Contents

Preface
List of Contributors

Part I Self Assembly

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yoctoliter-Sized Vessels as Potential Biological Models</td>
<td>3</td>
</tr>
<tr>
<td>Sheshanath V. Bhosale, Bradley E. Wilman, and Steven J. Langford</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Cavities on Glass Plates and Gold Surfaces</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Preparation and Confirmation of Rigid Yoctowell Cavity</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1 Confirmation of Rigid Gaps</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Molecular Sorting</td>
<td>7</td>
</tr>
<tr>
<td>1.5 Yoctowell-Based Molecular Recognition Events</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Conclusion</td>
<td>11</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Switchable Host–Guest Interactions of Supramolecular Rings and Cages</td>
<td>13</td>
</tr>
<tr>
<td>Guido H. Clever</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Host–Guest Chemistry</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Switching in Supramolecular Systems</td>
<td>17</td>
</tr>
<tr>
<td>2.4 Natural Paragons</td>
<td>19</td>
</tr>
<tr>
<td>2.5 Types of External Input and Methods for Analysis</td>
<td>20</td>
</tr>
<tr>
<td>2.5.1 Switchable Host Compounds</td>
<td>21</td>
</tr>
<tr>
<td>2.5.2 Switchable Guest Compounds</td>
<td>26</td>
</tr>
<tr>
<td>2.6 Conclusion</td>
<td>33</td>
</tr>
<tr>
<td>References</td>
<td>34</td>
</tr>
</tbody>
</table>
Part II NanoMaterials 39

3 Tailored Graphene-Type Molecules by Chemical Synthesis 41
 Milan Kivala and Xinliang Feng
 3.1 Introduction 41
 3.2 Synthetic Concepts toward Expanded PAHs – Nanographenes 43
 3.2.1 Hexabenzocoronenes (HBCs) and Related Systems 43
 3.2.2 Large PAHs 48
 3.2.3 Graphene Nanoribbons 55
 3.2.4 Heteroatom-Containing PAHs 60
 3.3 Conclusion and Outlook 64
 References 66

4 Analyzing the Surface Area Properties of Microporous Materials 71
 Abbie Trewin
 4.1 Introduction 71
 4.1.1 Energy 71
 4.1.2 H₂ Storage 71
 4.1.3 CO₂ Capture and Sequestration 72
 4.1.4 Gas Separation 73
 4.2 Microporous Materials 74
 4.2.1 Framework Materials 74
 4.2.2 Network Materials 74
 4.2.3 Molecular Materials 76
 4.2.4 Structural Flexibility 79
 4.3 Porosity 81
 4.3.1 What Is Porosity? 81
 4.3.2 Intrinsic versus Extrinsic Porosity 81
 4.3.3 Measuring Porosity 82
 4.3.4 Calculated Surface Areas and Simulated Gas Uptakes 83
 4.3.5 Gas-Diffusion Mechanisms 84
 4.4 Porous Materials and Calculating Surface Areas 85
 4.4.1 Framework Materials 85
 4.4.2 Network Materials 86
 4.4.3 Molecular Materials 88
 4.4.4 Molecular Solids with Some Extrinsic Porosity 89
 4.4.5 Molecular Solids with Intrinsic Porosity 90
 4.5 Summary 92
 Acknowledgments 92
 References 93

5 Nanostructured Materials Based on Core-Substituted Naphthalene Diimides 97
 Sheshanath V. Bhosale, Bradley E. Wilman, and Steven J. Langford
 5.1 Introduction 97
Contents

5.2 Synthesis of Novel cNDI Derivatives 99
5.3 Electron Transfer 102
5.4 Supramolecular Self-Assembly of cNDI 105
5.5 Conclusion 110
Acknowledgments 110
References 110

6 Metal Phosphides: From Chemist’s Oddities to Designed Functional Materials 113
Sophie Carencé, Matthieu Demange, Cédric Boissière, Clément Sanchez, and Nicolas Mézailles
6.1 Introduction 113
6.2 Bulk Metal Phosphides: A Long History 113
6.2.1 A New Family of Synthetic Inorganic Materials 113
6.2.2 First Set of Applications 114
6.2.3 Bulk Metal Phosphides and Today’s Applications 114
6.3 White Phosphorus for the Low-Temperature Synthesis of Metal Phosphide Nanoparticles 115
6.3.1 White Phosphorus as a Low-Temperature Reagent 115
6.3.2 Aryl- and Alkyl-Phosphines as “P” Atom Donor in Harsh Conditions for the Synthesis of Metal Phosphide Nanoparticles 115
6.3.3 Nickel Phosphide Nanoparticles from P4 in Stoichiometric and Mild Conditions 116
6.3.4 Generalization of the White Phosphorus Nanoscale Route 118
References 119

7 “Artificial Supermolecule”: Progress in the Study of II–V Colloidal Semiconductor Nanocrystals 121
Shiding Miao, Alexander Eychmodler, and Stephen G. Hickey
7.1 Introduction 121
7.2 Optical Properties of II–V Nanocrystals 124
7.2.1 Absorption 124
7.2.2 Photoluminescence 127
7.2.3 Lifetime Measurement 131
7.3 Synthesis of II–V Nanocrystals 133
7.3.1 Synthesis Methods 133
7.3.2 Synthesis of Cd3P2 Nanocrystals 134
7.3.2.1 “Hot-Injection” Synthesis 134
7.3.2.2 High-Temperature, Gas-Bubbling Synthesis with Ex Situ-Produced PH3 139
7.3.3 Synthesis of Zn3P2 Nanocrystals 140
7.3.4 Synthesis of Cd3As2 Nanocrystals 142
7.3.5 Summary of the Synthesis of II–V Nanocrystals 143
7.4 Conclusions and Outlook 143
References 146
8 Luminescent Dendrimers 155
Giacomo Bergamini

8.1 Introduction 155
8.2 Intrinsic Photochemical and Photophysical Properties of Organic Dendrimers 156
8.3 Energy Transfer and Energy Upconversion in Multichromophoric Dendrimers 161
8.4 Dendrimers as Ligands for Metal Ions 164
8.5 Self-Assembly 168
8.6 Dendrimers as Photoswitchable Hosts 170
8.7 Conclusion and Perspectives 172
References 173

9 Fabrication of Ultramicroporous Silica Membranes for Pervaporation and Gas Separation 177
Vittorio Boffa

9.1 Ultramicroporous Silica Membranes 177
9.1.1 Context 177
9.1.2 Gas Separation and Pervaporation 177
9.1.3 Fabrication 180
9.1.4 Microporosity Assessment in Silica Membranes 182
9.1.5 Hydrothermal Stability–Instability of Microporous Silica 184
9.2 MₓOᵧ–Silica Membrane 185
9.2.1 Fabrication 185
9.2.2 Stability, Selectivity, and Reactivity 187
9.2.3 Membrane Optimization 193
9.3 Hybrid Organic-Silica Membranes 193
9.3.1 Fabrication 193
9.3.2 “Hydrophobic” Silica Membranes 196
9.3.3 Membranes from Bridged Organosilanes 197
9.3.4 Organic-Silica Membranes for CO₂ Separation 199
9.4 Perspectives in the Fabrication and Application of Silica Membranes 200
References 200

10 New Directions in the Fight against Cancer: From Metal Complexes to Nanostructured Materials 207
Santiago Gómez-Ruiz

10.1 Introduction 207
10.2 Metal Complexes in Cancer Treatment 208
10.2.1 Platinum Complexes 208
10.2.2 Non-Platinum Transition-Metal Complexes 210
10.2.2.1 Group 4 Metal Complexes 211
10.2.2.2 Group 8 Metal Complexes 213
10.2.2.3 Group 11 Metal Complexes 216
10.2.3 Main Group-Metal Complexes 219
10.2.3.1 Gallium Complexes 219
10.2.3.2 Tin Complexes 220
10.3 Nanostructured Materials in Cancer Treatments 221
10.3.1 Macromolecular Systems 222
10.3.1.1 Cucurbit[n]urils and Cyclodextrins 222
10.3.1.2 Liposomes and Lipid Nanocapsules 223
10.3.1.3 Other Macromolecular Systems 224
10.3.2 Ceramic Materials 224
10.3.2.1 Nanostructured Calcium-Phosphate-Based Materials Functionalized with Metal Complexes 226
10.3.2.2 Mesoporous Silicas Functionalized with Metal Complexes 227
10.3.2.3 Carbon Nanotubes Functionalized with Metal Complexes 228
10.3.3 Nanoparticles 230

References 230

Part III Molecular Machinery 243

11 Molecular Rotor: Imaging Intracellular Viscosity 245
Marina K. Kuimova
11.1 Introduction 245
11.2 Theoretical Background 246
11.3 Biological Applications of Molecular Rotors 247
11.3.1 Fluorescence-Lifetime-Based Molecular Rotors 249
11.3.2 Time-Resolved Fluorescence Anisotropy Measurements of Molecular Rotors 252
11.3.3 Ratiometric Fluorescent Molecular Rotors 255
11.3.4 Ratiometric Molecular Rotor Measurements of Viscosity during PDT 257
11.4 Conclusions and Outlook 258
Acknowledgments 259
References 259

12 Surface-Functionalized Inorganic Colloidal Nanocrystals in Functional Nanocomposite Materials for Microfabrication 263
Chiara Ingrosso, Marinella Striccoli, Angela Agostiano, and Maria Lucia Curri
12.1 Introduction 263
12.2 Colloidal Nanocrystals: Properties, Synthesis, and Surface Functionalization 264
12.2.1 Properties of Nanocrystals 264
12.2.2 Colloidal Synthesis of Nanocrystals 265
12.2.3 Surface Functionalization of Nanocrystals 266
12.3 NC-Based Nanocomposites for Microfabrication 269
Contents

12.4 Conclusions and Future Perspectives 279
References 280

13 **Fluorescence Sensing of Temperature and Oxygen with Fullerenes** 285
Mário N. Berberan-Santos and Carlos Baleizão

13.1 Introduction 285
13.2 Thermally Activated Delayed Fluorescence: Fundamental Aspects 287
13.3 Sensing Applications 292
13.3.1 Oxygen Sensing 293
13.3.1.1 Sub-ppm Oxygen Sensor Based on C₇₀ 294
13.3.1.2 C₇₀ in a Dual Sensor System 297
13.3.2 Temperature Sensing 300
13.3.2.1 C₇₀ Dispersed in Polymer Films 302
13.3.2.2 C₇₀ Encapsulated in Polymer Nanoparticles 304
13.4 Conclusions and Future Perspectives 307
Acknowledgments 308
References 308

14 **Going beyond Glucose Sensing with Boronic Acid Receptors** 315
Alexander Schiller

14.1 Introduction 315
14.2 Indicator Displacement Assays for the Detection of Sugars 316
14.3 Glucose Sensing with Boronic Acid Receptors 317
14.3.1 Allosteric Indicator Displacement Assay for the Detection of Carbohydrates 318
14.3.2 AIDA Saccharide Sensing System – Boronic-Acid–Appended Benzyl Bipyridinium Salts and a Fluorescent Reporter Dye 319
14.3.3 AIDA Glucose Sensor for Continuous Monitoring 320
14.4 Solution-Phase Sensor Arrays with Boronic-Acid-Appended Bipyridinium Salts 321
14.4.1 Recognition of Neutral Saccharides 322
14.4.2 Recognition of Phosphosugars and Nucleotides 324
14.5 Carbohydrate-Active Enzyme Assays 327
14.6 Boronic-Acid-Appended Bipyridinium Salts at Work – NOVOSIDES 330
14.7 Conclusions and Perspectives 333
Acknowledgments 334
References 334

15 **Design of Novel Iridium Complexes to Obtain Stable and Efficient Light-Emitting Electrochemical Cells** 339
Rubén D. Costa

15.1 Brief History of Electroluminescence and Optoelectronic Devices 339
15.2 Light-Emitting Electrochemical Cells: Motivation and Definition 340
15.3 Ionic Transition-Metal Complexes Based on Ir(III) Metal Core for LECs 343
15.4 Strategies to Design Iridium(III) Complexes for Highly Efficient LECs 346
15.5 Strategies to Design Iridium(III) Complexes for Highly Stable LECs 350
15.6 Outlook and Conclusions 356
Acknowledgments 357
References 357

16 Photochemically Driven Molecular Devices and Machines 361

Serena Silvi
16.1 Introduction 361
16.1.1 Features of Molecular Devices and Machines 361
16.2 Switches and Logic Gates 363
16.3 Molecular Machines 369
16.3.1 Threading–Dethreading Motions 371
16.3.2 Molecular Shuttles 375
16.4 Conclusions 380
Acknowledgments 381
References 381

Index 385