Contents

List of Contributors XV

1 Some Facets of Molecular Disorder in Crystalline and Amorphous Pharmaceuticals 1

v

Marc Descamps and Jean-François Willart

- 1.1 The Crystal/Amorph Alternative 2
- 1.1.1 Crystal/Amorph Alternative: Terminology and Solidity Concept 2
- 1.1.2 Crystal/Amorph Alternative: Structural Order and Disorder 3
- 1.1.2.1 Perfect Crystals 3
- 1.1.2.2 Crystal Size Effect 5
- 1.1.2.3 Imperfect Crystals: How Disordered Can a Crystal Be? 7
- 1.1.2.4 Structure of Amorphous Liquid or Glassy Materials *12*
- 1.1.3 Crystal/Amorph Alternative: Metastability and Interconversion 15
- 1.1.3.1 Thermodynamic Measure of Physical Stability, Driving Force, Disorder 15
- 1.1.3.2 Stability of the Amorphous State, Kinetics of Crystallization 16
- 1.1.3.3 The Interfacial Free Enthalpy γ : Structure Dependence and Disorder Effect 20
- 1.1.3.4 Concluding Remarks 22
- 1.1.4 Crystal/Amorph Alternative in the Context of Solubility 22
- 1.2 Characteristics of the Disorder in Glass Formers 28
- 1.2.1 Glass Formation by Supercooling: Calorimetric Phenomenology 28
- 1.2.1.1 The Glass Transition is not a Phase Transition *30*
- 1.2.1.2 The Glass Transition is a Kinetic Phenomenon 31
- 1.2.2 T_g as a Transition from an Ergodic to a Non-Ergodic Situation 32
- 1.2.3 The Entropy Below T_g : The Kauzmann Paradox 33
- 1.2.4 Dynamic Features of the Disorder in Glass Formers: The Three Nons. Fragile *versus* Strong Classification 35
- 1.2.4.1 Above T_{g} : The Dramatic Non-Arrhenius Temperature Dependence of Viscosity and Relaxation Times 36
- 1.2.4.2 Possible Connection Between Dynamics and Thermodynamics 39
- 1.2.4.3 Above T_g : Non-Exponential Relaxations and Dynamic Heterogeneity 40

٧I	Contents
١V	Content

1.2.4.4 1.2.5 1.2.5.1 1.2.5.2	Below $T_{\rm g}$: Aging, Nonlinearity, Secondary Relaxations 41 Fragility and Polyamorphism in the Energy Landscape View Point 49 Fragility and Landscape Topology View Point 49 Polyamorphism and Landscape Topology 50 Acknowledgments 51 References 51
2	Influence of Disorder on Dissolution 57 Khushboo Kothari and Rai Survanarayanan
2.1	Introduction 57
2.2	Approaches to Enhance Solubility 59
2.3	Measuring the Solubility Advantage of Amorphous Compounds 64
2.4	Solid Dispersions 66
2.5	Polymer Properties 67
2.6	Drug–Polymer Interactions 70
2.7	Polymer Concentration 71
2.8	Other Formulation Components 73
2.9	Formulation Variables 74
2.10	Reliable Measurement of Supersaturation 75
2.11	Conclusion 76
	References 77
3	Crystal Imperfections in Molecular Crystals: Physical and Chemical Consequences 85 William Jones and Mark D. Eddleston
3.1	Introduction 85
3.2	General Aspects of Defects in Crystals 87
3.3	Role of Imperfections in Reactivity and Stability – Chemistry in the
	Perfect and Imperfect Lattice 92
3.4	Role in Physical Processes 96
3.5	Concluding Remarks 99
	References 99
4	Observation and Characterization of Crystal Defects in Pharmaceutical Solids 103 Mark D. Eddleston and William Jones
4.1	Introduction 103
4.2	Techniques for Characterizing Defects within Crystals 104
4.2.1	Transmission Electron Microscopy 105
4.2.1.1	Introduction to Transmission Electron Microscopy 105
4.2.1.2	Application of Transmission Electron Microscopy to the Analysis of
	Pharmaceutical Samples 107
4.2.1.3	Characterization of Defects Using Transmission Electron Microscopy 110

VI Co

Contents VII

- 4.2.1.4 Examples of the Study of Defects in Pharmaceutical Crystals Using Transmission Electron Microscopy 112
- 4.2.2 X-ray Diffraction Topography 115
- 4.2.2.1 Introduction to X-ray Topography 115
- 4.2.2.2 Characterization of Defects Using X-ray Topography 116
- 4.2.2.3 Application of X-ray Topography to the Analysis of Pharmaceutical Samples 117
- 4.2.3 Other Significant Methods for Characterizing Defects within Crystals 118
- 4.3 Techniques for Characterizing Defects Emergent at Crystal Surfaces 119
- Atomic Force Microscopy 119 4.3.1
- 4.3.1.1 Introduction to Atomic Force Microscopy 119
- 4.3.1.2 Characterization of Defects Using Atomic Force Microscopy 121
- 4.3.1.3 Examples of the Study of Defects in Pharmaceutical Crystals Using Atomic Force Microscopy 121
- 4.3.2 Surface Etching 123
- 4.3.2.1 Introduction to Chemical Etching 123
- 4.3.2.2 Characterization of Defects Using Chemical Etching 123
- Examples of the Study of Defects Emergent at the Surfaces of 4.3.2.3 Pharmaceutical Crystals Using Chemical Etching 124
- Other Relevant Methods for Characterizing Defects Emergent at 4.3.3 Crystal Surfaces 125
- Techniques for Quantifying Defect Densities within Crystals 125 4.4
- 4.5 The Complementarity of Techniques for Characterizing Defects 126
- Summary and Outlook 127 4.6
 - Acknowledgment 128
 - References 128
- 5 "Enantiomeric Disorder" Pharmaceutically Oriented 135
 - Gerard Coauerel and Rui Tamura
- 5.1 Introduction 135
- 5.2 Introduction and Lexicon of Specific Terms Used among Chiral Molecules and Chiral Molecular Associations 135
- Restrictions in Symmetry Operations Inside Crystal Lattices with an 5.3 Enantiomeric Excess Different from Zero 136
- 5.4 Impact of Chirality on Phase Diagrams and the Gibbs-Scott Phase Rule 137
- 5.4.1Level 1: Amorphous Mixtures: Complete Spatial Disorder 138
- Level 2: In Crystallized Phases (Solid Solutions) 139 5.4.2
- 5.4.2.1 Disorders Not Affecting the Stereogenic Centers (Nontreated) 140
- Disorders Affecting the Handedness of the Molecules 5.4.2.2 (Examples) 140

VIII Contents

5.5	Competitions between Solid Solutions (Impact of Polymorphism on Solid Solutions) Application: Preferential Enrichment 149
5.5.1	Discovery and Feature of Preferential Enrichment 149
5.5.2	Crystalline Nature of the Compounds Showing Preferential Enrichment 150
5.5.3	Mechanism and Requirements 152
5.5.4	Extension to Racemic Compound Crystals 152
5.6	Disorder at Level 3 Multiepitaxy between Enantiomers 154
57	Conclusion and Perspectives 156
0.1	Acknowledgments 157
	References 157
<i>.</i>	Conformational Disordance d Atomicano aire in Dhama antical
0	Conformational Disorder and Atropisomerism in Pharmaceutical
	Compounds 161
	Attilio Cesaro, Barbara Bellich, Giovanna Giannini, and Alessandro Maiocchi
6.1	Premise: Conformational Energy Barriers in Flexible Molecules 161
6.2	Conformational Topology and Crystallization of Chain
	Molecules 162
6.3	Conformational Polymorphism and Crystallization of Flexible
	Molecules 165
6.3.1	Conformational Polymorphism 165
6.3.2	Flexibility and Crystallization 167
6.3.3	Prediction of Conformational Polymorphs 169
6.4	Conformational Flexibility of Ring Molecules: Carbohydrates 170
6.5	Hindered Conformational Isomerism: Atropisomerism 172
6.5.1	Atropisomerism in Iodinated Contrast Media (ICM) 175
6.6	Conclusion 178
	Acknowledgments 180
	References 180
7	Tautomerism in Drug Delivery 183
	Zaneta Wojnarowska and Marian Paluch
7.1	Broadband Dielectric Spectroscopy as a Powerful Tool for
	Investigating the Tautomerization Process in Condensed
	Materials 187
7.2	Tautomerization Kinetics of Supercooled Pharmaceuticals 190
	Acknowledgment 197
	References 198
8	Disorders in Pharmaceutical Polymers 201
-	Emeline Dudoanon and Shena Qi
81	Polymers Architectures - Structural Disorders 202
8 1 1	Architectures 202
0.1.1 Q 1 D	Local Structure of Linear Dolymorg 202
0.1.2	Storoorogularity and Configurations 202
ð.1.2.1	Stereoregularity and Configurations 202

Contents IX

- 8.1.2.2 Conformations of Chains 203
- 8.2 Structural States and Phases Transitions 205
- 8.2.1 Amorphous Phase 205
- 8.2.2 Crystalline Structures 206
- 8.2.3 The Case of Copolymers: Organized Amorphous Structure 212
- 8.3 Dynamic Disorders 213
- 8.3.1 Glass-Rubber Transition Behavior 213
- 8.3.2 Mobilities 215
- 8.3.2.1 Localized Processes 215
- 8.3.2.2 Main Relaxation Process 217
- 8.3.2.3 Global Chain Dynamics 219
- 8.4 Blends of Polymer and Small Molecules 221
- 8.4.1 Glass Transition of the Blends 221
- 8.4.2 Mixing Free Energy of Blends of Polymers and Small Molecules 223
- 8.4.3 Solubility Limit of Small Molecules in Polymers 223
- 8.5 Effect of the Structural Properties of Pharmaceutical Polymers on Their Physical Behavior 224
- 8.5.1 Linear Polymers 225
- 8.5.1.1 Semicrystalline Polymers 225
- 8.5.1.2 Amorphous Polymers 230
- 8.5.2 Copolymers 232
- 8.6 Concluding Remarks 234 References 235

9 Polymer Gels, Hydrogels, and Scaffolds – An Overview 241

Madeleine Djabourov and Kawthar Bouchemal

- 9.1 Introduction 241
- 9.2 Gels and Hydrogels 243
- 9.2.1 What Is a Gel? 244
- 9.2.2 Different Types of Gels 245
- 9.2.2.1 Chemical Gels 245
- 9.2.2.2 Physical Gels 245
- 9.2.2.3 Hydrogels 246
- 9.2.2.4 Hybrid Gels 248
- 9.2.3 General Properties of Polymer Networks 249
- 9.2.3.1 Background on Entropic Elasticity 250
- 9.2.3.2 Elasticity of Physical Gels 251
- 9.2.3.3 Network Swelling 256
- 9.2.3.4 Swelling and Biodegradation 259
- 9.2.4 The Sol–Gel Transition 261
- 9.2.5 Selected Examples of Gels 264
- 9.2.5.1 Gelatin Gels 264
- 9.2.5.2 Gelatin Hydrogels 265
- 9.2.5.3 Poloxamer Gels 266
- 9.3 Scaffolds 268

X Contents

9.3.1	Thermally Induced Phase Separation (TIPS) with Solvent
	Crystallization: Cryogels 270
9.3.2	Spinodal Decomposition in Ternary Systems:
	Polymer/Solvent/Non-Solvent 271
9.3.3	Spinodal Decomposition in Organic–Inorganic Composite
	Scaffolds 273
9.3.4	Supercritical Processing 274
9.3.5	Other Scaffold Manufacturing Techniques 275
9.4	Conclusion 275
	References 276
10	
10	Use of the Pair Distribution Function Analysis in the Context of
	Pharmaceutical Materials 283
10.1	Pierre Boraet and Pauline Martinetto
10.1	Introduction 283
10.2	What is the PDF? 284
10.3	How to Measure the PDF 288
10.4	Modeling of the PDF 290
10.5	Applications of PDF Analysis to Molecular and Pharmaceutical
	Compounds 292
10.5.1	Polymorphs of <i>rac</i> -Modafinil 294
10.5.2	Effects of Grinding on Hydrochlorothiazide 296
10.6	Conclusion 297
	Acknowledgments 298
	References 298
11	Application of Broadband Dielectric Spectroscopy to Study Molecular
	Mobility in Pharmaceutical Systems 301
	Katarzyna Grzybowska, Karolina Adrjanowicz, and Marian Paluch
11.1	Introduction to Broadband Dielectric Spectroscopy 301
11.1.1	Broadband Dielectric Spectroscopy Technique $(10^{-5} to$
	10 ¹¹ Hz) 301
11.1.2	Principles and Models of Dielectric Relaxation 303
11.1.2.1	Debye Relaxation 303
11.1.2.2	Non-Debye Relaxation Models 307
11.1.3	Identification of Relaxation Processes in Dielectric Spectra 312
11.1.3.1	Structural Relaxation α 312
11.1.3.2	Relaxation α' (Normal Mode) 314
11.1.3.3	Secondary Relaxations and Excess Wing 314
11.2	Molecular Dynamics in Amorphous Pharmaceutical Systems 316
11.2.1	Molecular Mobility in the Liquid and Glassy States of
	Drugs – Physical Factors that Can Govern Crystallization 316
11.2.1.1	Molecular Mobility in Supercooled Liquids (Structural α -Relaxation.
	Fragility) 317

- 11.2.1.2 Molecular Mobility in the Glassy State (Secondary Relaxation Processes) 322
- 11.2.2 Physical Stability of Drugs in the Liquid and Glassy States 324
- 11.2.2.1 Prediction of Physical Stability of Amorphous Drugs from Molecular Mobility Studies (At T < T_g) 324
- 11.2.2.2 Relation Between Cold Crystallization of Liquid and Molecular Mobility 327
- 11.2.2.3 Crystallization in the Glassy State 335
- 11.2.2.4 Enhancement of the Physical Stability of Amorphous Drugs by Preparing Amorphous Mixtures 339
- Molecular Mobility and Dielectric Response in Partially Ordered Pharmaceutical Systems 346 Acknowledgment 353 References 353

12Raman Spectroscopy in Disordered Molecular Compounds:
Application to Pharmaceuticals 361

Alain Hedoux

- 12.1 Introduction 361
- 12.2 Raman Spectroscopy 362
- 12.2.1 Basic Theory 362
- 12.2.2 Equipment and Procedures 364
- 12.2.3 Analysis of Raman Spectra of Molecular Compounds 365
- 12.2.3.1 Analysis of the Low-Frequency Raman Spectrum 366
- 12.2.3.2 Analysis of the High-Frequency Spectrum 369
- 12.3 Analysis of Molecular Compounds by Raman Spectroscopy 370
- 12.3.1 The Use of the LFRS to Distinguish Micro/Nanocrystals from the Amorphous State 370
- 12.3.1.1 Analysis of Polyamorphic Situations 370
- 12.3.1.2 Detection and Quantification of Crystallization in Ground Powder *371*
- 12.3.2 The use of the LFRS to Reveal and Analyze Disordered States 374
- 12.3.2.1 Ibuprofen: Chirality and Disorder 374
- 12.3.2.2 Evidence of Different Structural Organizations in Amorphous Glucose Obtained by Thermal and Non-Thermal Routes 376
- 12.3.3 Use of LFRS for the Structural Description of Disordered Phases and the Analysis of Phase Transformations *378*
- 12.3.3.1 Structural Description of Form II of Caffeine 378
- 12.3.3.2 Analysis of Polymorphic Transformations in Caffeine 381
- 12.3.4 The Use of Multivariate Analysis 382
- 12.3.4.1 Analysis of Spectra Collected in a Series of Samples 382
- 12.3.4.2 Raman Mapping 386
- 12.4 Conclusion 388
 - References 388

XII Contents

13	Study of Disordered Materials by Terahertz Spectroscopy 393 Jurai Sibik and J. Axel Zeitler
13.1	Introduction 393
13.2	Exploration of Terahertz Dynamics Prior to THz-TDS 394
13.2.1	Polev Absorption 394
13.2.1	Far-Infrared Spectroscopy 395
13.2.2	Raman and Neutron Scattering 396
13.2.0	Response of Supercooled Liquids and Glasses at Terahertz
10.0	Frequencies 397
13.3.1	Primary (α -) and Secondary (β -) Relaxations 397
13.3.2	Fast Secondary Relaxation and Caged Dynamics 398
13.3.3	Vibrational Density of States 399
13.4	Terahertz Studies of Disordered Molecular Solids 400
13.4.1	Disordered Crystals 400
13.4.2	Polymers 402
13.4.3	Inorganic Glasses 403
13.5	Organic Glass-Forming Liquids 404
13.5.1	Hydrogen-Bonded Liquids and Solutions 404
13.5.2	Supercooled Liquids and Glasses 407
13.6	Characterization of Disordered Biological and Pharmaceutical
	Systems 410
13.6.1	Quantifying Crystallinity 410
13.6.2	Crystallization of Amorphous Drugs Above $T_{\rm g}$ 410
13.6.3	Crystallization of Amorphous Drugs Below T_{g} 413
13.6.4	Stability of Amorphous Drugs Below $T_g = 414$
13.6.5	Multicomponent Disordered Pharmaceutical Systems 416
13.7	Outlook 416
	References 418
14	Study of Disorder by Solid-State NMR Spectroscopy 427
14.1	Introduction 427
14.2	Basics of Solid-State NMR 428
14.2	Static Disorder 433
14.3.1	Crystalline Systems 436
14.3.2	Amorphous Systems 441
14321	Quantitation of Amorphous Phases 443
14.3.2.2	Miscibility and Interactions in Heterophasic Systems and
11101212	Formulations 446
14.4	Dynamic Disorder 448
14.4.1	Interconformational Motions in Crystalline Systems 450
14.4.2	Global Motions in Amorphous Systems 454
14.5	A Case Study 458
14.6	Final Remarks and Future Perspectives 462

References 464

Contents XIII

15	Processing-Induced Disorder in Pharmaceutical Materials	467

Sheng Qi

- 15.1 Introduction 467
- 15.2 Pharmaceutical Processing 468
- 15.2.1 Milling 468
- 15.2.2 Thermal Processing Techniques 470
- 15.2.2.1 Simple Melt-Fusion Method 471
- 15.2.2.2 Spray-Chilling/Congealing 472
- 15.2.2.3 Melt-Granulation 472
- 15.2.2.4 Thermal Sintering/Curing 473
- 15.2.2.5 Dry Powder Coating 474
- 15.2.2.6 Hot-Melt Extrusion (HME) and Injection Molding 474
- 15.2.2.7 Other Emerging Thermal Processing Techniques 477
- 15.2.3 Solvent-Evaporation-Based Processing Techniques 478
- 15.2.3.1 Spray-Drying 480
- 15.2.3.2 Freeze-Drying 481
- 15.2.3.3 Film Coating and Casting 482
- 15.2.3.4 Emerging Solvent-Evaporation-Based Processing Technologies 483
- 15.3 Conclusion 484 References 485
- 16 Patenting of Inventions Relating to Solid Forms, with Special Considerations on Disordered Forms 491 Bertrand Gellie
- 16.1 Patentability of Disordered Crystals 493
- 16.1.1 Clarity Problems in Claims for Disordered Crystals 493
- 16.1.2 Sufficient Disclosure of Disordered Crystals 494
- 16.1.3 Novelty of Dislocated Crystals 495
- 16.1.4 Inventive Step of Dislocated Crystals 496
- 16.2 Patentability of Co-crystals 496
- 16.2.1 Clarity Problems in Claims for Co-crystals 497
- 16.2.2 Sufficient Disclosure of Co-crystals 498
- 16.2.3 Novelty of Co-crystals 498
- 16.2.4 Inventive Step of Co-crystals 499
- 16.3 Patentability of Amorphous Forms 500
- 16.3.1 Clarity Problems in Claims for Amorphous Forms 501
- 16.3.1.1 Pure Amorphous Forms 501
- 16.3.1.2 Mixtures of Amorphous (and/or Polymorphic) Forms 503
- 16.3.1.3 Mixtures Comprising Amorphous Forms and a Stabilizer 503
- 16.3.2 Sufficient Disclosure of Amorphous Forms 503
- 16.3.3 Novelty of Amorphous Forms 504
- 16.3.4 Inventive Step of Amorphous Forms per se 506
- 16.3.4.1 Other Inventions Involving Amorphous Forms 508
- 16.3.4.2 Glass Materials 508
- 16.4 Patenting (Disordered) Nanocrystals 509

XIV Contents

16.4.1	Clarity Problems in Claims for (Disordered) Nanocrystals	509
16.4.2	Sufficient Disclosure of (Disordered) Nanocrystals 510	
16.4.3	Novelty of (Disordered) Nanoparticles 510	
16.4.4	Inventive Step of (Disordered) Nanoparticles 510	
16.5	Conclusions 511	

Index 513