latitude and in any International Union of Bio-

chemistry (1982) “Symbolism
and terminology in enzyme
kinetics” European Journal of
Biochemistry 128, 281–291

case do not cover all of the cases that we shall need, it is
useful to begin by noting some points that apply generally
in the book. First of all, it is important to recognize that
a chemical substance and its concentration are two different
entities and need to be represented by different symbols. The
recommendations allow square brackets around the chemical
name to be used without definition for its concentration, so
[glucose] is the concentration of glucose, [A] is the concen-
tration of a substance A, and so on. In this book I shall use
this convention for names that consist of more than a single
letter, but it has the disadvantage that the profusion of square
brackets can lead to forbiddingly complicated equations in
enzyme kinetics (see some of the equations in Chapter 8, Chapter 8, pages 189–226
for example, and imagine how they would look with square
brackets). Two simple alternatives are possible: one is just
to put the name in italics, so the concentration of A is A, for
example, and this accords well with the standard convention
that chemical names are written in roman (upright) type and
algebraic symbols are written in italics. However, experience
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shows that many readers barely notice whether a particular
symbol is roman or italic, and so it discriminates less well
than one would hope between the two kinds of entity. For this
reason I shall use the lower-case italic letter that corresponds
to the symbol for the chemical entity, so a is the concentration
of A, for example. If the chemical symbol has any subscripts,
these apply unchanged to the concentration symbol, so a0 is
the concentration of A0, for example. Both of these systems
(and others) are permitted by the recommendations as long
as each symbol is defined when first used. This provision
is satisfied in this book, and it is good to follow it in gen-
eral, because almost nothing that authors consider obvious
is perceived as obvious by all their readers. In the problems
at the ends of the chapters, incidentally, the symbols may not
be the same as those used in the corresponding chapters: this
is intentional, because in the real world one cannot always
expect the questions that one has to answer to be presented in
familiar terms.

As we shall see, an enzyme-catalyzed reaction virtually
always consists of two or more steps, and as we shall need
symbols to refer to the different steps it is necessary to have
some convenient indexing system to show which symbol
refers to which step. The recommendations do not impose
any particular system, but, most important, they do require
the system in use to be stated. Because of the different ways
in which, for example, the symbol k2 has been used in the
biochemical literature one should never assume in the ab-
sence of a clear definition what is intended. In this book I use
the system preferred by the recommendations: for a reaction
of n steps, these are numbered 1, 2 ... n; lower-case italic k
with a positive subscript refers to the kinetic properties of the
forward step corresponding to the subscript, for example, k2
refers to the forward direction of the second step; the same
with a negative subscript refers to the corresponding reverse
reaction, for example, k−2 for the second step; a capital italic
K with a subscript refers to the thermodynamic (equilibrium)
properties of the whole step and is typically the ratio of the
two kinetic constants, for example, K2 = k2/k−2.

The policy regarding the use of abbreviations in this book
can be stated very simply: there are no abbreviations in this
book (other than in verbatim quotations and the index, which
needs to include the entries readers expect to find). Much of
the modern literature is rendered virtually unintelligible to
nonspecialist readers by a profusion of unnecessary abbrevi-
ations. They save little space, and little work (because with
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modern word-processing equipment it takes no more than a
few seconds to expand all of the abbreviations that one may
have found it convenient to use during preparation), but the
barrier to comprehension that they represent is formidable.
A few apparent exceptions (like “ATP”) are better regarded
as standardized symbols than as abbreviations, especially be-
cause they are more easily understood by most biochemists
than the words they stand for.

1.2 Order of a reaction

1.2.1 Order and molecularity

Chemical kinetics as a science began in the middle of the 19th L. F. Wilhelmy (1850) “Über das
Gesetz, nach welchem die
Einwirkung der Säuren auf
Rohrzucker stattfindet”
Poggendorff’s Annalen der Physik
und Chemie 81, 413–433, 499–526

P. Waage and C. M. Guldberg
(1864) “Studier over Affinite-
ten” Forhandlinger: Videnskabs-
Selskabet i Christiana, 35–40,
111-120. There is an English
translation by H. I. Abrash at
http://tinyurl.com/3levsgl

K. J. Laidler (1993) The World of
Physical Chemistry, pages 232–
289, Oxford University Press,
Oxford

century, when Wilhelmy was apparently the first to recognize
that the rate at which a chemical reaction proceeds follows
definite laws, but although his work paved the way for the
law of mass action of Waage and Guldberg, it attracted little
attention until it was taken up by Ostwald towards the end
of the century, as discussed by Laidler. Wilhelmy realized
that chemical rates depended on the concentrations of the
reactants, but before considering some examples we need to
examine how chemical reactions can be classified.

One way is according to the molecularity, which defines the
number of molecules that are altered in a reaction: a reaction
A→ P is unimolecular (sometimes called monomolecular), and a
reaction A + B→ P is bimolecular. One-step reactions of higher
molecularity are extremely rare, if they occur at all, but a
reaction A + B + C→ P would be trimolecular (or termolecular).
Alternatively one can classify a reaction according to its order,
a description of its kinetics that defines how many concentra-
tion terms must be multiplied together to get an expression
for the rate of reaction. Hence, in a first-order reaction the rate
is proportional to one concentration; in a second-order reaction
it is proportional to the product of two concentrations or to
the square of one concentration; and so on.

0

First order

Second order

v

0 a

Zero order

Figure 1.1. Order of reaction.
When a reaction is of first order
with respect to a reactant A the
rate is proportional to its con-
centration a. If it is of second
order the rate is proportional to
a2; if it is of zero order it does
not vary with a.

For a simple reaction that consists of a single step, or for
each step in a complex reaction, the order is usually the same
as the molecularity (though this may not be apparent if one
concentration, for example that of the solvent if it is also a
reactant, is so large that it is effectively constant). However,
many reactions consist of sequences of unimolecular and bi-
molecular steps, and the molecularity of the complete reaction
need not be the same as its order. Indeed, a complex reaction
often has no meaningful order, as the overall rate often cannot
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be expressed as a product of concentration terms. As we
shall see in later chapters, this is almost universal in enzyme
kinetics, where not even the simplest enzyme-catalyzed reac-
tions have simple orders. Nonetheless, the individual steps
in enzyme-catalyzed reactions nearly always do have simple
orders, usually first or second order, and the concept of order
is important for understanding enzyme kinetics. The binding
of a substrate molecule to an enzyme molecule is a typical
example of a second-order bimolecular reaction in enzyme
kinetics, whereas conversion of an enzyme–substrate com-
plex into products or into another intermediate is a typical
example of a first-order unimolecular reaction.

1.2.2 First-order kinetics

The rate v of a first-order reaction A → P can be expressed as

v =
dp
dt

= −da
dt

= ka = k(a0 − p) (1.1)

in which a and p are the concentrations of A and P respec-
tively at any time t, k is a first-order rate constant and a0 is
a constant. As we shall see throughout this book, the idea
of a rate constant1 is fundamental in all varieties of chemical
kinetics. The first two equality signs in the equation represent
alternative definitions of the rate v: because every molecule
of A that is consumed becomes a molecule of P, it makes
no difference to the mathematics whether the rate is defined
in terms of the appearance of product or disappearance of
reactant. It may make a difference experimentally, however,
because experiments are not done with perfect accuracy, and
in the early stages of a reaction the relative changes in p are
much larger than those in a (Figure 1.2). For this reason it
will usually be more accurate to measure increases in p than
decreases in a.

Concentration
(arbitrary units)

a

p

9

Time

During the time in which a
decreases from 9 to 7 (–22%), p
increases from 1 to 3 (+200%)

7

3

1

Figure 1.2. Relative changes in
concentration. For a stoichio-
metric reaction A → P, any
change in a is matched by an
opposite change in p. However,
in the early stages of a reaction
the relative increases in p are
much larger than the relative
changes in a.

§ 10.4.3, pages 264–265

The third equality sign in the equation is the one that
specifies that this is a first-order reaction, because it states
that the rate is proportional to the concentration of reactant A.

1Some authors, especially those with a strong background in physics,
object to the term “rate constant” (preferring “rate coefficient”) for quantities
like k in equation 1.1 and for many similar quantities that will occur in this
book, on the perfectly valid grounds that they are not constant, because they
vary with temperature and with many other conditions. However, the use of
the word “constant” to refer to quantities that are constant only under highly
restricted conditions is virtually universal in biochemical kinetics (and far
from unknown in chemical kinetics), and it is hardly practical to abandon
this usage in this book. See also the discussion at the end of Section 10.4.3.
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Finally, if the time zero is defined in such a way that a = a0
and p = 0 when t = 0, the stoichiometry allows the values
of a and p at any time to be related according to the equation
a + p = a0, thereby allowing the last equality in the equation.

Equation 1.1 can readily be integrated by separating the
two variables p and t, bringing all terms in p to the left-hand
side and all terms in t to the right-hand side:

∫ dp
a0 − p

=
∫

k dt

therefore
− ln(a0 − p) = kt + α

in which α, the constant of integration, can be evaluated by
noting that there is no product at the start of the reaction, so
p = 0 when t = 0. Then α = − ln(a0), and so

ln
(

a0 − p
a0

)
= −kt (1.2)

Taking exponentials of both sides we have

a0 − p
a0

= e−kt

which can be rearranged to give

p = a0(1− e−kt) (1.3)

Notice that the constant of integration α was included in this
derivation, evaluated and found to be nonzero. Constants
of integration must always be included and evaluated when
integrating kinetic equations; they are rarely found to be zero.

0

a/a

0
Time

0.5t 0.52t 0.53t

1

0.5

0.25

p/a0

0.54t

0

Figure 1.3. First-order decay.
The half-time t0.5 is the time
taken for the reactant concen-
tration to decrease by half from
any starting point. For a first-
order reaction, but not for other
orders of reaction, it remains
constant as the reaction
proceeds.

Inserting p = 0.5a0 into equation 1.3 at a time t = t0.5
known as the half-time allows us to calculate kt0.5 = ln 2 =
0.693, so t0.5 = 0.693/k. This value is independent of the
value of a0, so the time required for the concentration of
reactant to decrease by half is a constant, for a first-order
process, as illustrated in Figure 1.3. The half-time is not a
constant for other orders of reaction.

1.2.3 Second-order kinetics

The commonest type of bimolecular reaction is one of the
form A + B→ P + Q, in which two different kinds of molecule
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A and B react to give products. In this example the rate is
likely to be given by a second-order expression of the form

v =
dp
dt

= kab = k(a0 − p)(b0 − p)

in which k is now a second-order rate constant.2 Again, inte-
gration is readily achieved by separating the two variables p
and t: ∫ dp

(a0 − p)(b0 − p)
=
∫

k dt

For readers with limited mathematical experience, the sim-
plest and most reliable method for integrating the left-hand
side of this equation is to look it up in a standard table of
integrals.3 It may also be done by multiplying both sides

Table 1.1. Standard integrals
∫

adx = ax
∫

a · f (x)dx =

a
∫

f (x)dx
∫

xdx = 1
2 x2

∫
x2dx = 1

3 x3

∫
xndx =

xn+1

n + 1
for n 6= −1

∫ 1
x

dx = ln x
∫

exdx = ex

∫ dx
a + bx

=
1
b

ln(a + bx)
∫ xdx

a + bx
=

a + bx− a ln(a + bx)
b2

1. In all examples, x is variable;
a, b and n are constants and
f (x) is a function of x.

2. Standard tables usually omit
the constant of integration
(assuming that users know that
it must be added).

3. Tables intended primarily for
the use of mathematicians often
write log x where a biochemist
would expect ln x.

Chapter 7, pages 169–188

of the equation by (b0 − a0) and separating the left-hand side
into two simple integrals:

∫ dp
a0 − p

−
∫ dp

b0 − p
=
∫
(b0 − a0)k dt

Hence

− ln(a0 − p) + ln(b0 − p) = (b0 − a0)kt + α

Putting p = 0 when t = 0 we find α = ln(b0/a0), and so

ln
[

a0(b0 − p)
b0(a0 − p)

]
= (b0 − a0)kt

or
a0(b0 − p)
b0(a0 − p)

= e(b0−a0)kt (1.4)

A special case of this result is important: if a0 is negligible
compared with b0, then (b0 − a0) ≈ b0; p can never exceed
a0, on account of the stoichiometry of the reaction, and so
(b0 − p) ≈ b0. Introducing both approximations, equation 1.4
can be simplified as follows:

a0��b0

��b0(a0 − p)
= ekb0t

2Conventional symbolism does not indicate the order of a rate constant.
For example, it is common practice to illustrate simple enzyme kinetics with
a mechanism in which k1 is a second-order rate constant and k2 is a first-
order rate constant: there is no way to know this from the symbols alone, it is
important to define each rate constant when it is first used.

3The integrals listed in Table 1.1 are sufficient for the purposes of this
chapter (and the last one will not be needed until Chapter 7).
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and, remembering that 1/ekb0t ≡ e−kb0t, this can be rear-
ranged to read

p = a0(1− e−kb0t)

which has exactly the same form as equation 1.3, the equation
for a first-order reaction. This type of reaction is known as
a pseudo-first-order reaction, and kb0 is a pseudo-first-order rate
constant. Pseudo-first-order conditions occur naturally when
one of the reactants is the solvent, as in most hydrolysis reac-
tions, but it is also advantageous to create them deliberately,
to simplify evaluation of the rate constant (Section 1.5). § 1.5, pages 11–13

1.2.4 Third-order kinetics

A trimolecular reaction, such as A + B + C → P + ..., does
not normally consist of a single trimolecular step involving
a three-body collision, which would be inherently unlikely;
consequently it is not usually third-order. Instead it is likely
to consist of two or more elementary steps, such as A + B

 X followed by X + C → P. In some reactions the kinetic
behavior as a whole is largely determined by the rate constant
of the step with the smaller rate constant, accordingly known
as the rate-limiting step (or, more objectionably, as the rate-
determining step).4 When there is no clearly defined rate-

A + B X

C
K

a b Kabfast

k′

slow

Figure 1.4. Third-order kinetics.
A reaction can be third-order
overall without requiring any
third-order step in the mechan-
ism, if a rapid equilibrium
maintains an intermediate X at
a concentration Kab and this
reacts slowly with the third
reactant C in a second-order
reaction with rate constant k′.

limiting step the rate equation is typically complex, with no
integral order. Some trimolecular reactions do display third-
order kinetics, however, with v = kabc, where k is now a third-
order rate constant, but it is not necessary to assume a three-
body collision to account for third-order kinetics. Instead, we
can assume a two-step mechanism, as before but with the first
step rapidly reversible, so that the concentration of X is given
by x = Kab, where K is the equilibrium constant for binding
of A to B, the association constant of X (Figure 1.4). The rate
of reaction is then the rate of the slow second step:

v = k′xc = k′Kabc

where k′ is the second-order rate constant for the second step.
Hence the observed third-order rate constant is actually the
product of a second-order rate constant and an equilibrium
constant.

§ 14.1.3, pages 383–385

4These terms are widespread in chemistry, but they involve some con-
ceptual confusion, as discussed in Section 14.1.3, and as far as possible are
best avoided.
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1.2.5 Zero-order kinetics

Some reactions are observed to be of zero order, with a con-
stant rate, independent of the concentration of reactant. If a
reaction is zero order with respect to only one reactant, this
may simply mean that the reactant enters the reaction after the
rate-limiting step. However, some reactions are zero-order
overall, which means that they are independent of all reactant
concentrations. These are invariably catalyzed reactions and
occur if every reactant is present in such large excess that the
full potential of the catalyst is realized. Enzyme-catalyzed re-
actions commonly approach zero-order kinetics at very high
reactant concentrations.

1.2.6 Determination of the order of a reaction

The simplest means of determining the order of a reaction
is to measure the rate v at different concentrations a of the
reactants. A plot of ln v against ln a is then a straight line

Slope = 2

ln a

ln v

0.4

0.2

0.0
0.0 0.2 0.4

Second order 
in A

Figure 1.5. Determination of the
order of reaction. The line is
drawn for a reaction that is
second-order in a reactant A
(and first-order in another react-
ant B, but this is not evident
from the plot) so the slope of
the line is 2. The appearance of
the plot (though not the num-
erical values) would be the
same if logarithms to base 10 or
any other base were used in-
stead of natural logarithms,
provided that the same changes
were made in both coordinates.

with slope equal to the order. As well as the overall order it is
useful to know the order with respect to each reactant, which
can be found by altering the concentration of each reactant
separately, keeping the other concentrations constant. The
slope of the line is then equal to the order with respect to the
variable reactant. For example, if the reaction is second-order
in A and first-order in B,

v = ka2b

then
ln v = ln k + 2 ln a + ln b

Hence a plot of ln v against ln a (with b held constant) has a
slope of 2 (Figure 1.5), and a plot of ln v against ln b (with a
held constant) has a slope of 1 (Figure 1.6). If the plots are
drawn with the slopes measured from the progress curve (a
plot of concentration against time), the concentrations of all
the reactants change with time. Therefore, if valid results are
to be obtained, either the initial concentrations of the reactants
must be in stoichiometric ratio, in which event the overall
order is found, or (more usually) the “constant” reactants

Slope = 1

ln b

ln v

0.4

0.2

0.0
0.0 0.2 0.4

First order in B

Figure 1.6. Determination of the
order of reaction for a reaction
that is first-order in a reactant B.
The slope of the line is 1.

must be in large excess at the start of the reaction, so that
the changes in their concentrations are insignificant. If neither
of these alternatives is possible or convenient, the rates must
be obtained from a set of measurements of the slope at zero
time, that is to say measurements of initial rates. This method
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is usually preferable for kinetic measurements of enzyme-
catalyzed reactions, because the progress curves of enzyme-
catalyzed reactions often do not rigorously obey simple rate
equations for extended periods of time. The progress curve
of an enzyme-catalyzed reaction (Section 2.9) often requires § 2.9, pages 63–71
a more complicated equation than the integrated form of
the rate equation derived for the initial rate, because of pro-
gressive loss of enzyme activity, inhibition by accumulating
products and other effects.

1.3 Dimensions of rate constants

Dimensional analysis provides a quick and versatile tech-
nique for detecting algebraic mistakes and checking results.
It depends on the existence of a few simple rules governing
the permissible ways of combining quantities of different di-
mensions, and on the frequency with which algebraic errors
result in dimensionally inconsistent expressions. Concen-
trations can be expressed in M (or mol · l−1), and reaction
rates in M · s−1. In an equation that expresses a rate v in
terms of a concentration a as v = ka, therefore, the rate
constant k must be expressed in s−1 if the left- and right-
hand sides of the equation are to have the same dimen-
sions. All first-order rate constants have the dimensions of
time−1, and by a similar argument second-order rate con-
stants have the dimensions of concentration−1 × time−1 (Fig-
ure 1.7), third-order rate constants have the dimensions of
concentration−2× time−1, and zero-order rate constants have
the dimensions of concentration× time−1.

v = kab

M · s−1

M−1 · s−1

M

M

therefore k must be

Figure 1.7. Units of rate
constants. If a rate v = kab is
measured in M · s−1 and the
two concentrations a and b are
measured in M, then the left-
and right-hand sides of the
equation can only have the
same units if the second-order
rate constant k is measured in
M−1 · s−1.

Knowledge of the dimensions of rate constants allows the
correctness of derived equations to be checked easily: the left-
and right-hand sides of any equation (or inequality) must
have the same dimensions, and all terms in a summation
must have the same dimensions. For example, if (1 + t)
occurs in an equation, where t has the dimensions of time,
then the equation is incorrect, even if the “1” is intended to
represent a time that happens to have the numerical value
of 1. Rather than mixing dimensioned constants and variables
in an expression in this way it is better to write the unit after
the number, (1 s + t) for example, or to give the constant a
symbol, (t0 + t) for example, with a note in the text defining
t0 as 1 s. Although both alternatives appear more clumsy
than just writing (1 + t) they avoid confusion. Section 9.6.1 § 9.6.1, pages 242–244
contains an example, equation 9.12, where clarity requires
inclusion of units inside an equation.
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Quantities of different dimensions can be multiplied ork1H
k2H

= e4.8 kJ mol−1/RT

To include the value of a dimen-
sioned quantity in an equation
(4.8 kJ/mol in this example,
which is simplified from equa-
tion 9.12 on page 243) one must
include the units explicitly in
the equation, or else introduce
an algebraic symbol defined as
having the value concerned.

divided, but must not be added or subtracted. Thus, if k1 is a
first-order rate constant and k2 is a second-order rate constant,
a statement such as k1 � k2 is meaningless, just as 5 g� 25 ◦C
is meaningless. However, a pseudo-first-order rate constant
such as k2a has the dimensions of concentration−1× time−1×
concentration, which simplifies to time−1; it therefore has the
dimensions of a first-order rate constant, and can be compared
with other first-order rate constants.

Another major principle of dimensional analysis is that
one must not use a dimensioned quantity as an exponent
or take its logarithm. For example, e−kt is permissible, if k
is a first-order rate constant, but e−t is not. An apparent
exception is that it is often convenient to take the logarithm
of what appears to be a concentration, for example when pH
is defined as − log[H+]. The explanation is that the definition
is not strictly accurate and to be dimensionally correct one
should define pH as − log [H+]/[H+]0, where [H+]0 is the
value of [H+] in the standard state, corresponding to pH = 0.
As [H+]0 has a numerical value of 1 it is usually omitted
from the definition. Whenever one takes the logarithm of a

Intercept (value of 
y when x = 0): 

dimensions of y

Slope = ∆y/∆x: 
dimensions of y/x

∆y
∆x

y

x

Intercept: 
dimensions 

of x

Figure 1.8. Application of di-
mensional analysis to graphs.
The intercept on the ordinate is
the value of y when x = 0, and
has the same dimensions as y;
The intercept on the abscissa is
the value of x when y = 0, and
has the same dimensions as x.
The slope is an increment in y
divided by the corresponding
increment in x, and has the
dimensions of y/x.

dimensioned quantity in this way, a standard state is implied
whether stated explicitly or not.

Dimensional analysis is particularly useful as an aid to
remembering the slopes and intercepts of commonly used
plots, and the rules are simple: any intercept must have the
same dimensions as whatever variable is plotted along the
corresponding axis, and a slope must have the dimensions
of the ordinate (y) divided by those of the abscissa (x). These
rules are illustrated in Figure 1.8.

1.4 Reversible reactions

All chemical reactions are reversible in principle, and for
many the reverse reaction is readily observable in practice as
well, and must be allowed for in the rate equation:

-�A
a0 − p

P
p

k1

k−1

(1.5)

In this case,

v =
dp
dt

= k1(a0 − p)− k−1 p = k1a0 − (k1 + k−1)p
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This differential equation is of exactly the same form as equa-
tion 1.1, and can be solved in the same way:

∫ dp
k1a0 − (k1 + k−1)p

=
∫

dt

Therefore
ln[k1a0 − (k1 + k−1)p]

−(k1 + k−1)
= t + α

Setting p = 0 when t = 0 gives α = − ln(k1a0)/(k1 + k−1),
and so

ln
[

k1a0 − (k1 + k−1)p
k1a0

]
= −(k1 + k−1)t

Taking exponentials of both sides, we have

k1a0 − (k1 + k−1)p
k1a0

= e−(k1+k−1)t

which can be rearranged to give

0

a or p

0 t

a

p

a0

∞p

∞a

∞p   = k  a  /(k  + k   )1 1 –1

∞a   = k    a  /(k  + k   )–1 1 –1

0

0

Figure 1.9. First-order decay for
a reversible reaction

p =
k1a0[1− e−(k1+k−1)t]

k1 + k−1
= p∞[1− e−(k1+k−1)t] (1.6)

where p∞ = k1a0/(k1 + k−1). This is the value of p after
infinite time, because the exponential term approaches zero
as t becomes large. The expected behavior is illustrated in
Figure 1.9.

1.5 Determination of first-order rate constants

It is common for a reaction to be first-order in every reactant,
and it is then often possible to carry it out under pseudo-first-
order conditions overall by keeping every reactant except one
in large excess. In many practical situations, therefore, the
problem of determining a rate constant can be reduced to the
problem of determining a first-order rate constant. We have
seen in equation 1.3 that for a simple first-order reaction,

p = a0(1− e−kt)

and in the more general case of a reversible reaction, equa-
tion 1.6:

p = p∞[1− e−(k1+k−1)t]
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So
p∞ − p = p∞e−(k1+k−1)t (1.7)

Therefore,

ln(p∞ − p) = ln p∞ − (k1 + k−1)t

Thus a plot of ln(p∞− p) against t gives a straight line of slope
−(k1 + k−1) (Figure 1.10). Before pocket calculators became
universally available this was usually expressed in terms of
logarithms to base 10:

log(p∞ − p) = log p∞ −
(k1 + k−1)t

2.303

so that a plot of log(p∞ − p) against t gives a straight line

2.5

2.0

1.5
0

10 20
Time (min)

ln(p∞ − pi)

slope = −(k1 + k−1)

10 20
Time (min)

Figure 1.10. Naive approach to
determining a first-order rate
constant. This plot is unsatis-
factory, because it depends too
much on an accurate value of
p∞, the concentration of prod-
uct after infinite time.

of slope −(k1 + k−1)/2.303. However, it is nowadays just as
convenient to retain the form in terms of natural logarithms.5

E. A. Guggenheim (1926) “On
the determination of the veloc-
ity constant of a unimolecular
reaction” Philosophical Magazine,
Series VII 2, 538–543

Guggenheim pointed out a major objection to this plot: it
depends heavily on an accurate value of p∞. In the general
case of a reversible reaction with p∞ different from a0 an
accurate value of p∞ is difficult to obtain, and even in the
special case of an irreversible reaction with p∞ identical to
a0 the instantaneous concentration of A at zero time may
be difficult to measure accurately. Guggenheim suggested
measuring two sets of values pi and p′i at times ti and t′i, such
that every t′i = ti + τ, where τ is a constant. Then, from
equation 1.7,

1.5

1.0

0.5
0

slope = −(k1 + k−1)

10 20
Time (min)

ln(p′i − pi)

Figure 1.11. The Guggenheim
plot. This plot allows a first-
order rate constant to be deter-
mined without requiring an
accurate value for the degree of
reaction at equilibrium.
Symbols are as follows: p, p′,
concentrations of product at
times t and t + τ respectively,
where τ is a constant.

p∞ − pi = p∞e−(k1+k−1)ti (1.8)

p∞ − p′i = p∞e−(k1+k−1)(ti+τ) (1.9)

By subtraction,

p′i − pi = p∞[1− e−(k1+k−1)τ ]e−(k1+k−1)ti

Taking logarithms,

ln(p′i − pi) = ln p∞ + ln[1− e−(k1+k−1)τ ]− (k1 + k−1)ti

5An argument could be made for dispensing with common logarithms
(to base 10) altogether in modern science, as they are now virtually never
used as an aid to arithmetic. However, this will hardly be practical as long as
the pH scale continues to be used, and in historical references, such as that in
the legend of Figure 2.3, it would be incorrect to imply that natural logarithms
were used if they were not. Finally, when graphs need to span several orders
of magnitude (as in Figure 2.13) it is much easier for the reader to interpret
a scale marked in decades than in powers of e. Otherwise, however, there
usually is no good reason to use common logarithms, and then, as in Figures
1.5 and 6, they are replaced with natural logarithms.
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This has the form

ln(pi − pi) = constant − (k1 + k−1)ti

So a plot of ln(pi − pi) against ti gives a straight line of slope
−(k1 + k−1), as illustrated in Figure 1.11. It is known as
a Guggenheim plot, and does not require an estimate of p∞.
As k1/k−1 is equal to the equilibrium constant, which can
be estimated independently, the values of the individual rate
constants k1 and k−1 can be calculated from the two combina-
tions.

The Guggenheim plot is insensitive to deviations from
first-order kinetics: it can give an apparently good straight
line even if first-order kinetics are not accurately obeyed. For
this reason it should not be used to determine the order of re-
action, which should be established independently. The same
comment applies to the related Kézdy–Swinbourne plot, the
subject of Problem 1.3 at the end of this chapter.

1.6 The steady state

Level too low: water exits slower 
than it enters; level rises.

A       B       C

Figure 1.12. Approach to a
steady state. In a reaction A →
B → C, the concentration of the
intermediate B rises if A → B
proceeds faster than B → C.
However, as the rate of the
second reaction increases with
the concentration of B it in-
creases in these conditions. The
same can be observed in a tank
when water flows in faster than
it flows out.

Steady state: water exits as fast as 
it enters; level remains constant.

A       B       C

Figure 1.13. Steady state. Once
the concentration of B is suf-
ficient to drive the reaction B →
C as fast as A → B it will remain
constant, and the system will be
in a steady state.

All of the chemical processes considered to this point have
been single-step reactions, but reality is not so simple, and this
is particularly important for considering enzyme-catalyzed
reactions, because these are essentially never single-step re-
actions. A reaction of more than one step, such as

A → B → C

usually does not have simple first-order kinetics, even if it is
unimolecular overall (as this one is), and similar considera-
tions apply to reactions that are bimolecular overall, and to
reactions with more than two steps.

Nonetheless, in conditions where the concentration of in-
termediate is always very small the behavior can be simple. D. L. Chapman and L. K.

Underhill (1913) “The
interaction of chlorine and
hydrogen: the influence of
mass” Journal of the Chemical
Society (Transactions) 103,
496–508

M. Bodenstein (1913) “Eine
Theorie der photochemischen
Reaktionsgeschwindigkeiten”
Zeitschrift für Physikalische
Chemie 85, 329–397

In such conditions a reaction may reach a state in which the
concentration of intermediate does not change perceptibly
during significant periods of time. The general idea is quite
familiar from everyday observation of the flow of water in a
basin when the outlet is left open. Initially (Figure 1.12) the
level of water in the basin is too small to bring the pressure
at the outlet to a value sufficient to drive the water out as
fast as it enters, so the level must rise. Once the necessary
pressure is reached the water flows out as fast as it enters
(Figure 1.13) and the level remains constant as long as the
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external conditions remain constant. Notice that this is not an
equilibrium, because there is continuous unidirectional flow
through the system; instead it is a steady state. If you are not
convinced you can readily verify that a basin of water will
behave as described.

Although we have assumed here that the steady state
is reached from below—either a low concentration of inter-
mediate or a low level of water—it is also possible, though
less likely in simple reactions, for the initial concentration of
intermediate to be higher than the steady-state value, and in
this case it will decrease until the same steady state is reached.

The idea of a steady state was introduced by Chapman
and Underhill, and developed by Bodenstein in particular. As
we shall see in later chapters, it is absolutely crucial in the
analysis of enzyme catalysis, because enzyme-catalyzed reac-
tions are very often studied in conditions where the enzyme
concentration is very small compared with the concentrations
of the reactants, and this implies that the concentrations of all
intermediates in the process are also very small.

E

EA

PA

E

EA

PA(a) (b)

Figure 1.14. (a) Fulhame sup-
posed that a catalyst E would
first react with a reactant A to
produce a complex EA that
would regenerate the original
catalyst E at the same time as
releasing product P. This is
essentially the modern view of
catalysis, but (b) Henri also
examined the possibility that
despite forming a complex the
catalytic effect was due to
action of the free catalyst on the
reaction.

1.7 Catalysis

ELIZABETH FULHAME.
Almost all that is known
of Elizabeth Fulhame is

derived from her book An Essay
on Combustion, which she pub-
lished privately in 1794. She
appears to have been the wife of
Dr Thomas Fulhame, a physi-
cian who obtained his doctorate
from the University of Edin-
burgh on the basis of a study of
puerperal fever. The interest of
her work for enzymology lies
not only in her description of
catalysis, a generation before
Berzelius, but also in the emph-
asis that she placed on the role
of water and in the fact that she
was possibly the first to realize
that a chemical reaction might
require more than one step. She
was a pioneer in the study of
the effect of light on silver salts,
and her discovery of photo-
reduction marks a first step for
developing photography.

To this point we have discussed the dependence of reaction
rates on concentrations as if the only concentrations that
needed to be considered were those of the reactants, but this is
obviously too simple: more than two centuries ago Fulhame
noted that many reactions would not proceed at a detectable
rate unless the mixture contained certain necessary nonreac-
tant components (most notably water). In a major insight
that did not become generally adopted in chemistry until
many years later, she realized that her observation was most
easily interpreted by supposing that such components were
consumed in the early stages of the reaction and regenerated
at the end.

Fulhame’s work was largely forgotten by the time that
Berzelius introduced the term catalysis for this sort of behav-

J. J. Berzelius (1836) “Quelques
idées sur une nouvelle force
agissant dans les combinaisons
des corps organiques” Annales
de Chimie et de Physique 61,
146–151

W. P. Jencks (1969) Catalysis in
Chemistry and Enzymology,
McGraw-Hill, New York

ior. He considered it to be an “only rarely observed force”,
unlike Fulhame, who had come to the opposite conclusion
that water was necessary for virtually all reactions. Both
points of view are extreme, of course, but at least in enzyme
chemistry the overwhelming majority of known reactions do
require water. To a considerable degree the study of enzyme
catalysis is the study of catalysis in aqueous solution, and as
the relevant terminology will be introduced later in the book
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when we need it, there is little to add here, beyond remarking
that despite its age the classic book by Jencks remains an ex-
cellent source of general information on catalysis in chemistry
and biochemistry, for readers who need more emphasis on
chemical mechanisms than is found in the present book.

Fulhame’s view that a catalyst reacts in a cyclic fashion,
consumed in one step of reaction, and regenerated in a later
one (Figure 1.14a), is now generally accepted as an explana-
tion of catalysis, but even at the beginning of the 20th century
this was not fully understood, and Henri discussed the possi-

V. Henri (1903) Lois Générales de
l’Action des Diastases, Hermann,
Paris

H. P. Barendrecht (1913) “En-
zyme action, facts and theory”
Biochemical Journal 7, 549–561

S. Schnell, M. J. Chappell, N. O.
Evans and M. R. Roussel (2006)
“The mechanism indistinguish-
ability problem in enzyme
kinetics: the single-enzyme
single-substrate reaction as a
case study” Comptes rendus
Biologies 329, 51–61

bility that an enzyme might form a complex with its substrate
but that this complex was not part of the reaction cycle; in-
stead, the free enzyme might act on the substrate, perhaps by
emitting some sort of radiation, as suggested by Barendrecht,
and shown in Figure 1.14b. These ideas are completely obso-
lete, though they are still occasionally discussed, for example
by Schnell and co-workers, but they led Henri to enunciate
a principle, now called homeomorphism, that remains vital for
kinetic analysis: the fact that a particular equation generates
an equation consistent with experimental observations does
not demonstrate that the equation is correct, because two
or more mechanisms may lead to indistinguishable kinetic
equations.

SVANTE AUGUST ARRHENIUS
(1859–1927) was born in
Vik, in an agricultural

district of Sweden, but his fami-
ly moved to Uppsala when he
was very young. He was educ-
ated at Uppsala but became
Professor of Physics at Stock-
holms Högskola, and later
Rector. In the context of this
book he is mainly known for
the equation that bears his
name, but his primary interest
was the properties of ions in
solution. A man of broad
interests, he wrote books of
popular science devoted to such
topics as the evolution of stars
and the treatment of smallpox.

1.8 The influence of temperature and pressure
on rate constants

1.8.1 The Arrhenius equation

From the earliest studies of reaction rates, it has been evident
that they are profoundly influenced by temperature. The
most elementary consequence of this is that the temperature
must always be controlled if meaningful results are to be

1
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Temperature, °C

20 30 40 50
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16

Figure 1.15. In the absence of
complications rates of reaction
typically increase by a factor of
about 2 with each 10 ◦C in-
crease in temperature.

obtained from kinetic experiments. However, with care, one
can use temperature much more positively and, by carrying
out measurements at several temperatures, deduce important
information about reaction mechanisms.

The studies of van ’t Hoff and Arrhenius form the starting
point for all modern theories of the temperature dependence
of rate constants. Harcourt had earlier noted that the rates of
many reactions approximately doubled for each 10◦C rise in
temperature, but van ’t Hoff and Arrhenius attempted to find
a more exact relationship by comparing kinetic observations
with the known properties of equilibrium constants. Any
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equilibrium constant K varies with the absolute temperature
T in accordance with the van ’t Hoff equation,

d ln K
dT

=
∆H0

RT2

where R is the gas constant and ∆H0 is the standard enthalpy
change in the reaction. But K can be regarded as the ratio
k1/k−1 of the rate constants k1 and k−1 for the forward and
reverse reactions (because the net rate of any reaction is zero
at equilibrium). So we can write

J. H. van ’t Hoff (1884) Études de
Dynamique Chimique, pages
114–118, Muller, Amsterdam

A. V. Harcourt (1867) “On the
observation of the course of
chemical change” Journal of the
Chemical Society 20, 460–492

d ln(k1/k−1)

dT
=

d ln k1

dT
− d ln k−1

dT
=

∆H0

RT2

This equation can be partitioned as follows to give separate
expressions for k1 and k−1:

6040200

1

2

Temperature (°C)

0.001k

0

Figure 1.16. Temperature de-
pendence of a rate constant
according to the Arrhenius
equation.

d ln k1

dT
=

∆H0
1

RT2 + λ

d ln k−1

dT
=

∆H0
−1

RT2 + λ

where λ is a quantity about which nothing can be said a priori
except that it must be the same in both equations (because
otherwise it would not vanish when one equation is sub-
tracted from the other). Thus far this derivation follows from
thermodynamic considerations and involves no assumptions.
However, it proved difficult or impossible to show experi-
mentally that the term λ in these equations was necessary. So
Arrhenius postulated that its value was in fact zero, and that
the temperature dependence of any rate constant k could be
expressed by an equation of the form

d ln k
dT

=
Ea

RT2 (1.10)

where Ea is the activation energy and corresponds to the
standard enthalpy of reaction ∆H0 in the van ’t Hoff equation.
Integration with respect to T gives

ln k = ln A− Ea

RT
(1.11)

where ln A is a constant of integration. It may be written as
an expression for k by taking exponentials:

k = Ae−Ea/RT (1.12)
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However, the version in equation 1.11 is more convenient for
graphical purposes, as it shows that a plot of ln k against 1/T
is a straight line of slope −Ea/R, or, if log k is plotted against
1/T, the slope is −Ea/2.303R. This plot, illustrated in Figure
1.17, is known as an Arrhenius plot, and provides a simple
method of evaluating −Ea.

Temperature (°C)
60 40 20 0

ln k

3.0

2.5

1000/T (K   )
3.0 3.2 3.4 3.6

–1

Slope = –E  /Ra

Figure 1.17. Arrhenius plot for
the data in Figure 1.16. The
activation energy Ea is calcul-
ated from the slope. Notice that
the zero on the abscissa scale
(corresponding to infinite
temperature) is located far to
the left of the region shown.
The practical importance of this
is discussed in Section 11.5
(pages 278–279).

1.8.2 Elementary collision theory

It is instructive to relate the rates of reactions in the gas phase
with the frequencies of collisions between the reactant mole-
cules. According to the Maxwell–Boltzmann distribution of
energies among molecules, the number of molecules in a
mixture that have energies in excess of −Ea is proportional
to e−Ea/RT . We can therefore interpret the Arrhenius equation
to mean that molecules can take part in a reaction only if their
energy exceeds some threshold value, the activation energy. In
this interpretation, the constant A ought to be equal to the
frequency of collisions, Z, at least for bimolecular reactions,
and it certainly follows from equation 1.12 that A is the value
the rate constant would have if infinite temperature, with
1/T = 0, could be attained. For some simple reactions in the
gas phase, such as the decomposition of hydrogen iodide, A
is indeed equal to Z, but in general it is necessary to introduce
a factor P,

HENRY EYRING (1901–
1981) was born in
Colonia Juárez to

parents who had moved to
Mexico during a period of
perceived persecution of Mor-
mons in the USA. Later his
family were forced by the tur-
moil that followed the Mexican
revolution of 1910 to return to
the USA, but despite this
troubled childhood he was able
to win a scholarship to the Uni-
versity of Arizona, and later
obtained his doctorate at the
University of California,
Berkeley, for work on ionization
provoked by α particles. He
developed his ground-breaking
work on the theory of reaction
rates at Princeton, and later
worked at the University of
Utah, Salt Lake City. The Royal
Swedish Academy of Sciences
awarded him the Berzelius
Medal in 1977, apparently as
partial compensation for its
earlier failure to recognize the
importance of this work.

k = PZe−Ea/RT (1.13)

and to assume that, in addition to colliding with sufficient
energy, molecules must also be correctly oriented if they are
to react. The factor P is then taken to be a measure of
the probability that the correct orientation will be adopted
spontaneously, so we modify the interpretation above to say
that at infinite temperature every collision is productive if the
orientation is correct.

With this interpretation of the factor P, equation 1.13 ac-
cords reasonably well with modern theories of reaction rates
in the gas phase. However, virtually all of the reactions that
interest biochemists concern complicated molecules in the
liquid phase, and collision frequencies have little relevance
for these. Thus we need a theory that explains the experimen-
tal observations in a way that is as appropriate in aqueous
solution as it is in the gas phase.
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1.8.3 Transition-state theory

The transition-state theory (sometimes called the theory of abso-
lute reaction rates) is derived largely from the work of Eyring,
and was fully developed in the book by Glasstone and co-
workers. It is so called because it relates the rates of chemicalH. Eyring (1935) “The activated

complex in chemical reactions”
Journal of Physical Chemistry 3,
107–115

reactions to the thermodynamic properties of a particular

S. Glasstone, K. J. Laidler and
H. Eyring (1940) Theory of rate
processes, McGraw–Hill, New
York

high-energy state of the reacting molecules, known as the
transition state. (The term activated complex is also sometimes
used, but it is best avoided in discussions of enzyme reactions,
in which the word complex is often used with a different mean-
ing). As a reacting system passes along a notional “reaction
coordinate”, it must pass through a continuum of energy
states, as illustrated in Figure 1.18, and at some stage it must
pass through a state of maximum energy. This maximum
energy state is the transition state, and should be clearly
distinguished from an intermediate, which represents not a
maximum but a metastable minimum on the reaction profile.
No intermediates occur in the reaction profile shown in Figure
1.18, but a two-step example is shown in Figure 1.19 with
one intermediate and two transition states. A bimolecular
reaction can be represented as

- -A + B X P + Q‡K‡
(1.15)

where X‡ is the transition state. It is assumed to be in quasi-
equilibrium with A and B: this means that it is an imaginary
state in which the entire system (including products P and
Q) is at equilibrium just before the products are abruptly
swept away. For fuller discussion of what this means seeReaction coordinate

H

Enthalpy of 
activation 

A + B
Reactants

P + Q
Products

Enthalpy of 
reaction 

Figure 1.18. Reaction profile
according to transition-state
theory. The diagrams below the
abscissa axis indicate the mean-
ing of the reaction coordinate
for a simple bimolecular reac-
tion, but they should not be
interpreted too exactly.

the discussion in the book by Laidler and co-workers; the

K. J. Laidler, J. H. Meiser and B.
C. Sanctuary (2002) Physical
Chemistry, 4th edition, pages
819–826, Houghton Mifflin,
Boston

important point is that the sudden absence of P and Q has
no effect on the concentration of X‡, which is related to those
of A and B by an ordinary equilibrium expression:

[X‡] = K‡[A][B]

where K‡ is given by

∆G‡ = −RT ln K‡ = ∆H‡ − T∆S‡

and ∆G‡, ∆H‡ and ∆S‡ are the Gibbs energy, enthalpy and
entropy of formation, respectively, of the transition state from
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the reactants.6 The concentration of X‡ is therefore given by

[X‡] = [A][B]e∆S‡/Re−∆H‡/RT (1.16)

Given the way the quasi-equilibrium was described, the
transition-state species in equilibrium with A and B are ones
that in the immediate past were molecules of A and B. Be-
cause of this the first step in equation 1.15 must be written
with an irreversible arrow: it is a mistake, found in many
accounts of the theory, including those in the first and second
editions of this book,7 to represent this as a reversible reaction.
The practical importance of this is that molecules that reach
X‡ from the left in equation 1.15 are like bodies propelled up
a slope towards a col: any that reach it are virtually certain to
continue down the slope on the other side.

Reaction coordinate

H
Effect of 
catalyst

Reactants

Products

Transition 
states

Intermediate

Figure 1.19. Distinction
between transition states and
intermediates. The reaction
consists of more than one step,
with multiple maxima and
hence multiple transition states.
In such examples states of
minimum energy along the
reaction profile are called
intermediates. In catalysis, the
major subject of this book, the
existence of an intermediate
causes the maximum energy
barrier to the reaction to be
lowered.

As written, equation 1.16 contains no information about
time, like any true thermodynamic equation. We can intro-
duce time by taking account of the natural vibrations that the
transition state can undergo. For all but one of the vibration
modes the transition state is in no way special: most chemical
bonds vibrate in the same way as they would in an ordinary
molecule. The exception is the bond that becomes broken in
the reaction: its vibration frequency can be calculated from
the same quantum-mechanical principles that underlie other
vibrations, but it is assumed to have no restoring force, so
once the bond starts to break it continues to break. Figure
1.20 illustrates curves for the dependence of energy on bond
length in a breaking C—H bond. Notice that for short bond

Energy

Transition state

Bond length

Ground state C–H

0

Figure 1.20. Breaking a C—H
bond. In the ground state the
vibrational levels are quantized,
but in the transition state the
corresponding vibrational
mode is missing. At ordinary
temperatures virtually all
molecules are in the lowest
vibrational state. The figure is
simplified from Figure 9.14
(page 243).

lengths the curves are of similar shape, but for stretched
bonds they are quite different: the curve for the ground state
has a minimum and that for the transition state does not.
We shall again consider molecular vibrations in Section 9.6,

§ 9.6, pages 242–246

because they are important for understanding the effects of
isotopic substitution on reaction rates.

It follows from considerations of this kind (for more detail,
see the book by Laidler and co-workers mentioned above)
that equation 1.16 allows calculation of the concentration of
the transition state, and vibration frequency for the breaking
bond allows the rate constant for the breakdown of X‡ to be
calculated as RT/Nh, where N is the Avogadro constant and
h is Planck’s constant.8 The second-order rate constant for the

6They are not real thermodynamic quantities, however, and are usually
called the Gibbs energy, enthalpy and entropy of activation.

7I am grateful to the late Keith Laidler for explaining this to me.
8The numerical value of RT/Nh is about 6.25× 1012 s−1 at 300 K.
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complete reaction is therefore

k =
RT
Nh

e∆S‡/Re−∆H‡/RT (1.17)

Taking logarithms, we obtain

ln k = ln
(

RT
Nh

)
+

∆S‡

R
− ∆H‡

RT

and differentiating,

d ln k
dT

=
∆H‡ + RT

RT2 (1.18)

Comparison of this with equation 1.10, the Arrhenius
equation, shows that the activation energy Ea is not equal
to ∆H‡, but to ∆H‡ + RT. Moreover, Ea is not strictly inde-
pendent of temperature, so the Arrhenius plot ought to be
curved (not only because of the obvious variation of RT with
temperature, but also because ∆H‡ is not strictly temperature-
independent). However, the expected curvature is so slight
that one would not normally expect to detect it (and the
curvature one does often detect in Arrhenius plots is usually
attributable to other causes); the variation in k that results
from the factor T in equation 1.18 is trivial in comparison with
variation in the exponential term.KEITH JAMES LAIDLER

(1916–2003) was born in
Liverpool, but he spent

most of his working life in
Canada, at the University of
Ottawa. He studied with Cyril
Hinshelwood at Oxford and
obtained his doctorate under
Henry Eyring at Princeton, and
with both of these distinguished
teachers he participated in lay-
ing the foundations of chemical
kinetics. After such a beginning
one might have expected him to
build his career in physical
chemistry, but he became
increasingly interested in the
interface between physical
chemistry and enzyme kinetics.
His book The Chemical Kinetics of
Enzyme Action (1958) was for a
long time unrivaled as a model
of how the subject should be
presented.

As both A and Ea in equation 1.11 can readily be deter-
mined in practice from an Arrhenius plot, both ∆H‡ and ∆S‡

can be calculated, from

∆H‡ = Ea − RT (1.19)

∆S‡ = R ln
(

ANh
RT

)
− R (1.20)

The enthalpy and entropy of activation of a chemical reac-
tion provide valuable information about the nature of the
transition state, and hence about the reaction mechanism. A
large enthalpy of activation indicates that a large amount of
stretching, squeezing or even breaking of chemical bonds is
necessary for the formation of the transition state.

The entropy of activation gives a measure of the inherent
probability of the transition state, apart from energetic con-
siderations. If ∆S‡ is large and negative, the formation of
the transition state requires the reacting molecules to adopt
precise conformations and approach one another at a precise
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angle. As molecules vary widely in their conformational
stability, that is to say in their rigidity, and in their complexity,
one might expect the values of ∆S‡ to vary widely between
different reactions. They do, though establishing the variation
with certainty is difficult for the sort of reactions that interest
biochemists because of the restricted temperature range over
which they can usually be studied (Section 11.4). The mole-
cules that are important in metabolic processes are mostly
large and flexible, and so uncatalyzed reactions between them
are inherently unlikely, which means that −∆S‡ is usually
large.

Equation 1.17 shows that a catalyst can increase the rate
of a reaction either by increasing ∆S‡ (in practice this usually
means decreasing the positive quantity −∆S‡) or by decreas-
ing ∆H‡, or both. It is likely that both effects are important
in enzyme catalysis, though definite evidence of this cannot
usually be obtained because the uncatalyzed reactions are too
slow for their values of ∆S‡ and ∆H‡ to be measured.

In all of this it must not be forgotten that the solvent,
normally water in enzyme-catalyzed reactions, is a part of the
system and that entropy effects in the solvent can contribute
greatly to entropies of activation. It is an error, therefore, and
possibly a serious one, to try to interpret their magnitudes
entirely in terms of ordering or disordering of the reactants
themselves. Solvent effects can be of major importance in
reactions involving ionic or polar species.

1.8.4 Effects of hydrostatic pressure

I shall not discuss pressure effects extensively in this book (for K. J. Laidler and P. S. Bunting
(1973) The Chemical Kinetics of
Enzyme Action, 2nd edition,
pages 220–232, Clarendon
Press, Oxford

more detail, see the book by Laidler and Bunting, as well as
more recent reviews by Northrop and by Masson and Balny),
but it is convenient to mention them briefly, both because
their treatment has some similarities with that of temperature,
and because they can provide valuable information about the
mechanistic details of chemical reactions. D. B. Northrop (2002) “Effects

of high pressure on enzymatic
activity” Biochimica et Biophysica
Acta 1595, 71–79

P. Masson and C. Balny (2005)
“Linear and non-linear pressure
dependence of enzyme catalytic
parameters” Biochimica et
Biophysica Acta 1724, 440–450

The major difference between temperature and pressure
effects on reactions in liquid solution is that whereas it is easy
to change the rate of a reaction by increasing the tempera-
ture, an increase of a few degrees being usually sufficient
to produce an easily measurable change, large increases in
pressure, typically much more than 100 bar, are necessary
to produce comparable results. This difference results from
the very low compressibility of water and other liquids: to
produce a chemical effect the increase in pressure must alter
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the volume occupied by the reacting molecules—something
easy to achieve for reactions in the gas phase, but much more
difficult in the liquid phase.

Another difference is that although enthalpies of activa-
tion are always positive, so all rate constants increase with
temperature, volumes of activation can be either positive or
(more commonly) negative, and so rate constants may change
in either direction with increasing pressure. Forming the
transition state for any reaction often implies bringing the
reacting molecules into closer proximity than they would be
in a stable system, especially if the reacting groups are ions
of the same sign, but it can also imply bringing them further
apart, especially if they are oppositely charged. These possi-
bilities can be distinguished experimentally by examining the
effect of pressure: increasing the pressure favors formation
of a transition state that occupies a smaller volume than the
ground state, so the reaction should be accelerated by in-
creased pressure and has a negative volume of activation, which
is defined in analogy to the entropy and enthalpy of activation
as the molar volume change that accompanies formation of
the transition state. Conversely, if the transition state occupies
a larger volume than the ground state its formation will be
retarded by increased pressure, and the reaction will show a
positive volume of activation.

Effects on the solvent molecules can make the major con-
tribution to the magnitudes of volumes of activation, just as
they can for those of entropies of activation, and in chemical
reactions the values of the two parameters are often highly
correlated, as discussed by Laidler and Bunting in their book.
The same may well apply to enzyme reactions, though it is
made more difficult to establish experimentally by the diffi-
culty of studying an enzyme-catalyzed reaction over a wide
enough temperature range to allow accurate estimation of the
entropy of activation, as we shall see in detail in Section 11.5.§11.5, pages 278–279

Summary of Chapter 1

• The order of a reaction is the number of concentrations multi-§ 1.2, pages 3–9
plied together in the expression for its rate; the molecularity
is the number of molecules that participate in a step. For sim-
ple reactions the order may be the same as the molecularity,
but that is not true in general; in particular, it is virtually
never true for enzyme-catalyzed reactions.
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• Dimensional analysis allows a rapid (but not infallible) § 1.3, pages 9–10
check on the correctness of equations.

• Simple-minded approaches to the determination of rate con- § 1.5, pages 11–13
stants are vulnerable to inaccuracies in knowledge of the final
state of the system.

• A reaction that proceeds in two or more steps can reach a § 1.6, pages 13–14
steady state in which the intermediate concentrations re-
main essentially constant, if conditions are such that these
concentrations are very small.

• A catalyst is a reactant that participates in a reaction but is § 1.7, pages 14–15
regenerated at the end of a cycle of steps.

• The temperature dependence of a reaction can be understood § 1.8, pages 15–21
in terms of the availability of energy for the reactants to reach
a transition state from which the products can be formed.

Problems

Solutions and notes are on pages 459–460.

1.1 The data in the table were obtained for the rate of a [A] [B] v
mM mM µM · s−1

10 10 0.6
20 10 1.0
50 10 1.4

100 10 1.9
10 20 1.3
20 20 2.0
50 20 3.9

100 20 2.9
10 50 3.2
20 50 4.4
50 50 7.3

100 50 9.8
10 100 6.3
20 100 8.9
50 100 14.4

100 100 20.3

reaction with stoichiometry A + B 
 P at various con-
centrations of A and B. Determine the order with respect
to A and B and suggest an explanation for the order with
respect to A.

1.2 Check the following statements for dimensional consis-
tency, assuming that t represents time (units s), v and V
represent rates (units M ·s−1 or mol ·l−1 · s−1), and a, p, s
and Km represent concentrations (units M):

(a) In a plot of v against v/s, the slope is −1/Km and the
intercept on the v/s axis is Km/V.

(b) In a bimolecular reaction 2A 
 P, with rate constant
k, the concentration of P at time t is given by p =
a2

0kt/(1 + 2a0kt).
(c) A plot of t/ ln(s0/s) against (s0 − s)/ ln(s0/s) for

an enzyme-catalyzed reaction gives a straight line of
slope 1/V and ordinate intercept V/Km.
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1.3 Kézdy and co-workers on the one hand, and Swinbourne
on the other, independently suggested an alternative to
the Guggenheim plot. First obtain an expression for
(p∞ − pi)/(p∞ − p′i) by dividing the expression for p∞ −
pi in equation 1.8 by that for p∞− p′i in equation 1.9. Show

F. J. Kézdy, J. Jaz and A.
Bruylants (1958) “Cinétique de
l’action de l’acide nitreux sur
les amides. I. Méthode
générale” Bulletin de la Société
Chimique de Belgique 67, 687–706

E. S. Swinbourne (1960)
“Method for obtaining the rate
coefficient and final concentra-
tion of a first-order reaction”
Journal of the Chemical Society
2371–2372

that the resulting expression can be rearranged to show
that a plot of p′i against pi gives a straight line. What is
the slope of this line? If several plots of the same data are
made with different values of t, what are the coordinates
of the point of intersection of the lines?

1.4 Many reactions display an approximate doubling of rate
when the temperature is raised from 25 ◦C to 35 ◦C (Fig-
ure 1.15). What does this imply about their enthalpies
of activation? (R = 8.31 J mol−1 K−1, 0 ◦C = 273 K,
ln 2 = 0.693)

1.5 In the derivation of the Arrhenius equation (Section 1.8.1)§ 1.8.1, pages 15–17
a term λ was introduced and subsequently assumed to
be zero. In the light of the transition-state theory (Sec-
tion 1.8.3), and assuming (not strictly accurately) that the§ 1.8.3, pages 18–21
enthalpy of activation does not change with temperature,
what would you expect the value of λ to be at 300 K
(27 ◦C)?

1.6 Some simple reactions involving nitric oxide (NO) have
two unusual kinetic features: they follow third-order ki-
netics, so that, for example, the reaction with molecular
oxygen has a rate proportional to [NO]2[O2], and their
rates decrease with increasing temperature. Suggest a
simple way to explain these observations without requir-
ing a trimolecular step and without contradicting the gen-
eralization that all elementary rate constants increase with
temperature.


