Contents

List of Contributors XV

1 Some Facets of Molecular Disorder in Crystalline and Amorphous Pharmaceuticals 1
Marc Descamps and Jean-François Willart

1.1 The Crystal/Amorph Alternative 2
1.1.1 Crystal/Amorph Alternative: Terminology and Solidity Concept 2
1.1.2 Crystal/Amorph Alternative: Structural Order and Disorder 3
1.1.2.1 Perfect Crystals 3
1.1.2.2 Crystal Size Effect 5
1.1.2.3 Imperfect Crystals: How Disordered Can a Crystal Be? 7
1.1.2.4 Structure of Amorphous – Liquid or Glassy – Materials 12
1.1.3 Crystal/Amorph Alternative: Metastability and Interconversion 15
1.1.3.1 Thermodynamic Measure of Physical Stability, Driving Force, Disorder 15
1.1.3.2 Stability of the Amorphous State, Kinetics of Crystallization 16
1.1.3.3 The Interfacial Free Enthalpy γ: Structure Dependence and Disorder Effect 20
1.1.3.4 Concluding Remarks 22
1.1.4 Crystal/Amorph Alternative in the Context of Solubility 22
1.2 Characteristics of the Disorder in Glass Formers 28
1.2.1 Glass Formation by Supercooling: Calorimetric Phenomenology 28
1.2.1.1 The Glass Transition is not a Phase Transition 30
1.2.1.2 The Glass Transition is a Kinetic Phenomenon 31
1.2.2 T_g as a Transition from an Ergodic to a Non-Ergodic Situation 32
1.2.3 The Entropy Below T_g: The Kauzmann Paradox 33
1.2.4 Dynamic Features of the Disorder in Glass Formers: The Three Nons. Fragile versus Strong Classification 35
1.2.4.1 Above T_g: The Dramatic Non-Arrhenius Temperature Dependence of Viscosity and Relaxation Times 36
1.2.4.2 Possible Connection Between Dynamics and Thermodynamics 39
1.2.4.3 Above T_g: Non-Exponential Relaxations and Dynamic Heterogeneity 40
1.2.4.4 Below T_g: Aging, Nonlinearity, Secondary Relaxations 41
1.2.5 Fragility and Polyamorphism in the Energy Landscape View Point 49
1.2.5.1 Fragility and Landscape Topology View Point 49
1.2.5.2 Polyamorphism and Landscape Topology 50
Acknowledgments 51
References 51

2 Influence of Disorder on Dissolution 57
Khushboo Kothari and Raj Suryanarayanan
2.1 Introduction 57
2.2 Approaches to Enhance Solubility 59
2.3 Measuring the Solubility Advantage of Amorphous Compounds 64
2.4 Solid Dispersions 66
2.5 Polymer Properties 67
2.6 Drug–Polymer Interactions 70
2.7 Polymer Concentration 71
2.8 Other Formulation Components 73
2.9 Formulation Variables 74
2.10 Reliable Measurement of Supersaturation 75
2.11 Conclusion 76
References 77

3 Crystal Imperfections in Molecular Crystals: Physical and Chemical Consequences 85
William Jones and Mark D. Eddleston
3.1 Introduction 85
3.2 General Aspects of Defects in Crystals 87
3.3 Role of Imperfections in Reactivity and Stability – Chemistry in the Perfect and Imperfect Lattice 92
3.4 Role in Physical Processes 96
3.5 Concluding Remarks 99
References 99

4 Observation and Characterization of Crystal Defects in Pharmaceutical Solids 103
Mark D. Eddleston and William Jones
4.1 Introduction 103
4.2 Techniques for Characterizing Defects within Crystals 104
4.2.1 Transmission Electron Microscopy 105
4.2.1.1 Introduction to Transmission Electron Microscopy 105
4.2.1.2 Application of Transmission Electron Microscopy to the Analysis of Pharmaceutical Samples 107
4.2.1.3 Characterization of Defects Using Transmission Electron Microscopy 110
5.5 Competitions between Solid Solutions (Impact of Polymorphism on Solid Solutions) Application: Preferential Enrichment 149
5.5.1 Discovery and Feature of Preferential Enrichment 149
5.5.2 Crystalline Nature of the Compounds Showing Preferential Enrichment 150
5.5.3 Mechanism and Requirements 152
5.5.4 Extension to Racemic Compound Crystals 152
5.6 Disorder at Level 3 Multiepitaxy between Enantiomers 154
5.7 Conclusion and Perspectives 156
Acknowledgments 157
References 157

6 Conformational Disorder and Atropisomerism in Pharmaceutical Compounds 161
Attilio Cesàro, Barbara Bellich, Giovanna Giannini, and Alessandro Maiocchi
6.1 Premise: Conformational Energy Barriers in Flexible Molecules 161
6.2 Conformational Topology and Crystallization of Chain Molecules 162
6.3 Conformational Polymorphism and Crystallization of Flexible Molecules 165
6.3.1 Conformational Polymorphism 165
6.3.2 Flexibility and Crystallization 167
6.3.3 Prediction of Conformational Polymorphs 169
6.4 Conformational Flexibility of Ring Molecules: Carbohydrates 170
6.5 Hindered Conformational Isomerism: Atropisomerism 172
6.5.1 Atropisomerism in Iodinated Contrast Media (ICM) 175
6.6 Conclusion 178
Acknowledgments 180
References 180

7 Tautomerism in Drug Delivery 183
Zaneta Wojnarowska and Marian Paluch
7.1 Broadband Dielectric Spectroscopy as a Powerful Tool for Investigating the Tautomerization Process in Condensed Materials 187
7.2 TautomORIZATION Kinetics of Supercooled Pharmaceuticals 190
Acknowledgment 197
References 198

8 Disorders in Pharmaceutical Polymers 201
Emeline Dudognon and Sheng Qi
8.1 Polymers Architectures – Structural Disorders 202
8.1.1 Architectures 202
8.1.2 Local Structure of Linear Polymers 202
8.1.2.1 Stereoregularity and Configurations 202
8.1.2.2 Conformations of Chains 203
8.2 Structural States and Phases Transitions 205
8.2.1 Amorphous Phase 205
8.2.2 Crystalline Structures 206
8.2.3 The Case of Copolymers: Organized Amorphous Structure 212
8.3 Dynamic Disorders 213
8.3.1 Glass–Rubber Transition Behavior 213
8.3.2 Mobilities 215
8.3.2.1 Localized Processes 215
8.3.2.2 Main Relaxation Process 217
8.3.2.3 Global Chain Dynamics 219
8.4 Blends of Polymer and Small Molecules 221
8.4.1 Glass Transition of the Blends 221
8.4.2 Mixing Free Energy of Blends of Polymers and Small Molecules 223
8.4.3 Solubility Limit of Small Molecules in Polymers 223
8.5 Effect of the Structural Properties of Pharmaceutical Polymers on Their Physical Behavior 224
8.5.1 Linear Polymers 225
8.5.1.1 Semicrystalline Polymers 225
8.5.1.2 Amorphous Polymers 230
8.5.2 Copolymers 232
8.6 Concluding Remarks 234
References 235

9 Polymer Gels, Hydrogels, and Scaffolds – An Overview 241
Madeleine Djabourov and Kawthar Bouchemal
9.1 Introduction 241
9.2 Gels and Hydrogels 243
9.2.1 What Is a Gel? 244
9.2.2 Different Types of Gels 245
9.2.2.1 Chemical Gels 245
9.2.2.2 Physical Gels 245
9.2.2.3 Hydrogels 246
9.2.2.4 Hybrid Gels 248
9.2.3 General Properties of Polymer Networks 249
9.2.3.1 Background on Entropic Elasticity 250
9.2.3.2 Elasticity of Physical Gels 251
9.2.3.3 Network Swelling 256
9.2.3.4 Swelling and Biodegradation 259
9.2.4 The Sol–Gel Transition 261
9.2.5 Selected Examples of Gels 264
9.2.5.1 Gelatin Gels 264
9.2.5.2 Gelatin Hydrogels 265
9.2.5.3 Poloxamer Gels 266
9.3 Scaffolds 268
9.3.1 Thermally Induced Phase Separation (TIPS) with Solvent
Crystallization: Cryogels 270
9.3.2 Spinodal Decomposition in Ternary Systems:
Polymer/Solvent/Non-Solvent 271
9.3.3 Spinodal Decomposition in Organic–Inorganic Composite
Scaffolds 273
9.3.4 Supercritical Processing 274
9.3.5 Other Scaffold Manufacturing Techniques 275
9.4 Conclusion 275
References 276

10 Use of the Pair Distribution Function Analysis in the Context of
Pharmaceutical Materials 283
Pierre Bordet and Pauline Martinetto
10.1 Introduction 283
10.2 What Is the PDF? 284
10.3 How to Measure the PDF 288
10.4 Modeling of the PDF 290
10.5 Applications of PDF Analysis to Molecular and Pharmaceutical
Compounds 292
10.5.1 Polymorphs of rac-Modafinil 294
10.5.2 Effects of Grinding on Hydrochlorothiazide 296
10.6 Conclusion 297
Acknowledgments 298
References 298

11 Application of Broadband Dielectric Spectroscopy to Study Molecular
Mobility in Pharmaceutical Systems 301
Katarzyna Grzybowska, Karolina Adrjanowicz, and Marian Paluch
11.1 Introduction to Broadband Dielectric Spectroscopy 301
11.1.1 Broadband Dielectric Spectroscopy Technique (10^{-5} to
10^{11} Hz) 301
11.1.2 Principles and Models of Dielectric Relaxation 303
11.1.2.1 Debye Relaxation 303
11.1.2.2 Non-Debye Relaxation Models 307
11.1.3 Identification of Relaxation Processes in Dielectric Spectra 312
11.1.3.1 Structural Relaxation \(\alpha \) 312
11.1.3.2 Relaxation \(\alpha' \) (Normal Mode) 314
11.1.3.3 Secondary Relaxations and Excess Wing 314
11.2 Molecular Dynamics in Amorphous Pharmaceutical Systems 316
11.2.1 Molecular Mobility in the Liquid and Glassy States of
Drugs – Physical Factors that Can Govern Crystallization 316
11.2.1.1 Molecular Mobility in Supercooled Liquids (Structural \(\alpha \)-Relaxation,
Fragility) 317
11.2.1.2 Molecular Mobility in the Glassy State (Secondary Relaxation Processes) 322
11.2.2 Physical Stability of Drugs in the Liquid and Glassy States 324
11.2.2.1 Prediction of Physical Stability of Amorphous Drugs from Molecular Mobility Studies (At $T < T_g$) 324
11.2.2.2 Relation Between Cold Crystallization of Liquid and Molecular Mobility 327
11.2.2.3 Crystallization in the Glassy State 335
11.2.2.4 Enhancement of the Physical Stability of Amorphous Drugs by Preparing Amorphous Mixtures 339
11.3 Molecular Mobility and Dielectric Response in Partially Ordered Pharmaceutical Systems 346
Acknowledgment 353
References 353

12 Raman Spectroscopy in Disordered Molecular Compounds: Application to Pharmaceuticals 361
Alain Hedoux
12.1 Introduction 361
12.2 Raman Spectroscopy 362
12.2.1 Basic Theory 362
12.2.2 Equipment and Procedures 364
12.2.3 Analysis of Raman Spectra of Molecular Compounds 365
12.2.3.1 Analysis of the Low-Frequency Raman Spectrum 366
12.2.3.2 Analysis of the High-Frequency Spectrum 369
12.3 Analysis of Molecular Compounds by Raman Spectroscopy 370
12.3.1 The Use of the LFRS to Distinguish Micro/Nanocrystals from the Amorphous State 370
12.3.1.1 Analysis of Polyamorphic Situations 370
12.3.1.2 Detection and Quantification of Crystallization in Ground Powder 371
12.3.2 The use of the LFRS to Reveal and Analyze Disordered States 374
12.3.2.1 Ibuprofen: Chirality and Disorder 374
12.3.2.2 Evidence of Different Structural Organizations in Amorphous Glucose Obtained by Thermal and Non-Thermal Routes 376
12.3.3 Use of LFRS for the Structural Description of Disordered Phases and the Analysis of Phase Transformations 378
12.3.3.1 Structural Description of Form II of Caffeine 378
12.3.3.2 Analysis of Polymorphic Transformations in Caffeine 381
12.3.4 The Use of Multivariate Analysis 382
12.3.4.1 Analysis of Spectra Collected in a Series of Samples 382
12.3.4.2 Raman Mapping 386
12.4 Conclusion 388
References 388
13 Study of Disordered Materials by Terahertz Spectroscopy 393
 Juraj Sibik and J. Axel Zeitler
13.1 Introduction 393
13.2 Exploration of Terahertz Dynamics Prior to THz-TDS 394
13.2.1 Poley Absorption 394
13.2.2 Far-Infrared Spectroscopy 395
13.2.3 Raman and Neutron Scattering 396
13.3 Response of Supercooled Liquids and Glasses at Terahertz Frequencies 397
13.3.1 Primary (α-) and Secondary (β-) Relaxations 397
13.3.2 Fast Secondary Relaxation and Caged Dynamics 398
13.3.3 Vibrational Density of States 399
13.4 Terahertz Studies of Disordered Molecular Solids 400
13.4.1 Disordered Crystals 400
13.4.2 Polymers 402
13.4.3 Inorganic Glasses 403
13.5 Organic Glass-Forming Liquids 404
13.5.1 Hydrogen-Bonded Liquids and Solutions 404
13.5.2 Supercooled Liquids and Glasses 407
13.6 Characterization of Disordered Biological and Pharmaceutical Systems 410
13.6.1 Quantifying Crystallinity 410
13.6.2 Crystallization of Amorphous Drugs Above \(T_g \) 410
13.6.3 Crystallization of Amorphous Drugs Below \(T_g \) 413
13.6.4 Stability of Amorphous Drugs Below \(T_g \) 414
13.6.5 Multicomponent Disordered Pharmaceutical Systems 416
13.7 Outlook 416
References 418

14 Study of Disorder by Solid-State NMR Spectroscopy 427
 Marco Geppi, Silvia Borsacchi, and Elisa Carignani
14.1 Introduction 427
14.2 Basics of Solid-State NMR 428
14.3 Static Disorder 433
14.3.1 Crystalline Systems 436
14.3.2 Amorphous Systems 441
14.3.2.1 Quantitation of Amorphous Phases 443
14.3.2.2 Miscibility and Interactions in Heterophase Systems and Formulations 446
14.4 Dynamic Disorder 448
14.4.1 Interconformational Motions in Crystalline Systems 450
14.4.2 Global Motions in Amorphous Systems 454
14.5 A Case Study 458
14.6 Final Remarks and Future Perspectives 462
References 464
15 Processing-Induced Disorder in Pharmaceutical Materials 467
Sheng Qi
15.1 Introduction 467
15.2 Pharmaceutical Processing 468
15.2.1 Milling 468
15.2.2 Thermal Processing Techniques 470
15.2.2.1 Simple Melt-Fusion Method 471
15.2.2.2 Spray-Chilling/Congealing 472
15.2.2.3 Melt-Granulation 472
15.2.2.4 Thermal Sintering/Curing 473
15.2.2.5 Dry Powder Coating 474
15.2.2.6 Hot-Melt Extrusion (HME) and Injection Molding 474
15.2.2.7 Other Emerging Thermal Processing Techniques 477
15.2.3 Solvent-Evaporation-Based Processing Techniques 478
15.2.3.1 Spray-Drying 480
15.2.3.2 Freeze-Drying 481
15.2.3.3 Film Coating and Casting 482
15.2.3.4 Emerging Solvent-Evaporation-Based Processing Technologies 483
15.3 Conclusion 484
References 485

16 Patenting of Inventions Relating to Solid Forms, with Special Considerations on Disordered Forms 491
Bertrand Gellie
16.1 Patentability of Disordered Crystals 493
16.1.1 Clarity Problems in Claims for Disordered Crystals 493
16.1.2 Sufficient Disclosure of Disordered Crystals 494
16.1.3 Novelty of Dislocated Crystals 495
16.1.4 Inventive Step of Dislocated Crystals 496
16.2 Patentability of Co-crystals 496
16.2.1 Clarity Problems in Claims for Co-crystals 497
16.2.2 Sufficient Disclosure of Co-crystals 498
16.2.3 Novelty of Co-crystals 498
16.2.4 Inventive Step of Co-crystals 499
16.3 Patentability of Amorphous Forms 500
16.3.1 Clarity Problems in Claims for Amorphous Forms 501
16.3.1.1 Pure Amorphous Forms 501
16.3.1.2 Mixtures of Amorphous (and/or Polymorphic) Forms 503
16.3.1.3 Mixtures Comprising Amorphous Forms and a Stabilizer 503
16.3.2 Sufficient Disclosure of Amorphous Forms 503
16.3.3 Novelty of Amorphous Forms 504
16.3.4 Inventive Step of Amorphous Forms per se 506
16.3.4.1 Other Inventions Involving Amorphous Forms 508
16.3.4.2 Glass Materials 508
16.4 Patenting (Disordered) Nanocrystals 509