Contents

Preface XIII
A Personal Foreword XV

1 Origin and Historical Perspective on Reactive Metabolites 1
 Abbreviations 1
 1.1 Mutagenesis and Carcinogenesis 1
 1.2 Detection of Reactive Metabolites 3
 1.3 Induction and Inhibition: Early Probes for Reactive Metabolites and Hepatotoxicants 4
 1.4 Covalent Binding and Oxidative Stress: Possible Mechanisms of Reactive Metabolite Cytotoxicity 5
 1.5 Activation and Deactivation: Intoxication and Detoxification 6
 1.6 Genetic Influences on Reactive Metabolite Formation 6
 1.7 Halothane: the Role of Reactive Metabolites in Immune-Mediated Toxicity 7
 1.8 Formation of Reactive Metabolites, Amount Formed, and Removal of Liability 8
 1.9 Antibodies: Possible Clues but Inconclusive 8
 1.10 Parent Drug and Not Reactive Metabolites, Complications in Immune-Mediated Toxicity 9
 1.11 Reversible Pharmacology Should not be Ignored as a Primary Cause of Side Effects 10
 1.12 Conclusions: Key Points in the Introduction 10
 References 11

2 Role of Reactive Metabolites in Genotoxicity 13
 Abbreviations 13
 2.1 Introduction 13
 2.2 Carcinogenicity of Aromatic and Heteroaromatic Amines 13
 2.3 Carcinogenicity of Nitrosamines 17
 2.4 Carcinogenicity of Quinones and Related Compounds 19
 2.5 Carcinogenicity of Furan 23
 2.6 Carcinogenicity of Vinyl Halides 26
2.7 Carcinogenicity of Ethyl Carbamate 26
2.8 Carcinogenicity of Dihaloalkanes 28
2.9 Assays to Detect Metabolism-Dependent Genotoxicity in Drug Discovery 28
2.10 Case Studies in Eliminating Metabolism-Based Mutagenicity in Drug Discovery Programs 29
References 36

3 Bioactivation and Inactivation of Cytochrome P450 and Other Drug-Metabolizing Enzymes 43
3.1 Introduction 43
3.2 Pharmacokinetic and Enzyme Kinetic Principles Underlying Mechanism-Based Inactivation and Drug–Drug Interactions 44
3.2.1 Enzyme Kinetic Principles of Mechanism-Based Inactivation 44
3.2.2 Pharmacokinetic Principles Underlying DDIs Caused by Mechanism-Based Inactivation 46
3.3 Mechanisms of Inactivation of Cytochrome P450 Enzymes 47
3.3.1 Quasi-Irreversible Inactivation 47
3.3.2 Heme Adducts 48
3.3.3 Protein Adducts 49
3.4 Examples of Drugs and Other Compounds that are Mechanism-Based Inactivators of Cytochrome P450 Enzymes 49
3.4.1 Amines 49
3.4.2 Methylenedioxyphenyl Compounds 51
3.4.3 Quinones, Quinone Imines, and Quinone Methides 52
3.4.4 Thiophenes 53
3.4.5 Furans 55
3.4.6 Alkynes 56
3.4.7 2-Alkylimidazoles 57
3.4.8 Other Noteworthy Cytochrome P450 Inactivators 58
3.5 Mechanism-Based Inactivation of Other Drug-Metabolizing Enzymes 60
3.5.1 Aldehyde Oxidase 60
3.5.2 Monoamine Oxidases 61
3.6 Concluding Remarks 64
References 65

4 Role of Reactive Metabolites in Drug-Induced Toxicity – The Tale of Acetaminophen, Halothane, Hydralazine, and Tienilic Acid 71
4.1 Introduction 71
4.2 Acetaminophen 71
4.2.1 Metabolism of Acetaminophen 72
4.2.2 Metabolic Activation of Acetaminophen 73
4.3 Halothane 75
4.3.1 Metabolism of Halothane 76
4.3.2 Hepatotoxicity following Halothane Administration 78
4.4 Hydralazine 79
4.5 Tienilic Acid 82
References 84

5 Pathways of Reactive Metabolite Formation with Toxicophores/-Structural Alerts 93
5.1 Introduction 93
5.2 Intrinsically Reactive Toxicophores 93
5.2.1 Electrophilic Functional Groups 94
5.2.2 Metal Complexing Functional Groups 96
5.3 Toxicophores that Require Bioactivation to Reactive Metabolites 98
5.3.1 Aromatic Amines (Anilines) 98
5.3.2 ortho- and para-Aminophenols 101
5.3.3 Nitroarenes 103
5.3.4 Hydrazines 105
5.3.5 Five-Membered Heteroaromatic Rings 107
5.3.5.1 Furans 107
5.3.5.2 Thiophenes 109
5.3.5.3 Thiazoles and 2-Aminothiazoles 109
5.3.5.4 3-Alkyl Pyrrole and 3-Alkylindole Derivatives 112
5.3.5.5 1,3-Benzdioxole (Methylenedioxyphenyl) Motif 115
5.3.6 Terminal Alkenes and Alkynes 117
5.4 Concluding Remarks 121
References 121

6 Intrinsically Electrophilic Compounds as a Liability in Drug Discovery 131
6.1 Introduction 131
6.2 Intrinsic Electrophilicity of ß-Lactam Antibiotics as a Causative Factor in Toxicity 131
6.3 Intrinsically Electrophilic Compounds in Drug Discovery 133
6.3.1 Linking Innate Electrophilicity with Drug Toxicity 135
6.4 Serendipitous Identification of Intrinsically Electrophilic Compounds in Drug Discovery 136
References 141

7 Role of Reactive Metabolites in Pharmacological Action 145
7.1 Introduction 145
7.2 Drugs Activated Nonenzymatically and by Oxidative Metabolism 145
7.2.1 Proton Pump Inhibitors 145
7.2.2 Nitrosoureas 147
7.2.3 Imidazotriazenes 148
7.2.4 Thietotetrahydropyridines 150
7.2.5 Oxazaphosphorines 152
7.2.6 N,N,N',N'-Hexamethylmelamine 153
7.3 Bioreductive Activation of Drugs 153
7.3.1 Bioreduction to Radical Intermediates 157
7.3.1.1 Tirapazamine 157
7.3.1.2 Anthracyclines 157
7.3.1.3 Enediynes 158
7.3.1.4 Artemisinin Derivatives 166
7.3.2 Bioreductive Activation to Electrophilic Intermediates 168
7.3.2.1 Mitomycins 168
7.3.2.2 Aziridinylbenzoquinones 170
7.3.2.3 Bioreductive Activation of Anthracyclines to Alkylating Species 173
7.3.2.4 Bioreductive Activation of Nitroaromatic Compounds 174
7.4 Concluding Remarks 175

References 176

8 Retrospective Analysis of Structure–Toxicity Relationships of Drugs 185
8.1 Introduction 185
8.2 Irreversible Secondary Pharmacology 189
8.2.1 Common Structural Features: Carboxylic Acids 189
8.3 Primary Pharmacology and Irreversible Secondary Pharmacology 191
8.4 Primary or Secondary Pharmacology and Reactive Metabolites: the Possibility for False Structure–Toxicity Relationships 192
8.5 Multifactorial Mechanisms as Causes of Toxicity 196
8.6 Clear Correlation between Protein Target and Reactive Metabolites 197
8.7 Conclusion – Validation of Reactive Metabolites as Causes of Toxicity 198
References 200

9 Bioactivation and Natural Products 203
9.1 Introduction 203
9.2 Well-Known Examples of Bioactivation of Compounds Present in Herbal Remedies 205
9.2.1 Germander and Teucrin A 205
9.2.2 Pennyroyal Oil and Menthofuran 207
9.2.3 Aristolochia and Aristolochic Acid 208
9.2.4 Comfrey, Coltsfoot, and Pyrrolizidine Alkaloids 210
9.3 Well-Known Examples of Bioactivation of Compounds Present in Foods 212
9.3.1 Cycasin 212
9.3.2 Aflatoxin 214
9.3.3 3-Methylindole 216
9.3.4 Polycyclic AzaHeterocyclic Compounds in Cooked Meats 216
9.3.5 Nitrosamines 219
9.4 Summary 220
References 220

10 Experimental Approaches to Reactive Metabolite Detection 225
10.1 Introduction 225
10.2 Identification of Structural Alerts and Avoiding them in Drug Design 225
10.3 Assays for the Detection of Reactive Metabolites 227
10.3.1 Qualitative Electrophile Trapping Assays 227
10.3.2 Quantitative Electrophile Trapping Assays 230
10.3.3 Covalent Binding Assays 231
10.3.4 Detecting and Characterizing Bioactivation by Enzymes Other than Cytochrome P450 233
10.4 Other Studies that can Show the Existence of Reactive Metabolites 234
10.4.1 Metabolite Identification Studies 234
10.4.2 Radiolabeled Metabolism and Excretion In Vivo 235
10.4.3 Whole-Body Autoradiography and Tissue Binding 236
10.4.4 Inactivation of Cytochrome P450 Enzymes 237
10.5 Conclusion 237
References 238

11 Case Studies on Eliminating/Reducing Reactive Metabolite Formation in Drug Discovery 241
11.1 Medicinal Chemistry Tactics to Eliminate Reactive Metabolite Formation 241
11.2 Eliminating Reactive Metabolite Formation on Heterocyclic Ring Systems 242
11.2.1 Mechanism(s) of Thiazole Ring Bioactivation and Rational Chemistry Approaches to Abolish Reactive Metabolite Formation 242
11.2.2 Mechanism(s) of Isothiazole Ring Bioactivation and Rational Chemistry Approaches to Abolish Reactive Metabolite Formation 249
11.3 Medicinal Chemistry Strategies to Mitigate Bioactivation of Electron-Rich Aromatic Rings 251
<table>
<thead>
<tr>
<th>Sections</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4 Medicinal Chemistry Strategies to Mitigate Bioactivation on a Piperazine Ring System</td>
<td>256</td>
</tr>
<tr>
<td>11.5 4-Fluorofelbamate as a Potentially Safer Alternative to Felbamate</td>
<td>258</td>
</tr>
<tr>
<td>11.6 Concluding Remarks</td>
<td>263</td>
</tr>
<tr>
<td>References</td>
<td>263</td>
</tr>
<tr>
<td>12 Structural Alert and Reactive Metabolite Analysis for the Top 200 Drugs in the US Market by Prescription</td>
<td>269</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>269</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>269</td>
</tr>
<tr>
<td>12.2 Structural Alert and Reactive Metabolite Analyses for the Top 20 Most Prescribed Drugs in the United States for the Year 2009</td>
<td>270</td>
</tr>
<tr>
<td>12.2.1 Daily Dose Trends</td>
<td>270</td>
</tr>
<tr>
<td>12.2.2 Presence of Structural Alerts</td>
<td>270</td>
</tr>
<tr>
<td>12.2.3 Evidence for Metabolic Activation to Reactive Metabolites</td>
<td>275</td>
</tr>
<tr>
<td>12.3 Insights Into the Excellent Safety Records for Reactive Metabolite–Positive Blockbuster Drugs</td>
<td>280</td>
</tr>
<tr>
<td>12.4 Structural Alert and Reactive Metabolite Analyses for the Remaining 180 Most Prescribed Drugs</td>
<td>282</td>
</tr>
<tr>
<td>12.4.1 Structural Alert and/or Reactive Metabolite “False Positives”</td>
<td>289</td>
</tr>
<tr>
<td>12.5 Structure Toxicity Trends</td>
<td>302</td>
</tr>
<tr>
<td>12.5.1 Meloxicam versus Sudoxicam</td>
<td>304</td>
</tr>
<tr>
<td>12.5.2 Zolpidem versus Alpidem</td>
<td>304</td>
</tr>
<tr>
<td>12.5.3 Quetiapine versus Olanzapine versus Clozapine</td>
<td>304</td>
</tr>
<tr>
<td>References</td>
<td>306</td>
</tr>
<tr>
<td>13 Mitigating Toxicity Risks with Affinity Labeling Drug Candidates</td>
<td>313</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>313</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>313</td>
</tr>
<tr>
<td>13.2 Designing Covalent Inhibitors</td>
<td>313</td>
</tr>
<tr>
<td>13.2.1 Selection of Warheads</td>
<td>316</td>
</tr>
<tr>
<td>13.2.2 Reversible Covalent Modification</td>
<td>322</td>
</tr>
<tr>
<td>13.3 Optimization of Chemical Reactivity of the Warhead Moiety</td>
<td>326</td>
</tr>
<tr>
<td>13.3.1 Experimental Approaches</td>
<td>326</td>
</tr>
<tr>
<td>13.3.2 In Silico Approaches</td>
<td>328</td>
</tr>
<tr>
<td>13.3.3 Additional Derisking Factors</td>
<td>329</td>
</tr>
<tr>
<td>13.4 Concluding Remarks</td>
<td>329</td>
</tr>
<tr>
<td>References</td>
<td>330</td>
</tr>
<tr>
<td>14 Dealing with Reactive Metabolite–Positive Compounds in Drug Discovery</td>
<td>335</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>335</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>335</td>
</tr>
<tr>
<td>14.2 Avoiding the Use of Structural Alerts in Drug Design</td>
<td>336</td>
</tr>
<tr>
<td>14.3 Structural Alert and Reactive Metabolite Formation</td>
<td>338</td>
</tr>
</tbody>
</table>
14.4 Should Reactive Metabolite–Positive Compounds be Nominated as Drug Candidates? 340
14.4.1 Impact of Competing, Detoxification Pathways 341
14.4.2 The Impact of Dose Size 342
14.4.3 Consideration of the Medical Need/Urgency 345
14.4.4 Consideration of the Duration of Treatment 345
14.4.5 Consideration of Novel Pharmacological Targets 346
14.5 The Multifactorial Nature of IADRs 348
14.6 Concluding Remarks 350
References 351

15 Managing IADRs – a Risk–Benefit Analysis 357
15.1 Risk–Benefit Analysis 357
15.2 How Common is Clinical Drug Toxicity? 359
15.3 Rules and Laws of Drug Toxicity 363
15.4 Difficulties in Defining Cause and Black Box Warnings 365
15.5 Labeling Changes, Contraindications, and Warnings: the Effectiveness of Side Effect Monitoring 367
15.6 Allele Association with Hypersensitivity Induced by Abacavir: Toward a Biomarker for Toxicity 369
15.7 More Questions than Answers: Benefit Risk for ADRs 373
References 374

Index 377