Contents

Preface XVII
List of Contributors XIX

Part I Perspectives and General Methodology in Vitamin Analysis 1

1 Stable Isotope Dilution Assays in Vitamin Analysis—A Review of Principles and Applications 3
Michael Rychlik
1.1 Principle of Stable Isotope Dilution Assays 3
1.1.1 General Remarks 3
1.1.2 Benefits and Limitations of Using an Isotopologic Internal Standard 5
1.1.3 Prerequisites for Isotopologic Standards 7
1.1.4 Calibration Procedures 10
1.2 Application of Stable Isotope Dilution Assays to Vitamins 11
1.2.1 Fat-Soluble Vitamins 11
1.2.1.1 Vitamin A 11
1.2.1.2 Vitamin E 11
1.2.1.3 Vitamin D 12
1.2.1.4 Vitamin K 12
1.2.2 Water-Soluble Vitamins 12
1.2.2.1 Vitamin B₆ 12
1.2.2.2 Niacin 13
1.2.2.3 Ascorbic Acid 13
1.2.2.4 Folic Acid 13
1.2.2.5 Pantothenic Acid 14
1.3 Outlook 14
References 15

2 Analytical Methods to Assess the Bioavailability of Water-Soluble Vitamins in Food—Exemplified by Folate 21
Cornelia M. Witthöft
2.1 Introduction 21
3 Quantitation of Vitamins Using Microbiological Assays in Microtiter Formats
Wolfgang Weber, Sabine Mönch, Michael Rychlik, and Sylvia Stengl

3.1 Introduction
3.1.1 History
3.1.2 Principle of Microbiological Assays
3.1.3 Requirements for Classic Microbiological Analysis
3.1.4 Partial Replacement of Vitamin Microbiological Assays by Chromatographic Methods
3.1.5 New Developments in Microbiological Assay Technology
3.1.5.1 Coupling with Chromatography
3.1.5.2 Coupling with Liquid Chromatography
3.1.5.3 Microtiter Formats and Standardized Assays
3.2 Methods and Materials
3.2.1 Extraction of Vitamins
3.2.1.1 Extraction of Total Folate Content (Native Folates and Added Folic Acid)
3.2.1.2 Extraction of Total Vitamin B\textsubscript{12} Content (Native and Added Vitamin B\textsubscript{12})
3.2.1.3 Extraction of Total Pantothenic Acid or Riboflavin Content (Native and Added Vitamins) in Foods
3.2.1.4 Extraction of Total Riboflavin Content (Native and Added Vitamin B\textsubscript{2} in Yeasts and Yeast Products)
3.2.1.5 Incubation of the Microbiological Assay
3.2.1.6 Calculation of the Limits of Detection and Quantitation for the Microbiological Assay
3.2.1.7 Stable Isotope Dilution Assay for Folates
3.3 Results
3.3.1 Principle of Microbiological Assay in Microtiter Plate Format
3.3.2 Description of the Microorganisms Used in Microbiological Assays
3.3.3 Assays for Single Vitamins
3.3.3.1 Folic Acid
3.3.3.2 Microbiological Assay for Vitamin B\textsubscript{12}
3.3.3.3 Microbiological Assay for Pantothenic Acid
3.3.3.4 Microbiological Assay for Riboflavin
3.4 Conclusion
References

Contents

2.2 Folate Bioavailability
2.2.1 Definition
2.2.2 Analytical Methods for Folate Quantification and Characterization
2.2.3 Models/Methods to Determine Folate Bioavailability
References

3 Quantitation of Vitamins Using Microbiological Assays in Microtiter Formats
Wolfgang Weber, Sabine Mönch, Michael Rychlik, and Sylvia Stengl

3.1 Introduction
3.1.1 History
3.1.2 Principle of Microbiological Assays
3.1.3 Requirements for Classic Microbiological Analysis
3.1.4 Partial Replacement of Vitamin Microbiological Assays by Chromatographic Methods
3.1.5 New Developments in Microbiological Assay Technology
3.1.5.1 Coupling with Chromatography
3.1.5.2 Coupling with Liquid Chromatography
3.1.5.3 Microtiter Formats and Standardized Assays
3.2 Methods and Materials
3.2.1 Extraction of Vitamins
3.2.1.1 Extraction of Total Folate Content (Native Folates and Added Folic Acid)
3.2.1.2 Extraction of Total Vitamin B\textsubscript{12} Content (Native and Added Vitamin B\textsubscript{12})
3.2.1.3 Extraction of Total Pantothenic Acid or Riboflavin Content (Native and Added Vitamins) in Foods
3.2.1.4 Extraction of Total Riboflavin Content (Native and Added Vitamin B\textsubscript{2} in Yeasts and Yeast Products)
3.2.1.5 Incubation of the Microbiological Assay
3.2.1.6 Calculation of the Limits of Detection and Quantitation for the Microbiological Assay
3.2.1.7 Stable Isotope Dilution Assay for Folates
3.3 Results
3.3.1 Principle of Microbiological Assay in Microtiter Plate Format
3.3.2 Description of the Microorganisms Used in Microbiological Assays
3.3.3 Assays for Single Vitamins
3.3.3.1 Folic Acid
3.3.3.2 Microbiological Assay for Vitamin B\textsubscript{12}
3.3.3.3 Microbiological Assay for Pantothenic Acid
3.3.3.4 Microbiological Assay for Riboflavin
3.4 Conclusion
References
4 Biosensors in Vitamin Analysis of Foods 65
Anthony O’Kane and Lennart Wahlström

4.1 Introduction 65
4.2 Technology 65
4.3 Surface Plasmon Resonance (SPR) 66
4.4 Biosensor Assay 68
4.5 Water-Soluble Vitamin Analysis by Inhibition Protein Binding Assay on Biacore Q 69
4.5.1 Biotin 69
4.5.2 Folic Acid 70
4.5.3 Pantothenic Acid 70
4.5.4 Vitamin B₂ 71
4.5.5 Vitamin B₁₂ 72
4.6 Validation Considerations 73
4.7 Conclusions 73
References 74

5 International Perspectives in Vitamin Analysis and Legislation in Vitamin Fortification 77
Michael Rychlik

5.1 Introduction 77
5.2 General Requirements for Modern and Future Vitamin Assays 77
5.2.1 Multimethods 78
5.2.2 Assays of Bioactivity 79
5.2.3 Fast Assays 79
5.2.4 Accurate Methods 79
5.2.5 Sensitive Methods 80
5.2.6 Developments for Single Vitamins or Vitamin Groups 80
5.2.6.1 Fat-Soluble Vitamins 80
5.2.6.2 Water-Soluble Vitamins 81
5.3 Fortification with Vitamins–The International Perspective 82
References 85

Part II Analysis of Water-Soluble Vitamins 89

6 HPLC Determination of Thiamin in Fortified Foods 91
Roland Bitsch and Irmgard Bitsch

6.1 Introduction 91
6.2 Fortification of Foods with Thiamin 93
6.3 Analytical Principles 95
6.4 Extraction Procedures 96
6.5 Liquid Chromatography Procedures 97
6.6 Conclusion 99
References 99
7 HPLC Determination of Riboflavin in Fortified Foods 103
Roland Bitsch and Irmgard Bitsch

7.1 Introduction 103
7.2 Materials and Methods 104
7.2.1 Chemicals 104
7.2.2 Extraction Procedure 105
7.2.3 Analytical Principles 106
7.2.4 Detection Modes 106
7.3 HPLC Intercomparisons 107
7.4 Conclusion 108
References 108

8 HPLC–MS Determination of Vitamin C in Fortified Food Products 111
Antonia Garrido Frenich, José Luis Martínez Vidal, Remedios Fernández Fernández, and Roberto Romero-González

8.1 Introduction 111
8.2 Materials and Methods 113
8.2.1 Chemicals 113
8.2.2 Procedure 113
8.2.3 Instrumentation 114
8.3 Results and Discussion 114
8.3.1 Analysis of Ascorbic Acid by HPLC–MS 114
8.3.2 Method Validation 115
8.3.3 Application to the Analysis of Real Samples 117
References 119

9 Quantitation of Pantothenic Acid in Fortified Foods by Stable Isotope Dilution Analysis and Method Comparison with a Microbiological Assay 123
Michael Rychlik

9.1 Introduction 123
9.2 Materials and Methods 124
9.2.1 Chemicals 124
9.2.2 Stable Isotope Dilution Assay for the Determination of Free Pantothenic Acid in Foods 124
9.2.3 Enzyme Hydrolysis for Quantification of Total Pantothenic Acid 125
9.2.4 Liquid Chromatography–Tandem Mass Spectrometry 125
9.2.5 Gas Chromatography–Mass Spectrometry 125
9.2.6 Microbiological Assay 126
9.2.7 Precision and Recovery 126
9.3 Results and Discussion 126
9.3.1 Synthesis of a Stable Isotope-Labeled Internal Standard 126
9.3.2 Gas Chromatography–Mass Spectrometry of Derivatized Pantothenic Acid 126
9.3.3 Liquid Chromatography–Tandem Mass Spectrometry of Pantothenic Acid 127
9.3.4 Extraction and Analysis of Free and Total Pantothenic Acid by LC–MS/MS 128
9.3.5 Performance Criteria 128
9.3.6 Method Comparison of the SIDA Based on LC–MS/MS and GC–MS Detection and Microbiological Assay 128
9.3.7 Results for Analysis of Foods 132
References 133

10 Optimization of HPLC Methods for Analyzing Added Folic Acid in Fortified Foods 135
Padmanaban G. Krishnan, Sudheer R. Musukula, Michael Rychlik, David R. Nelson, Jonathan W. DeVries, and John L. MacDonald
10.1 Introduction 135
10.2 Materials and Methods 136
10.2.1 Samples 136
10.2.2 Extraction at Different pH Values 136
10.2.3 Dual Enzyme Treatment 136
10.2.4 Sample Purification Using Solid-Phase Extraction (SAX) Columns 137
10.2.5 Gradient HPLC Analysis 137
10.2.6 Liquid Chromatography–Mass Spectrometry 137
10.3 Results and Discussion 137
10.3.1 Comparison of Extraction and Purification Treatments 140
10.4 Conclusion 141
References 142

11 Studies on New Folates in Fortified Foods and Assessment of Their Bioavailability and Bioactivity 143
Michael Rychlik and Dora Roth-Meier
11.1 Introduction 143
11.2 Materials and Methods 144
11.2.1 Chemicals 144
11.2.2 Extraction and Incubation Buffer 144
11.2.3 Synthesis of Carboxyethylfolic Acid and Carboxymethylfolic Acid 144
11.2.4 Commercial Food Samples 144
11.2.5 Extraction and Quantification of CEF and CMF in Foods 145
11.2.6 Quantitation of CEF in Blood Plasma 145
11.2.7 Sample Cleanup by Solid-Phase Extraction (SPE) 145
11.2.8 LC–MS/MS 146
11.2.9 Determination of Response Factors for LC–MS/MS 146
11.2.10 Recovery 146
11.2.11 Microbiological Assay (MA) 146
11.2.12 Human Study 147
11.3 Results and Discussion 147
11.3.1 Synthesis of N^2-[1-(1-Carboxy)ethyl]folic Acid and N^2-[1-(1-Carboxy)methyl]folic Acid 147
11.3.2 Development of a Stable Isotope Dilution Assay 149
11.3.3 Microbiological Assay (MA) 149
11.3.4 Human Study to Assess the Bioavailability of CEF 151
11.3.5 Glycation Products of Endogenous Folates 152
References 153

12 Analysis of Vitamin B₁₂ by HPLC 155
Bo Chen and Da-jin Yang
12.1 Introduction 155
12.2 Sample Preparation 156
12.2.1 Solid-Phase Extraction (SPE) 156
12.2.1.1 Reversed-Phase Solid-Phase Extraction (RP-SPE) 156
12.2.1.2 Immunoaffinity Solid-Phase Extraction (IA-SPE) 156
12.3 Separation 157
12.4 Detection 159
12.4.1 Ultraviolet–Visible Detection 159
12.4.2 Fluorescence Detection 159
12.4.3 Electrochemical Detection 159
12.4.4 Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Detection 160
12.4.5 Electrospray Ionization Mass Spectrometry (ESI-MS) Detection 161
12.5 Reference Materials for Vitamin B₁₂ Analysis 162
References 163

13 Microbiological Detection of Vitamin B₁₂ and Other Vitamins 165
Fumio Watanabe and Yukinori Yabuta
13.1 Vitamin B₁₂ 165
13.1.1 Analysis of Vitamin B₁₂ in Foods 166
13.2 Analysis of Food Vitamin B₁₂ by Bioautography 167
13.2.1 Vitamin B₁₂-Fortified Foods 167
13.2.2 Edible Cyanobacteria 167
13.2.3 Analysis of Vitamin B₁₂ Degradation Products During Storage of Multivitamin–Mineral Supplements 168
13.2.4 Analysis of Vitamin B₁₂ Degradation Products During Cooking or Processing of Foods 169
13.3 Other Vitamins Determined by Microbiological Analysis 169
References 170

14 Multimethod for Water-Soluble Vitamins in Foods by Using LC–MS 173
Alessandra Gentili and Fulvia Caretti
14.1 Introduction 173
14.2 Extraction and Cleanup with Conventional Methods of Analysis 174
14.3 Liquid Chromatographic Methods for the Analysis of Water-Soluble Vitamins 176
14.4 LC–MS in Multianalyte Confirmation Analyses 179
14.5 Electrospray Ionization and Collision-Induced Dissociation 183
14.6 LC–ESI-MS for Simultaneous Analysis of Water-Soluble Vitamins 187
14.7 Simultaneous Extraction Procedures 189
14.8 Conclusions and Future Developments 193
References 195

Part III Analysis of Fat-Soluble Vitamins 199

15 Analysis of Carotenoids 201
Volker Böhm
15.1 Introduction 201
15.2 Materials and Methods 202
15.2.1 Chemicals 202
15.2.2 Instrumentation 202
15.2.3 HPLC Equipment 203
15.2.3.1 Separation of Carotenoids 203
15.2.3.2 Separation of Xanthophylls 203
15.3 Results and Discussion 203
15.3.1 Extraction 203
15.3.2 Saponification 204
15.3.3 Analysis 204
15.3.4 HPLC 205
References 208

16 HPLC Determination of Vitamin E in Fortified Foods 211
Afaf Kamal-Eldin and Jelena Jastrebova
16.1 Introduction 211
16.2 Fortification of Foods with Vitamin E 211
16.3 Experimental Procedures Used to Determine Vitamin E in Fortified Foods by HPLC 214
16.3.1 Chemicals 215
16.3.2 Extraction Procedures 215
16.3.3 Instrumentation 216
16.3.3.1 Columns 216
16.3.3.2 Detectors 218
16.4 Conclusions 219
References 220

17 Determination of Vitamin D by LC–MS/MS 223
Dorit Kern
17.1 Introduction 223
17.2 Materials and Methods 224
17.2.1 Chemicals 224
17.2.2 Preparation of Standards 225
17.2.3 Samples and Reference Materials 225
17.2.4 Sample Preparation 225
17.2.4.1 Saponification 225
17.2.4.2 Solid-Phase Extraction (SPE) 226
17.2.4.3 Equipment 226
17.3 Results and Discussion 227
17.3.1 Analytical Methods 227
17.3.2 Development of the Mass Spectrometry Method 227
17.3.3 Development of the Liquid Chromatographic Method 228
17.3.4 Choice of Internal Standard 230
17.3.5 Calibration and Validation 230
17.3.6 Analysis of Real Samples and Conclusion 230
Acknowledgments 234
References 234

18 Quantitation of Vitamin K in Foods 237
Sameh Ahmed, Naoya Kishikawa, Kaname Ohyama, and Naotaka Kuroda
18.1 Introduction 237
18.2 Biological Role of Vitamin K 237
18.3 Dietary Vitamin K Sources 238
18.4 Stability of Vitamin K 241
18.5 Bioavailability of Vitamin K from Foods 242
18.6 Dietary Vitamin K Deficiency 242
18.7 Analytical Methods for the Determination of Vitamin K in Foods 243
18.7.1 Official and Regulatory Methods 243
18.7.2 Recent Methods for the Determination of Vitamin K in Foods 244
18.7.2.1 Biological Methods 244
18.7.2.2 Spectroscopic Methods 245
18.7.2.3 Chromatographic Methods 245
References 252

19 Trace Analysis of Carotenoids and Fat-Soluble Vitamins in Some Food Matrices by LC–APCI-MS/MS 257
Alessandra Gentili and Fulvia Caretti
19.1 Introduction 257
19.2 Materials and Methods 259
19.2.1 Chemicals and Materials 259
19.2.2 Standards 260
19.2.3 Samples 260
19.2.4 Sample Treatment 260
19.2.4.1 Maize Flour 261
19.2.4.2 Kiwi and Tomato Pulp 261
19.2.5 Liquid Chromatography and Mass Spectrometry 261
19.2.6 Quantitative Analysis 262
19.2.7 Recovery and Precision 262
19.2.8 Memory Effect and Standard Additions Method 264
19.2.9 Limits of Detection and Quantitation 266
19.3 Results and Discussion 266
19.3.1 Fragmentation Study and Optimization of MS/MS Conditions 266
19.3.2 Optimization of the LC–MS Conditions 271
19.3.3 Recovery Studies 272
19.3.4 Application of the Method to the Analysis of Food Products 274
19.4 Conclusions 275
Acknowledgment 278
References 278

Index 281