Contents

Foreword XI Preface XIII List of Contributors XVII

1 Concepts in Nanocatalysis 1

Karine Philippot and Philippe Serp

- 1.1 Introduction 1
- 1.2 The Impact of the Intrinsic Properties of Nanomaterials on Catalysis 5

۱v

- 1.2.1 Metallic Nanoparticles 6
- 1.2.2 Metal Oxide Nanoparticles 9
- 1.2.3 Carbon Nanoparticles 12
- 1.3 How can Nanocatalyst Properties be Tailored? 15
- 1.3.1 Size, Shape and Surface Chemistry of Nanoparticles 15
- 1.3.2 Assembling Strategies to Control Active Site Location 20
- 1.4 Nanocatalysis: Applications in Chemical Industry 23
- 1.4.1 Fuel Cells 25
- 1.4.2 Nanostructured Exhaust Catalysts 28
- 1.4.3 Gas Sensors 31
- 1.4.4 Photocatalysis 34
- 1.4.5 Enantioselective Catalysis 38
- 1.5 Conclusions and Perspectives 40
 - References 42

2 Metallic Nanoparticles in Neat Water for Catalytic Applications 55

- Audrey Denicourt-Nowicki and Alain Roucoux
- 2.1 Introduction 55
- 2.2 Synthesis of Nanoparticles in Water: The State of The Art 56
- 2.3 Water-Soluble Protective Agents and their use in Nanocatalysis 59
- 2.3.1 Electrosteric Stabilization by Surfactants 60
- 2.3.2 Steric Stabilization by Cyclodextrins 67
- 2.3.2.1 Hydrogenation Reactions 68
- 2.3.2.2 Carbon–Carbon Coupling Reactions 73
- 2.3.3 Steric Stabilization by Polymers and Derivatives 77
- 2.3.4 Steric Stabilization by Ligands 83
- 2.4 Conclusion and Perspectives 88 References 89

VI Contents

3	Catalysis by Dendrimer-Stabilized and Dendrimer-Encapsulated
	Late-Transition-Metal Nanoparticles 97
	Didier Astruc, Abdou Diallo, and Catia Ornelas
3.1	Introduction 97
3.2	Synthesis 98
3.3	Homogeneous Catalysis with DENs Generated from PAMAM
	and PPI Dendrimers 102
3.3.1	Olefin and Nitroarene Hydrogenation 102
3.3.2	PdNP-Catalyzed Carbon–Carbon Cross Coupling 104
3.3.3	Heterobimetallic Catalysts 104
3.4	Highly Efficient 'click'-Dendrimer-Encapsulated and Stabilized Pd
	Nanoparticle Pre-Catalysts 106
3.5	Heterogeneous Catalysis 111
3.6	Electrocatalysis 112
3.7	Conclusion and Outlook 113
	References 114
4	Nanostructured Metal Particles for Catalysts and Energy-Related
	Materials 123
	Helmut Bönnemann, Guram Khelashvili, Josef Hormes, Timma-Joshua
	Kühn, and Wolf-Jürgen Richter
4.1	General Survey 123
4.2	Nanostructured Clusters and Colloids as Catalyst Precursors 128
4.2.1	Selected Applications in Energy-Related Processes 128
4.2.1.1	Size-Selective Fischer–Tropsch Nanocatalysts 128
4.2.1.2	Nanocatalysts for Fuel Cell Devices 131
4.2.1.3	Partial Methane Oxidation with NO 139
4.2.2	Nanocatalysts for Specific Organic Reactions 140
4.3	Nanostructured Materials in Energy-Related Processes 142
4.3.1	Nanomaterials for High-Performance Solar Cells 142
4.3.2	Nanocomposites for Batteries 145
4.3.3	Applications for Energy and Hydrogen Storage 148
4.3.3.1	Nano for Hydrogen Production 149
4.3.3.2	Nano for Hydrogen Storage 150
4.4	Characterization of Nanostructured Metallic Catalyst Precursors and
	their Interaction with Coatings and Supports Using X-ray Absorption
	Spectroscopy 154
4.4.1	X-ray Absorption Spectroscopy (XANES and EXAFS) as an Analytical
	Tool for Nanostructures 156
4.4.2	The Electronic and Geometric Properties of Monometallic
	Systems 161
4.4.3	The Geometric and Electronic Structure of Bimetallic
	Systems 168
4.4.4	The Specific Interaction of Metallic Nanoparticles with Coatings and
	Supports 173

- 4.4.5 Resonant Elastic and Inelastic X-ray Scattering: Site and/or Valency Specific Spectroscopy 178 References 183
- 5 Metallic Nanoparticles in Ionic Liquids – Applications in Catalysis 203 Isabelle Favier. David Madec. and Montserrat Gómez
- 5.1 Introduction 203
- 5.2 Interactions between Ionic Liquids and Metallic Nanoparticles 204
- 5.2.1 Stabilization Modes of Metallic Nanoparticles by Ionic Liquids 206
- 5.2.1.1 DLVO Theory: Anionic Stabilization Mode 206
- Steric Stabilization Mode 5.2.1.2 207
- 5.2.1.3 Cationic Stabilization Mode 207
- 5.2.1.4 Anionic and Cationic Stabilization Mode 209
- 5.2.1.5 Interactions of Ionic Liquids with Metal Oxide Nanoparticles (MONPs) 209
- 5.2.2 Effect of Ionic Liquids on the Structures of Metallic Nanoparticles 210
- 5.3 Catalytic Applications 213
- 5.3.1 Metallic Nanoparticles of Block p 213
- 5.3.2 Metallic Nanoparticles of Block d and f 213
- 5.3.2.1 Early Transition Metals and Block f Metals 213
- 5.3.2.2 Metallic Nanoparticles of Groups 8-9 214
- 5.3.2.3 Metallic Nanoparticles of Group 10 222
- 5.3.2.4 Metallic Nanoparticles of Group 11 232
- 5.3.2.5 Metallic Nanoparticles of Group 12 235
- 5.4 Conclusions 235 References 236
- 6 Supported Ionic Liquid Thin Film Technology 251
 - Judith Scholz and Marco Haumann
- 6.1 Introduction 251
- 6.1.1 Supported Ionic Liquid Phase (SILP) 252
- Solid Catalysts with Ionic Liquid Layers (SCILL) 253 6.1.2
- 6.1.3 Ionic Liquid as Surface Modifier 253
- Nanoparticle Catalysis with Supported Ionic Liquids 6.2 254
- Nanoparticles in SILP Systems (nano-SILP) 6.2.1 254
- 6.2.2 Nanoparticles in SCILL Systems (nano-SCILL) 260
- 6.2.3 Nanoparticles in IL Surface Modified Systems 264
- 6.2.3.1 Surface-Modified Ordered Meso-Porous Silica 265
- 6.2.3.2 Surface Modified Nanocrystalline Metal Oxides 266
- 6.2.3.3 IL-Functionalized Highly Cross-Linked Polymers as Support 267
- 6.2.3.4 Natural Clays with IL-Functionalization 268
- 6.2.3.5 Carbon Nanotubes 269
- 6.2.3.6 Miscellaneous Supports 270
- Benefits for Synthesis and Processes 272 6.3
- Conclusion 273 6.4
 - References 273

VIII Contents

7	Nanostructured Materials Synthesis in Supercritical Fluids for Catalysis
	Applications 281
	Samuel Marre and Cyril Aymonier
7.1	Introduction: Properties of Supercritical Fluids 281
7.2	Synthesis of Nanopowders as Nanocatalysts in SCFs 286
7.3	Synthesis of Supported Nanoparticles as Nanocatalysts in SCFs 292
7.3.1	Kinetically-Controlled SFCD Process (K-SFCD) 292
7.3.2	Thermodynamically-Controlled SFCD Process (T-SFCD) 293
7.4	Supercritical Microfluidic Synthesis of Nanocrystals 297
7.4.1	Supercritical Microreactors 299
7.4.2	Nanocrystals Synthesis in SCµF 300
7.5	Conclusion 302
	References 303
8	Recovery of Metallic Nanoparticles 311
•	Inge Geukens and Dirk E. De Vos
8.1	Introduction 311
8.2	Immobilization on a Solid Support 311
8.3	Multiple Phases 314
8.4	Precipitation and Redispersion 317
8.4.1	Centrifugation 317
8.4.2	Adjustment of the Stabilization Conditions 318
8.5	Magnetic Separation 320
8.6	Filtration 322
8.7	Conclusions 324
	References 324
9	Carbon Nanotubes and Related Carbonaceous Structures 331
-	Dang Sheng Su
9.1	Introduction 331
9.2	Carbon Nanotubes as Nanosupport 333
9.3	Purification and Functionalization 334
9.3.1	CNT Purification 334
9.3.2	CNT Functionalization 335
9.3.2.1	Functionalization of CNTs by Wet Chemical Methods 336
9.3.2.2	Functionalization of CNTs by Gas-Phase Reactions 338
9.4	Preparation of CNT-Supported Catalysts 340
9.4.1	Growing Metal Nanoparticles Directly on the CNT Surface 340
9.4.2	Anchoring Pre-Formed Nanoparticles on CNTs 341
9.4.3	Selective Preparation of Catalysts on CNTs 342
9.4.3.1	Selective Placing of Metal Catalysts Inside CNTs 343
9.4.3.2	Selective Placing of Metal Catalyst Outside CNTs 344
9.4.4	Localizing the Catalyst Particles Supported on CNTs 345
9.5	Applications of CNT-Supported Catalysts 346
9.5.1	Liquid-Phase Reactions 346
	Equili-1 hase reactions 5+0

- 9.5.1.2 Oxidation 348
- 9.5.2 Gas-Phase Reactions 349
- 9.5.2.1 Fischer–Tropsch Synthesis 349
- 9.5.2.2 Ammonia Decomposition 350
- 9.5.3 Electrocatalysis 352
- 9.5.4 Photocatalysis 354
- 9.6 Other Related Carbonaceous Materials 356
- 9.6.1 Graphene and Graphene Oxide 356
- 9.6.2 Carbon Nanofibers 358
- 9.6.3 Mesoporous Carbon 360
- 9.7 Summary 361 References 362
- 10 Nano-oxides 375
 - Vasile Hulea and Emil Dumitriu
- 10.1 Introduction 375
- 10.2 Synthesis and Characterization of Nano-oxides 376
- 10.2.1 Design of Metal Oxide Nanoparticles 376
- 10.2.2 Size-Dependent Oxide Properties 380
- 10.3 Catalytic Applications of Nano-oxides 381
- 10.3.1 Nano-oxides as Active Phases for Catalytic Applications 381
- 10.3.1.1 Catalytic Behavior Related to the Characteristics of Nanoparticles 381
- 10.3.1.2 Catalysis by Unsupported Oxide Nanoparticles 388
- 10.3.1.3 Catalysis by Supported Oxide Nanoparticles 391
- 10.3.1.4 Oxide Nanocatalysts for Green Chemistry 395
- 10.3.2 Nano-oxides as Supports for Active Phases 396
- 10.4 Conclusions and Perspectives 402 References 403
- 11 Confinement Effects in Nanosupports 415
 - Xiulian Pan and Xinhe Bao
- 11.1 Introduction 415
- 11.2 Confinement Effects in Carbon Nanotubes 416
- 11.2.1 Spatial Restriction of the Carbon Nanotube Channels 417
- 11.2.2 Adsorption Inside Carbon Nanotubes 419
- 11.2.3 Diffusion Inside Carbon Nanotubes 421
- 11.2.4 Interaction of Confined Materials with the Graphene Layers of Carbon Nanotubes 423
- 11.3 Metal Catalyst-Free Chemical Reactions inside Carbon Nanotubes 428
- 11.4 Catalytic Reactions over Metal Particles Confined Inside Carbon Nanotubes 430
- 11.4.1 Liquid-Phase Catalytic Reactions 430
- 11.4.2 Gas-Phase Catalytic Reactions 432
- 11.5 Summary 436 References 437

X Contents

Where Are We Now?443lann C. Gerber and Romuald Poteau12.1Introduction12.2Surface Chemistry and Chemistry on Facets of Nanoparticles: Is it the Same?12.2.1The Experimental Evidence: Size and Shape Matter44612.2.2Can this Diversity of Observations be Rationalized by Theoretical Insights?11.112.2.3Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite44812.2.3.1Silver44912.2.3.2Iron45012.2.3.3Platinum45012.3.3Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces45112.3.3The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i> -Band Model45212.3.4Descriptors and Predictive Studies45512.3.5Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges45612.3.4Theoretical Studies of Multistep Pathways46012.4.1Methods46012.4.2Ammonia Synthesis46212.4.3Oxidation463	12	In Silico Nanocatalysis with Transition Metal Particles:
 <i>Iann C. Gerber and Romuald Poteau</i> 12.1 Introduction 443 12.2 Surface Chemistry and Chemistry on Facets of Nanoparticles: Is it the Same? 446 12.2.1 The Experimental Evidence: Size and Shape Matter 446 12.2.2 Can this Diversity of Observations be Rationalized by Theoretical Insights? 448 12.2.3 Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite 448 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.2.3 Platinum 450 12.3.3 Platinum 450 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 		Where Are We Now? 443
 12.1 Introduction 443 12.2 Surface Chemistry and Chemistry on Facets of Nanoparticles: Is it the Same? 446 12.2.1 The Experimental Evidence: Size and Shape Matter 446 12.2.2 Can this Diversity of Observations be Rationalized by Theoretical Insights? 448 12.2.3 Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite 448 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.2.3 Platinum 450 12.3.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 		Iann C. Gerber and Romuald Poteau
 12.2 Surface Chemistry and Chemistry on Facets of Nanoparticles: Is it the Same? 446 12.2.1 The Experimental Evidence: Size and Shape Matter 446 12.2.2 Can this Diversity of Observations be Rationalized by Theoretical Insights? 448 12.2.3 Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite 448 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.2.3 Platinum 450 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.1	Introduction 443
Is it the Same? 446 12.2.1 The Experimental Evidence: Size and Shape Matter 446 12.2.2 Can this Diversity of Observations be Rationalized by Theoretical Insights? 448 12.2.3 Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite 448 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.2.3 Platinum 450 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i> -Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463	12.2	Surface Chemistry and Chemistry on Facets of Nanoparticles:
 12.2.1 The Experimental Evidence: Size and Shape Matter 446 12.2.2 Can this Diversity of Observations be Rationalized by Theoretical Insights? 448 12.2.3 Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite 448 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.2.3 Platinum 450 12.3.3 Platinum 450 12.3.4 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 		Is it the Same? 446
 12.2.2 Can this Diversity of Observations be Rationalized by Theoretical Insights? 448 12.2.3 Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite 448 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.3.3 Platinum 450 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.2.1	The Experimental Evidence: Size and Shape Matter 446
 Insights? 448 12.2.3 Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite 448 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.3.3 Platinum 450 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.2.2	Can this Diversity of Observations be Rationalized by Theoretical
 12.2.3 Structural and Chemical Bonding Knowledge: A Mandatory Prerequisite 448 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.3.3 Platinum 450 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 		Insights? 448
Prerequisite 448 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.2.3.3 Platinum 450 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i> -Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretice Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463	12.2.3	Structural and Chemical Bonding Knowledge: A Mandatory
 12.2.3.1 Silver 449 12.2.3.2 Iron 450 12.3.3 Platinum 450 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 		Prerequisite 448
 12.2.3.2 Iron 450 12.3.3 Platinum 450 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.2.3.1	Silver 449
 12.2.3.3 Platinum 450 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.2.3.2	Iron 450
 12.3 Electronic and Geometric Factors that Determine the Reactivity of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.2.3.3	Platinum 450
of Metal Surfaces 451 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i> -Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463	12.3	Electronic and Geometric Factors that Determine the Reactivity
 12.3.1 Introduction 451 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 		of Metal Surfaces 451
 12.3.2 Special Sites 451 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.3.1	Introduction 451
 12.3.3 The Electronic Structure Effect in Heterogeneous Catalysis: The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.3.2	Special Sites 451
 The <i>d</i>-Band Model 452 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.3.3	The Electronic Structure Effect in Heterogeneous Catalysis:
 12.3.4 Descriptors and Predictive Studies 455 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 		The <i>d</i> -Band Model 452
 12.3.5 Density Functional Theory in Surface Chemistry and Nanocatalysis: Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 	12.3.4	Descriptors and Predictive Studies 455
Limitations and Challenges 456 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463	12.3.5	Density Functional Theory in Surface Chemistry and Nanocatalysis:
 12.3.6 Difference between Bulk, Surface and Nanoparticles from a Theoretic Point of View 457 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 		Limitations and Challenges 456
Point of View45712.4Theoretical Studies of Multistep Pathways46012.4.1Methods46012.4.2Ammonia Synthesis46212.4.3Oxidation463	12.3.6	Difference between Bulk, Surface and Nanoparticles from a Theoretical
 12.4 Theoretical Studies of Multistep Pathways 460 12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463 		Point of View 457
12.4.1 Methods 460 12.4.2 Ammonia Synthesis 462 12.4.3 Oxidation 463	12.4	Theoretical Studies of Multistep Pathways 460
12.4.2Ammonia Synthesis46212.4.3Oxidation463	12.4.1	Methods 460
12.4.3 Oxidation 463	12.4.2	Ammonia Synthesis 462
	12.4.3	Oxidation 463
12.4.3.1 Styrene 463	12.4.3.1	Styrene 463
12.4.3.2 Propylene 464	12.4.3.2	Propylene 464
12.4.3.3 Aerobic Phenylethanol Oxidation in Aqueous Solution 465	12.4.3.3	Aerobic Phenylethanol Oxidation in Aqueous Solution 465
12.4.4 Dissociation 466	12.4.4	Dissociation 466
12.4.4.1 Carbon Monoxide 466	12.4.4.1	Carbon Monoxide 466
12.4.4.2 Methane Steam Reforming 468	12.4.4.2	Methane Steam Reforming 468
12.5 Conclusion 470	12.5	Conclusion 470
References 471		References 471

Index 483