
61

4
Standardization
Stefan Benke and Georg J. Schmitz

4.1
Overview

Standardization in the context of the AixViPMaP platform currently covers two
different aspects. In the first step, the simulation of manufacturing process chains
requires the exchange of state variables describing the history of the material or
component along the entire value chain from casting of the homogeneous melt to
the application of the final product. The simulation of the individual process steps
usually is performed by specialized simulation tools, which might be academic
‘‘in-house,’’ commercial software packages, proprietary industrial developments,
or open source codes. In order to enable a seamless integration of the tools into
the platform and the use of one common postprocessing tool for all simulation
software packages, a standardization of the result data, geometry data, material
data, and boundary conditions is required.

In the second step, which intervenes deeper into the different individual software
tools, the standardization efforts extend to functional dependencies for modeling
of the specific material behavior. In order to exchange the functional description of
the material models between the simulation codes and to enable the realization of
a strongly coupled, scale bridging simulation using different software codes on all
involved length scales, an application programming interface (API) for user-defined
material subroutines has to be standardized. These user subroutines may be used
to model the thermal, mechanical, electrical, and metallurgical behavior of the
material.

Common to all standardization activities on the AixViPMaP platform is the
usage of very simple file formats and programming methods in order to keep
the threshold for participation as low as possible. As most of the existing simu-
lation tools in computational engineering of materials are – because of historical
reasons – programmed in programming languages such as Fortran or C, the ex-
change of simulation data is easily realized by the use of plain ASCII or binary
files rather than using databases or object-oriented programming methods. The
additional advantage of this approach is that all basic file operations are supported
by most of the various operation systems currently used.

Integrative Computational Materials Engineering: Concepts and Applications of a Modular Simulation Platform,
First Edition. Edited by Georg J. Schmitz and Ulrich Prahl.
 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.



62 4 Standardization

e.g.,: Casting e.g.,: ForgingService

User

B
ou

nd
ar

y 
co

nd
iti

on
s

Material data
from file

Process 
parameters

Process 
parameters

Meta
information

Material
models by call

Field values

Control
file

Control
file

Boundaries

Geometry

Simulation code Simulation code

Operator/expert

Enrichment/
reduction/
integration

Figure 4.1 Scheme of the bus-type infor-
mation flow between two different modules
of the AixViPMaP simulation platform. In-
dividual simulation tools are daisy chained
along the different processes steps of the

entire production process. The informa-
tion exchange is file based, using VTK
files for geometry, boundaries, and field
values, ASCII files for material data from
file.

This chapter documents preliminary standards for the file-based data exchange
and the API. In view of the ongoing exploration of the possibilities of the platform,
the current state of the documentation serves as a very basic standard. An updated
version may be found at the AixViPMaP site [1]. In the long term, further
development should become a cooperative effort of an international community,
for example, in the frame of the TMS committee on integrated computational
materials engineering (ICME).

An overview of the standardization efforts to be taken is depicted in Figure 4.1.
The following sections describe the present status with respect to standardization
of geometry and APIs.

4.2
Standardization of Geometry and Result Data

The description of the discretized component geometry on the macroscale and
the morphology of the microstructure on the microscale are both based on the
file format of the Visualization Toolkit (VTK) [2]. VTK is an open source toolkit
for the visualization of discretized data stemming from various sources such as
numerical simulations, computed -tomography, or others. The toolkit is distributed
by Kitware Inc. and is basically written in C++. It provides a number of predefined



4.2 Standardization of Geometry and Result Data 63

data structures and methods for the handling of data files, the manipulation of
mesh and result data, and their visualization. A number of software applications
based on VTK are available as open source software, highlighting ParaView [3] as
one of the most popular tools for data visualization, especially in 3D. This leads to
the fact that the VTK-file format – besides netCDF and HDF – is one of the most
popular open file formats for numerical result data.

Since the VTK-file format is a very basic and universal file format for discretized
data, several extensions and standardizations are needed while keeping the compat-
ibility to the basic format. The missing data in the file are especially the information
on previous simulation steps, unit systems, coordinate systems, and timing data.
These have now been included into an extended file header, as described in the
next section. The standardization issues are mostly related to the nomenclature of
the datasets containing group and result data. The rest of the file coincides with
the ASCII or binary version of ‘‘legacy file format,’’ which is documented in detail
elsewhere [4] and is briefly recalled here. In general, the file consists of five basic
parts [4]:

1) The first part contains the file version and the identifier of the file format.
2) The second part is the header. It consists of a character string that may be 256

characters long. On the AixVipMap platform, this character string is used to
transport information about process step and process time as well as about the
unit system (Section 4.2.1).

3) The third part defines either the ASCII or binary file type format. Both types
are used on the AixViPMaP platform.

4) The fourth part comprises information about the geometry and topology of
the dataset. Currently, only discretized geometries are used on the platform.
The discretization types currently being used are structured points, mainly
for microstructure descriptions from phase-field simulations; structured grids;
and unstructured grids, mainly for macroscopic finite element (FE) process
simulations.

5) The last part of the file contains the dataset attributed or field variables,
which may be scalar-, vector-, or tensor-type data. The keywords describing the
attribute values are standardized in Section 4.2.3. The field variables are also
used to define geometric group information, as defined in Section 4.2.2.

The naming of the result files follows a specific naming scheme in order to
organize the result files in a meaningful manner. The name of the result files
consists of the English name of the individual process step followed by a sequential
number counting the number of simulations using this type of process step,
a dot, followed by the sequential number of the time step writing this process
step, and eventually the extension ‘‘.vtk.’’ For example, the name of the result
file stemming from the second heating step within a process chain is given by:
heating02.10.vtk. Here, the number 10 refers to the 10th time step of the
process step.



64 4 Standardization

4.2.1
Extended File Header

The header of the generic VTK-file is extended on the AixViPMaP platform in
order to store the information on the simulation step, which may be used on a
higher abstraction level and for postprocessing purposes. The header section at the
beginning of the VTK-file looks as follows:

#vtk DataFile Version 2.0

process_step time=n genericSI|modifiedSI

Where the process_step is the English name of the simulation process step, time
is the current simulation time in time units as given by the unit system. The unit
system is defined either as generic SI unit system or a modified SI system using
arbitrary units. For a modified SI unit system, the conversion factors to the SI unit
system must be defined as follows:

process_step time=n modifiedSI l=1.0E-06 f=1.0

t=1.0 dt=273.15 p=1.0 to=0.0 c=wt

For non-SI unit systems, the factors for converting the field variables and
measurements into SI units must be declared. They are defined as follows:

l Scaling factor from length units to SI units (meter)
f Scaling factor for forces to SI units
t Scaling factor for temperature units
p Scaling factor for time periods
dt Temperature offset to 0 K in temperature units
to Time offset in time units
c =wt|at Defines either mass or atom percent for species concentration

If a factor is not given, it is implicitly assumed to be a unit factor or a zero offset.

4.2.2
Geometric Attributes

Geometric attributes are currently used to store information about the groups of
geometric entities. Thus, they are used to define a subset of the discretized cells or
points of the geometry under consideration. In FE analysis, the definition of point
or cell groups is very common. They are mostly used to define geometric regions
for the application of initial and boundary conditions. As the VTK-file format does
not provide a special data structure for the storage of groups, they are defined as
attribute field datasets on points or cells.



4.3 Material Data 65

Material ID The attribute field Material ID is intended to decompose a part or
context geometry into several geometric regions that consist of different materials.
The attribute field is stored as a generic ‘‘CELL DATA’’ field as an integer number.
The number corresponds with the identifier of the material. All material identifiers
should – but need not – be sequentially numbered.

Groups of Points The point groups are stored as an attribute dataset on points. The
naming convention for these groups is defined such that the name should start with
the prefix ‘‘POINT_GROUP_ . . . ’’. Here, the dots are placeholders for the unique
naming suffix. The attribute values are defined as integer values for all points of the
model. If a point belongs to the group, its attribute value should not be zero. All other
points not being members of the actual group should have a zero attribute value. It is
advised that all point groups should be sequentially numbered and that this number
should be used as the attribute value in order to allow set operations on the point
groups.

Groups of Cells The cells are defined in the same way as the groups of points.
The naming scheme for cell groups starts with the prefix ‘‘CELL_GROUP’’ followed
by a unique naming suffix. Both parts of the name must be connected by an
underscore. If a cell is a member of a group, its integer attribute value should
not be zero. All other cells must have a zero attribute value. Here again, it is
advised that all cell groups should be sequentially numbered and that this number
should be used as the attribute value in order to allow set operations on the point
groups.

4.2.3
Field Data

In the following, the names of the field datasets are defined and standardized in
order to enable an automatic processing of the data by the different simulation
tools and the enricher/parser software. Basically, the name of the field data
is given by the English name of the field variable. The names are case in-
sensitive but may not be separated by whitespace characters. Data items not
being updated in the current simulation step, for example, because of a lack
of material model, should be passed unchanged to the following simulation
step (Table 4.1).

4.3
Material Data

Different types of material data – especially thermodynamic and thermophysi-
cal – are relevant to ICME. Thermodynamic and kinetic data are relevant, for
example, to model microstructure evolution and also to account, for example,



66 4 Standardization

Table 4.1 Standardized names for the field variables in attribute datasets.

Entity Type SI unit

backstress Tensor Pa
concentration_Xxa Scalar wt%|at%
dislocation_density Scalar 1 m−2

displacement Vector M
enthalphyb Scalar J m−3

equivalent_strain_rate Scalar 1 s−1

equivalent_strain Scalar 1
equivalent_plastic_strain Scalar 1
equivalent_stress Scalar Pa
fraction_crystallinec Scalar 1
heat_flux Vector J mm−2

hydrostatic_strain Scalar 1
hydrostatic_stress Scalar Pa
grain_sized Scalar M
grain_size_min Scalar M
grain_size_max Scalar M
nodal_force Vector N
material_orientationc Tensor 1
phase_frac_namee Scalar 1
plastic_strain Tensor 1
spherulite_numberc Scalar 1
spherulite_diameterc Scalar M
stiffness_hooke Tensor Pa
strain Tensor 1
strain_energyf Scalar J
strain_energy_density Scalar J m−3

strain_rate Tensor 1 s−1

temperature Scalar K
temperature_rate Scalar K s−1

velocity Vector m s−1

shear_ratec Vector 1 s−1

liquidus_temperature Scalar K
solidus_temperature Scalar K
vaporisation_temperature Scalar K
heat_of_fusion Scalar J m−3

heat_of_condensation Scalar J/m3

density_at_rt Scalar kg m−3

density_at_liquidus Scalar kg m−3

density_at_solidus Scalar kg m−3

density_at_vapor Scalar kg m−3

rho_cp_at_rt Scalar J m−3 K
rho_cp_at_liquidus Scalar J m−3 K
rho_cp_at_solidus Scalar J m−3 K
rho_cp_at_vapor Scalar J m−3 K
specific_heat_mass_at_rt Scalar J kg−1 K



4.3 Material Data 67

Table 4.1 (continued)

Entity Type SI unit

specific_heat_mass_at_liquidus Scalar J/kg K
specific_heat_mass_at_solidus Scalar J kg−1 K
specific_heat_mass_at_vapor Scalar J kg−1 K
thermal_conductivity_at_rt Scalar W m−2 K
thermal_conductivity_at_liquidus Scalar W m−2 K
thermal_conductivity_at_solidus Scalar W m−2 K
thermal_conductivity_at_vapor Scalar W m−2 K

aXx is the abbreviation of the name of the chemical species.
bStored enthalpy of the material at a given temperature.
cOnly for plastics/polymers.
dAverage grain size for a macroscale process simulation.
eWhere name is the English denomination of the phase, for example,
austenite, ferrite, bainite, srx (static recrystallized), drx (dynamically
recrystallized), mrx (metadynamically recrystallized), and so on.
f Total strain.

for phase fractions, enthalpies, or other thermodynamic values being required as
effective local values for simulations at the process scale. The standardization of
such data has already largely taken place within the CALPHAD community in
the form of the widespread thermodynamic database ‘‘∗.tdb’’ file format. Many
databases for technical alloy systems are commercially available and can be ac-
cessed by APIs provided by the respective software companies. Present activities
aim at generating data also for interfacial properties. A standard for storage and
retrieval of such data has to be developed in future. Several thermophysical data
such as density and thermal expansion coefficient can be extracted as temperature-
and composition-dependant values from these databases both for pure phases and
phase mixtures.

For the exchange of thermophysical material data along the process
chain – stemming from experiments or a weak coupling between the length
scales – a simple file-based format is used on the simulation platform. The term
material, however, is somehow not quite unique and scale dependent. For ab initio

simulations, the material data may describe the properties and the interaction of
single atoms; in microscale simulations, the term material may be identified with
the properties of the pure phase, which may be a mixture of several chemical
species, whereas in macroscale process simulations it corresponds to the effective
properties of a representative volume element.

The material data is stored in plain ASCII files. They can be created by the use of
a text editor, data logging programs, or scale bridging tools such as homogenization
or virtual testing software codes (Chapter 5). The file consists of lines containing
key words and data. The data describes basically the material properties as tables of



68 4 Standardization

the temperature or other state variables. The following applies to all keyword and
data lines of the material data file:

1) The first nonblank character of a keyword line must be a slash (/).
2) A line beginning with a hash (#) is a comment line and is ignored as well as

any blank characters ( ).
3) A line may be maximum 256 characters long. There is no case sensitivity.
4) Parameters and options are separated by a comma (,). A keyword must also be

followed by a comma, if any parameters are given.
5) If a parameter owns a value, the equal sign (=) is always used. The value may

be a number or a character string.
6) A line ending with a comma (,) is continued in the next line.
7) Character strings as well as keywords may be 80 characters long.
8) All properties are defined in SI units.

The keywords for the naming of the data sets are usually the English standard
names of the thermal, physical, mechanical, electrical, or optical property. The
keywords already defined are given in Table 4.2. As mentioned before, an updated
list of keywords can be found on the AixViPMaP site [1].

The data tables in the data section define, in general, piecewise linearized
functions of the data values. The functions always depend on the temperature, and
may also depend on other state variables. The type of interpolation scheme for the
calculation of the values in between the supporting points is left to the software
tool. The definition of the tables is as follows:

Table 4.2 Keywords for the naming of material data sets.

Keyword Description

CONDUCTIVITY Thermal conductivity
DENSITY Density
DRIVING FORCE Driving force of phase transformation
FRACTION SOLID Volume fraction solid during solidification
FRACTION LIQUID Volume fraction liquid during condensation
HEAT CAPACITY Volume-specific heat capacity
HEAT OF FUSION Volume-specific heat of fusion
HEAT OF MELTING Volume-specific heat of meting
HEAT OF CONDENSATION Volume-specific heat of condensation
HEAT OF EVAPORATION Volume-specific heat of evaporation
ENTHALPY Volume-specific total enthalpy
ELASTICITY Hooke tensor
PINNING FORCE Zener force
MOLAR VOLUME Volume of a mole atoms
TEMPERATURE SOLIDUS Solidus temperature
TEMPERATURE LIQUIDUS Liquidus temperature
TEMPERATURE GASEOUS Gaseous temperature
YIELD STRESS Yield stress



4.3 Material Data 69

• Each line defines the data values for one combination of the temperature and
optional solution-dependent state variables.

• The first columns of values define the material properties. The number of
properties depends on the grade of the material anisotropy.

• The last column always defines the temperature.
• The properties must be listed in ascending order of the state variables and the

temperature.
• The columns are separated by a comma (,).

Thermophysical data are, in general, defined as volume-specific properties. The
directional dependence of material properties is defined by the TYPE parameter
that may have the values ISOTROPY/ISO, ORTHOTROPY/ORTHO, or general
ANISOTROPY/ANISO. The sequence of the directional-dependent coefficients for
second-order tensors is as follows:

• Orthotropy: 11, 22, and 33 direction,
• General anisotropy: 11, 12, 13, 21, 22, 23, 31, 32, 33.

For fourth-order tensors such as the Hooke tensor in elasticity, the sequence of
the coefficients is given by:

• Orthotropy: 1111, 1122, 2222, 1133, 2233, 3333, 1212, 1313, 2323,
• General anisotropy: 1111, 1122, 2222, 1133, 2233, 3333, 1112, 2212, 3312, 1212,

1113, 2213, 3313, 1213, 1313, 1123, 2223, 3323, 1223, 1323, 2323.

The example dataset for the temperature-dependent density of generic low carbon
steels is as follows:

/DENSITY

7.849E-06, 0.0

7.630E-06, 650.0

7.650E-06, 700.0

7.400E-06, 1300.0

7.317E-06, 1434.0

7.310E-06, 1440.0

7.105E-06, 1500.0

7.012E-06, 1510.0

7.000E-06, 1525.0

The stress–strain curves of an aluminum alloy are defined as a function of the
temperature and the equivalent plastic strain as follows:

/YIELD STRESS, TYPE=VON MISES

179.58, 0.00, 0.00

160.74, 0.00, 100.00

99.50, 0.00, 200.00

218.68, 0.02, 0.00



70 4 Standardization

193.03, 0.02, 100.00

119.22, 0.02, 200.00

Here, the first column lists the yield stress for a given combination of the equiv-
alent plastic strain and temperature. The second column defines the equivalent
plastic strain, here 0.00 and 0.02, as the first solution-dependent state variable and
the last column defines the temperature values 0.0, 100.0, and 200.0 as the second
solution-dependent state variable. The values are ordered first by the plastic strain
and then by the temperature. In this example, only a linear stress–strain curve is
displayed. By repeating the block for each strain, the example could be extended to
a more complicated situation.

4.4
Application Programming Interface

Besides the file-based exchange of discretized field variables and material data,
the standardization of the programming interface is used to convey functional
dependencies such as thermal or mechanical material models between the different
software codes. These functions are coded as subroutines or functions using a
high-level programming language and are called many times during a calculation
run. On the basis of the modularized structure of the platform, as displayed in
Figure 4.2, the subroutines may transport the functional dependencies along the
horizontal and the vertical direction of the map. The horizontal axis links the
different software codes keeping the same scale or the same level of detail. The
material models coded in these functions thus may be reused by the different
software codes. This enables, for example, the use of a consistent material model in
all codes. On the vertical axis of Figure 4.2, the use of the programming interface

Heating Rolling Welding

Exchange of material models

M
ic

ro
sc

al
e

M
ac

ro
sc

al
e

S
of

tw
ar

e 
ca

lls
 fo

r 
m

at
er

ia
ls

 p
ro

pe
rt

ie
s

Figure 4.2 User programming interfaces for the exchange
of material models between the software codes of the simu-
lation chain, and the calculation of effective properties from
smaller length scales.



4.4 Application Programming Interface 71

may enable a direct link between the software codes at different length scales. Thus,
it enables a strong coupling between the simulations on different length scales
and the use of multiscale material models. This is especially helpful to realize
multiscale material models using the multi level finite element analysis method
or the numerical calculation of effective material properties based on discretized
microstructures originating from transient phase-field models, virtual models such
as DIGIMAT, or discretized metallurgical images. In principle, the call of any
external software tool is possible as the subroutine itself may write the input to files
and call any program by the use of a system call and read the results from file after
the program run again.

The programming interfaces, which are currently already standardized, interact
at different levels with the simulation software code and are very similar to pro-
gramming interfaces already being implemented in several existing software codes
such as ABAQUS, ANSYS, or FEAP. The standardized programming interfaces
for the user subroutines are

• USER_MATERIAL_TM: user-defined mechanical constitutive material models,
• USER_MATERIAL_HT: user-defined thermal material laws,
• USER_EXPANSION: user-defined models for stress-free strains stemming from

thermal dilatation or the volume change due to phase transformations,
• USER_PHASE_TRANSFORMATION: user-defined models for the description

of phase transformations.

The definition of the programming interface comprises the definition of a fixed
formal name of the subroutine and an argument list. The argument list defines
the type, size, and content of the variables exchanged between the calling program
and user subroutine. The variables are classified into three groups:

• Variables to be defined by the user. This is the required information for the
calling program.

• Variables passed to the subroutine for information purpose. These variables
should not be changed, and it is advised that the calling program passes a copy
of the variable to the subroutine.

• Variables to be updated.

All subroutines are evaluated at each integration point of the discretized geometry.
The subroutines may be called several times during an iterative solution procedure
for the resolution of a geometric or material nonlinearity. The information on the
iteration step and the calling sequence during the solution procedure is passed to
the subroutine by several flags described in the following text.

The communication between the user subroutines is realized with the help of
an integer and a real array. These arrays are used to store the user-defined state
variables at each integration point. The calling program must ensure to pass the
correct array of state variables to the call of the subroutine at each integration point.
The size and the use of the state variables must be defined by the user. Subroutines
for the initialization and the output of the variables for postprocessing are not
standardized, and the features are left to the software provider.



72 4 Standardization

4.4.1
USER_MATERIAL_TM Subroutine

TheUSER_MATERIAL_TM subroutine is used to implement a user-defined material
model into an existing software code. The subroutine may be exchanged by the
different software tools being used for the simulation of a process chain at a
given length scale. For multiscale material models, the subroutine may consist of
a complete calculation tool or a system call that, for example, passes the effective
tangential material stiffness to the calling program at a larger length scale.

The formal programming interface in FORTAN notation of the subroutine is
given by:

SUBROUTINE USER_MATERIAL_TM (STRESS,DSTRSEPS,DSTRDTEMP,ENERGY,

1 STRESS,STATEV,NSTATV,STRAIN,

2 DSTRAIN,TIME,DTIME,TEMP,DTEMP,

3 NAME,NTENS,PROPS,NPROPS,COORDS,

4 ISTEP,IITER,IELEM,IGAUSS,ISTATUS)

CHARACTER NAME(80)

REAL STRESS(NTENS),STATEV(NSTATV),ENERGY(2,2),

1 DSTRDEPS(NTENS,NTENS),DSTRDTEMP(NTENS),

2 STRAIN(NTENS),DSTRAIN(NTENS),STRESS(NTENS),

3 PROPS(NPROPS),COORDS(3),TIME,DTEIM,TEMP,DTEMP

INTEGER NTENS,NSTATV,NPROPS,ISTEP,IITER,IELEM,IGAUSS,

1 ISTATUS

user coding to define DSTRDEPS, STRESS, STATEV
and, if necessary, ENERGY, DEPSDTEMP
The solution dependent state variables may be updated

END

A number of routines for simple linear elasticity written in FORTRAN and C can
be found on the AixViPMaP web site [1] for free download. In the following text,
the variables are described in detail. The ordering of the directions of the stresses
and strains is as follows: first, the direct components are ordered by the direction
followed by the shear directions again ordered after their directions.

Variables Required by the Program

DSTRDEPS(NTENS,NTENS) The algorithmic tangent matrix of the constitutive model
with respect to the strains. The variable DSTRDEPS(I,J)
defines the change of the Ith stress component caused by
an infinitesimal change of the Jth component of the strain
tensor. Remember, the calling program may accept only
the symmetric part of the array.



4.4 Application Programming Interface 73

DSTRDTEMP(NTENS) The algorithmic tangent matrix of the constitutive material
model with respect to the temperature. Here,
DSTRDTEMP(I) defines the change of the Ith stress
component caused by an infinitesimal temperature change.

STRESS(NTENS) The array contains the Cauchy stress tensor at the beginning of
the increment and must be updated in this routine to be the
stress tensor to the end of the increment.

ENERGY(2,2) The strain energy at the end of the increment and its derivation
with respect to the strain. ENERGY(1,1) is the reversible part
of the strain energy, ENERGY(2,1) is the irreversible part of
the strain energy, and ENERGY(1,2)and ENERGY(1,2)
contain the corresponding linearized deviations.

Variables to Be Updated

STATEV(NSTATV) The array contains the solution-dependent state variables. They
correspond to the values at the beginning of the increment,
unless they are updated by other user-defined subroutines.
The values passed correspond only to the current integration
point for which the subroutine is passed and they may be
used for data exchange between the user subroutines. The
memory allocation is left to the calling program. In addition,
there should be the possibility in the calling program to
initialize and output the variables.

Variables Passed in for Information

STRAIN(NTENS) The array contains the total strains at the beginning of the
increment, for example, the equilibrium state of the previous
step. The definition of the strain is left to the calling program.
For compatibility reasons, the use of the Lagrangian strain in
large deformation analysis should be preferred. For coupled
thermomechanical problems, this is the stress-generating part
of the strain only. Other stress-free strains such as thermal
strains and dilatations due to phase transformations are
calculated by the UEXPAN subroutine and have already been
subtracted.

DSTRAIN(NTENS) The array of strain increments within this load step. As before,
these are the mechanical parts of the strain only.

TIME The simulation time information at the beginning of the
increment.

DTIME The time period covered by the current increment.
TEMP The temperature at the integration point at the beginning of the

current increment.
DTEMP The temperature change during the previous time increment.



74 4 Standardization

NAME The user-defined name of the material region, left justified.
NTENS Number of the stress or strain components.
NSTATV Number of solution-dependent state variables that are associated

with this material model.
PROPS (NPROPS) User-specified array of material constants associated with this

user material as defined in the input file of the calling
program.

NPROPS User-defined number of material constants.
COORDS (3) The current coordinates of this integration point.
ISTEP Number of the current time step.
IITER Current iteration number.
IELEM Number of the element.
IGAUSS Number of the integration point within the element.
ISTATUS Flag indicating if the routine is called at the beginning of the

increment (ISTATUS=1), at the end of the increment
(ISTATUS=2), or elsewhere (ISTATUS=0).

4.4.2
USER_MATERIAL_HT Subroutine

The thermal counterpart of the previously described subroutine is the USER_MA-
TERIAL_HT programming interface. It is used to implement a thermal material
model with a complex thermal behavior including the release or consumption
of the heat of fusion, heat of evaporation, heat of solidification, heat of melting,
or the heat release during solid-state transformations. The programming inter-
face is a subclass of the user–material programming interface. Thus, it should
provide the same user-defined variables and should be called at the same inte-
gration points as all other subroutines. The header and input/output variables
of the USER_MATERIAL_HT routine expected from the driver routine are as
follows:

SUBROUTINE USER_MATERIAL_HT (ENTHALPY,DENTHALPYDT,CONDUCTIVITY,

1 STATEV,NSTATV,TIME,DTIME,NAME,

2 PROPS,NPROPS,COORDS,NDIM,ISTEP,

3 IITER,IELEM,IGAUSS,ISTATUS)

CHARACTER NAME(80)

REAL ENTHALPY,DENTHALPYDT,CONDUCTIVITY(3,3),

1 CONDUCTIVITY(3,3),STATEV(NSTATV),PROPS(NPROPS),

2 COORDS(3)

INTEGER NDIM,NSTATV,NPROPS,ISTEP,IITER,IELEM,IGAUSS,

1 ISTATUS

user coding to define ENTHALPY,DENTHALPYDT and CONDUCTIVITY

END



4.4 Application Programming Interface 75

Variables Required by the Program

ENTHALPHY The total volume specific enthalpy at the integration point.
DENTHALPHYDT The linearized derivation with respect to the temperature at the

integration point.
CONDUCTIVITY(3,3) The current conductivity of the material at the integration point.
DCONDUCTIVITYDT(3,3) The deviation of the current conductivity of the material at the

integration point with respect to the temperature.

Variables to Be Updated

STATEV (NSTATV) The array contains the solution-dependent state variables. They
correspond to the values at the beginning of the increment, unless
they are updated by other user-defined subroutines. The values
passed correspond only to the current integration point for which
the subroutine is passed, and they may be used for data exchange
between the user subroutines. The memory allocation is left to
the calling program. In addition, there should be the possibility in
the calling program to initialize and output the variables.

Variables Passed in for Information

NDIM The number of coordinates indicating a 2D or 3D analysis.

The description of the remaining variables passed for information is given in
detail in the section titled Variables Passed in for Information.

4.4.3
USER_EXPANSION Subroutine

The programming interface of the user expansion subroutine must be considered as
a subset of the programming interface for user material models. The subroutine can
be used to implement stress-free eigenstrains stemming from thermal dilatations
or from density changes caused by phase transformations. The implementation of
the programming interface should enable the use of the solution-dependent state
variables as used in the USER_MATERIAL_TM subroutine in order to allow the
realization of complex models for phase transformations. The subroutine should
be called at the same integration points, as the other user subroutines. The ordering
of the calling sequence of the several subroutines is left to the calling program. The
formal interface of the user subroutine is as follows:



76 4 Standardization

SUBROUTINE USER_EXPANSION (EXPANSION,DEXPANDTEMP,STATEV,

1 NSTATV,TIME,DTIME,TEMP,DTEMP,

2 PROPS,NPROPS,NAME,COORDS,NTENS,

3 ISTEP,IITER,IELEM,IGAUSS,ISTATUS)

CHARACTER NAME(80)

REAL EXPAN(NTENS),DEXPANDT(3),PROPS(NPROPS),

1 STATEV(NSTATV),COORDS(3),TIME,DTIME,TEMP,

2 DTEMP

INTEGER NTENS,NSTATV,NPROPS,ISTEP,IITER,IELEM,IGAUSS,

1 ISTATUS

user coding to define EXPAN, DEXPANDT and update STATEV if nec-
essary.

END

Variables Required by the Program

EXPANSION (NTENS) The tensor of the total stress-free strains for the current
configuration. The ordering of the components of the tensor
in Voigt notation coincident with the stresses and strains, in
general.

DEXPANDTEMP (NTENS) The linearized derivation of the stress-free strains with respect
to the temperature.

Variables to Be Updated

STATEV (NSTATV) The array that contains the solution-dependent state
variables as described before.

Variables Passed in for Information The description of the variables passed for
information is given in detail in Variables Passed in for Information.

4.4.4
USER_PHASE_CHANGE Subroutine

This programming interface allows the definition of a user-defined material model
for the solidification and solid-state transformations. It consists basically of two
interfaces: the interface to the user material subroutine, which has to deliver the
thermal and mechanical material model, and the interface to the user expansion
subroutine, which is realized as a subclass of the user material interface. The user
expansion subroutine takes care of the density changes and eigenstrains during the



4.4 Application Programming Interface 77

solid-state transformation and includes them into the calculation of the mechanical
submodel. The communication between all subroutines should be realized by the
usage of the same fields of the user-defined state variables. All subroutines should
have access to the same variable space and should be called at the same integration
points. This subroutine is intended to be a generalized interface to manipulate
the phase fractions of the several metallurgical phases in a multiphase analysis,
to interact with the calling software code in a more detailed way, and to allow the
user to change the chemical composition and others. Usually, the volume or mass
fractions of the metallurgical phases are stored as user-defined state variables. Thus,
the phase changes may be simply modeled internally in the USER_MATERIAL_HT
subroutine or in more detail using the subroutine described here.

The header and input/output variables of the USOLID routine expected from the
driver routine are as follows:

SUBROUTINE USER_PHASE_CHANGE (ENTHALPY,DENTHALPYDT,

1 DMASS,DRIVINGFORCE,

2 SPECIES,DSPECIES,NSPECIES,

3 PFRAC,DPFRAC,NPFRAC,

4 STATEV,NSTATV,TIME,DTIME,

5 TEMP,DTEMP,PROPS,NPROPS,

6 NAME,COORDS,NDIM,ISTEP,

7 IITER,IELEM,IGAUSS,ISTATUS)

CHARACTER NAME(80)

REAL ENTHALPY,DENTHALPYDT,DMASS(NPHASES),

1 DRIVINGFORCE(NPFRAC,NPFRAC),

2 SPECIES(NPFRAC,NSPECIES),

3 DSPECIES(NPFRAC,NSPECIES),

4 PFRAC(NPFRAC),DPFRAC(NPFRAC),STATEV(NSTATV),

5 TIME,DTIME,TEMP,DTEMP,PROPS(NPROPS),COORDS(3)

INTEGER NDIM,NSTATV,NPROPS,ISTEP,IITER,IELEM,IGAUSS,

1 NSPECIES,NPFRAC,ISTATUS

user coding to define ENTHALPY, DENTHALPYDT, DMASS, DRIVINGFORCE,
SPECIES, DSPECIES, PFRAC or DPFRAC. All variables are optional and
depend largely on the calling software code

END

Variables Required by the Program

ENTHALPHY The total volume-specific enthalpy at the integration point.
DENTHALPHYDT The linearized derivation with respect to the temperature at the

integration point.



78 4 Standardization

DMASS (NPFRAC) The increment of exchanged mass between the
phases during the last time step. To fulfill the
balance of mass, the sum of the exchange
quantities should vanish.

DRIVINGFORCE (NPFRAC,NPFRAC) The forces driving the transformation between the
several phases.

SPECIES (NPFRAC,NSPECIES) Chemical composition of the phases.
DSPECIES (NPFRAC,NSPECIES) Change of the chemical composition of the phases.
PFRAC (NPFRAC) Volume fraction of the distinguished metallurgical

phases.
DPFRAC (NPFRAC) Change in the volume fraction of the distinguished

metallurgical phases.

Variables to Be Updated

STATEV (NSTATV) The array contains the solution-dependent state variables. They
correspond to the values at the beginning of the increment,
unless they are updated by other user-defined subroutines.
The values passed correspond only to the current integration
point for which the subroutine is passed, and they may be
used for data exchange between the user subroutines. The
memory allocation is left to the calling program. In addition,
there should be the possibility in the calling program to
initialize and output the variables.

Variables Passed in for Information

NDIM The number of coordinates indicating a 2D or 3D analysis.
NSPECIES Number of the chemical species for each metallurgical phase.
NPFRAC Number of phases.

The description of the remaining variables passed for information is given in
detail in Variables Passed in for Information.

4.5
Future Directions of Standardization

The above standardization scheme has been implemented in a number of soft-
ware codes available at the RWTH Aachen University, and converters have been



References 79

programmed to transfer results of some commercial codes into this standard, which
by now essentially covers thermodynamic and thermomechanical aspects. The
combination of different simulation tools – both academic and commercial – has
allowed for the successful simulation of some test scenarios (Chapters 8–12). It
should be noted that the standardized data exchange between the different models
drastically reduced the load of data conversion, a significant effort before intro-
ducing the standard. Further development of this standard has to be discussed
within the emerging ICME community and to proceed between users of ICME
concepts and software developers – academic and/or commercial – providing re-
spective models and tools.

References

1. http://www.aixvipmap.de.
2. http://www.vtk.org.

3. http://www.paraview.org.
4. http://www.vtk.org/pdf/file-formats.pdf.




