Index

а	bubble columns 268
acid/base catalysis 26	bubbly flow 273
acoustic fluid shaking 157	•
active micromixers	c
 acoustic fluid shaking 157 	C-curve 93, 95
 alternating current magnetohydrodynamic 	Carberry number 64
(MHD) actuation 158	catalytic gas-phase reactions
 electrowetting-induced droplet shaking 	- catalytic wall micro-reactors 238
156	characteristics 238
 elektrokinetic instability 155 	 randomly micro-packed bed reactors
- microstirrers 157	– – advantage 233
 pressure induced disturbances 154 	backmixing 233
 ultrasound/piezoelectric membrane action 	– flow mal-distribution 233
156	 – integrated packed bed-heat exchanger
active micromixing 144	234
adiabatic temperature rise	 – reaction slit and cooling channels 234
 multi-injection microstructured reactors 	 – residence time distribution 233
214	 – shallow micro-fabricated channels 233
 single-injection micro-structured reactors 	 – silicon cross-flow microreactor 234
218	 structured catalytic micro-bed reactors
alternating current magnetohydrodynamic	– catalytic filaments 236
(MHD) actuation 158	– endothermic steam-reforming 235
	 – integrated exchangeable catalytic foam
b	plates 237
batch reactors 1	– – membrane reactor 236
batch-wise operated stirred tank reactor	– metallic/ceramic foams 236
(BSTR)	 – micro-structured string-reactor 235
– Damköhler number 32	– parallel filaments 235
– heat balance 30	 – residence time distribution 235
 intermediate product yield 	– sintered metal fibers (SMF) 238
− − νs. Damköhler number 34	– – slit-like channels 237
– mass balance 30	catalytic wall micro-reactors 238
- reaction time 31	– Damköhler number 249, 250
- reactor performance 31	– heat transfer 250
bimolecular catalytic reactions 56	- hydrodynamic entrance zone length 246
Bodenstein number 102, 126	 internal effectiveness factor 246
BSTR see Batch-wise operated stirred tank	 mass transfer characteristics 247
reactor (RSTR) 30	- mass transfer coefficient 247

catalytic wall micro-reactors (contd.)	e
– quasi-isothermal behavior 246	effective heat exchange area 185
- Sherwood numbers 247	effective reaction rate 196
- zero-order reaction 249	efficient instantaneous catalyst selectivity 76
caterpillar micromixer 149	electrowetting-induced droplet shaking 156
chaotic mixing 143, 149	elektrokinetic instability micromixer 155
characteristic mixing time 129	energetic efficiency of mixing 172
characteristic mixing time 129	energy balance 20
chemical reactors	Engulfment flow 144
	enzymatic catalysis 27
- continuum models 180	external numbering up 8
- heat balance 180	
- heat management 179	f
– material balance 180	F curve 92, 95
- temperature range selection 179	falling film contactors 268
Chilton-Colburn analogy 66, 82	Fischer – Tropsch synthesis 261
Churn flow 279	flow separators
Coanda effect micromixer 153	– conventional separators 308
complete segregation 130	– geometrical modifications 309
complex microchannel geometries 191	– gravity based separation 315
constant density reactions	- IMM settler 315
- CSTR 37	wettability
- PFR 40	contact angles 310
continuous flow microstructured reactors	– – flow resistance 314
286	 – hydrophilic and hydrophobic material
continuous stirred tank reactor (CSTR)	310
 constant density reactions 37 	– – membrane separator 311, 312
– conversion <i>vs.</i> Damköhler number 38	pressure drop 312, 313
degree of backmixing 35	Y-shaped separator 311
– heat balance 38	fluid-fluid microstructured reactors
– mass balance 36	 conventional reactors
- space time 36	 – advantages and disadvantages 268, 269
 variable density reactions 37 	– applications 267
continuous-stirred tank reactor (CSTR)	– equipments 267
– RTD 95	– – gas-liquid mass transfer 267
continuum models 180	– liquid-liquid reactions 267
conversion 29	 – multiphase microstructured devices 268
CSTR see Continuous stirred tank reactor	– falling film reactor 272
(CSTR) 35	 flow separation see Flow separators 307
curved microchannels 189	 gas-liquid flow patterns
cyclone mixer 269, 270	 – annular and parallel flow 280
	– – bubbly flow 273
	– – churn flow 279
d	classification 273
Damköhler number 115, 132	– – slug-bubbly flow 279
– BSTR 32, 34	 – Taylor flow see Taylor flow 274
– PFR 43	 gas-liquid reactions
− <i>vs.</i> isothermal external effectiveness factor	– halogenation 317
63	– hydrogenation 319
Dean number 145	– nitration 318
deformed interface flow 282, 297	oxidation 318
dispersed flow 283, 298	– – sulfonation 318
dispersion model 101, 111	– Hatta number 316
dry etching 10	 liquid-liquid flow patterns

 – annular and parallel flow randomly – packed bed catalytic – classification 280 micro-reactor 244 – deformed interface flow – reactor selection 253 – dispersed flow 283 - parallel flow channels 232 - - drop flow 281 - steam reforming 260 - - slug flow 281 types 231, 232 – slug-dispersed flow 283 formal kinetic equations - - slug-drop flow 282 - Homogeneous Catalytic Reactions 26 liquid-liquid reactions - multiple homogeneous reactions 24 – benzene nitration 319 - Single Homogeneous Reactions 22 – biodiesel production 320 fractional surface coverage 51 – enzymatic reactions 322 -- PTC 321 – toluene nitration 319 gas-liquid-liquid systems – vitamin precursor synthesis 320 gas-liquid-solid systems - mass transfer see Mass transfer 284 - continuous phase microstructured reactors - microchannels - - mesh microcontactor 333-335 – inlet T Y and concentric contactor - - microstructured falling film reactor 333 – mesh/sieve-like interfacial support - conventional reactors 331 contactors 271 - dispersed phase microstructured reactors - - microbubble column 335 – parallel 272 - - partial two fluid contact 271 - - microstructured packed bed reactor 335 – static mixers 272 - - segmented flow gas-liquid-solid reactors - micromixers 269 335 pressure drop see Pressure drop - - Taylor flow 334 fluid-solid micro-structured reactors - mass transfer and chemical reaction advantages and disadvantages - - catalytic microstructured film reactor - catalytic dehydration 259 337, 338 catalytic partial oxidations – concentration profiles 336 – ammonia oxidation 255 - - global transformation rate 336 - - hydrodynamic characteristics 340 – chip-like reactor 257 – H₂/O₂ oxidation reaction - - hydrogenation 341 - - methane 256 - - interfacial area 339 – quartz glass micro-reactor 256 – irreversible reaction 336 – silicon membrane microreactor – mass transfer coefficient 338 - - T-shaped microchannel 255 – mass transfer rate 337 - - mass transfer resistance 341 ethylene oxide synthesis 259 - exothermic/endothermic reactions – mesh microcontactor 339 - Fischer-Tropsch synthesis 261 - - observed reaction rate 338 - hydrodynamics – reaction rate per unit 336 - - Ergun equation 240 – segmented flow gas-liquid-solid reactors geometric factor 242 – Hagen-Poiseuille equation 242 - - volumetric mass transfer 340 – Knudsen coefficient 240 reaction examples – mono-sized spherical particles – catalyst deactivation 345 – particle size distribution 240 - - catalytic hydrogenations 341 – pressure drop 239–241 – cyclohexene hydrogenation 346 – surface area per foam volume 241, 243 – heterogeneous hydrogenation 345 - - low liquid and gas velocities 346 mass transfer – catalytic foam micro-reactors – micro packed beds 344 – catalytic wall micro-reactors see Catalytic - - microfabricated structured catalyst wall micro-reactors 246 packing 345 - - Damköhler number 244 - - silicon/glass microreactors 346 – external and internal 244 - - types of reactions 342

h	– rate of deactivation 58
Hagen – Poiseuille equation 140	 transport effects estimation criteria
Hatta number 45, 316	83
heat balance	heterogeneous reactions
– BSTR 30	– mass- and heat transfer 20
– chemical reactors 180	homogeneous catalytic reactions 26
- CSTR 38	– biphasic systems
– MSR 198	– catalyst recovery 45
– PFR 44	 – fast chemical reaction 47
heat transfer	 – moderate chemical reaction 46
– complex geometries 191	– – reactor efficiencyvs. Hatta number 48
- curved channels 189	 – slow chemical reaction 45
 multichannel micro heat exchanger 	– – SLP catalysts 49
 – axial temperature profiles 192 	– drawback 45
 – heat exchanger efficiency 192 	– formal Kinetics 26
 straight microchannels 	homogeneous reaction 4
aspect ratiovs. asymptotic Nusselt number	– multiple reactions 24
184	- single reaction 22
 – asymptotic Nusselt- and 	homogeneous reactions
Sherwood-numbers 183	- definition 85
 – effective heat exchange area 185 	– mass- and heat transfer 20
– – laminar velocity profile 182	– reaction mechanism 25
– – mean Nusselt number 183	
 – overall heat transfer coefficient 182 	i
shell and tube micro heat exchanger 186	
- two phase flow system	 BSTR see Batch-wise operated stirred tank
– – flow ratevs. Nusselt number 195	reactor (BSTR) 30
– – Nusselt number 194	- CSTR see Continuous stirred tank reactor
− − vs. single phase flow 194	(CSTR) 35
helicoidal microchannel falling-film reactor	– performance parameters 29
273, 293	- PFR see plug flow reactor (PFR) 39
heterogeneous catalytic reactions	- types 29
– advantages 49	instantaneous selectivity 30
– bimolecular catalytic reactions 56	
 concentration profiles 60 	intensity of segregation 130, 158 interdigital micromixers 147
 isothermal external effectiveness factor 	=
− − vs. Carberry number 64	interdigital mixer 269, 270 interexchange with mean (IEM) model 166
– – vs. Damköhler number 63	interexchange with mean (IEM) model 166 international Conference on Microreaction
 – yield and selectivity 64 	
 isothermal internal effectiveness factor 	Technology (IMRET) 11
− − vs. generalized Thiele modulus 71	international Union of Pure and Applied Chemistry (IUPAC) 22
− − vs. generalized Weisz modulus 73	introduction 1
− − vs. Thiele modulus 69	introduction 1
 – selectivity and yield 74 	
– Langmuir adsorption isotherms 51	j
– Langmuir – Hinshelwood model 53	jet micromixer 151
 most abundant surface intermediate (MASI) 	
approximation 55	k
- non-isothermal external effectiveness factor	Knudsen coefficient 180
– physical and chemical steps 59	1
 quasi-surface equilibrium approximation 	Langmuir adsorption isotherms 51
54	Langmuir – Hinshelwood model 53
- rate equations 50	LIGA process 9
Tate equations 50	Licit process >

m	gas flow 117
macroscopic mixing 129	liquid flow 118
mass balance	– – multiphase flow 122
– BSTR 30	micro-electrical discharge machining 10
– CSTR 36	microchannels
– PFR 39	– inlet T Y and concentric contactor 271
mass Biot number 79	 mesh/sieve-like interfacial support
mass transfer	contactors 271
- characterization 286	– parallel 272
– film-penetration model 285	– partial two fluid contact 271
 gas-liquid microstructured devices 	- static mixers 272
 microstructured falling film reactors see 	microfluidic baker's transformation (MBT)
Microstructured falling film reactors	device, 153
293	micromixers 269
slug-annular and churn flow regime 292	– active mixers <i>see</i> Active micromixers 154
 – Taylor flow see Taylor flow, mass tranfer 	- efficiency characterization
287	- absorbancevs. Reynolds number 170
 liquid-liquid microstructured devices 	- chemical methods 159
– – annular and parallel flow 297	 competitive neutralisation and acetal
deformed interface flow 297	hydrolysis 161
– – dispersed flow 298	 consecutive and parallel competitive
– – slug flow 296	reactions 160
– – slug-dispersed flow 298	dependent factors 158
– – slug-drop flow 297	diazo coupling reactions 161
- liquid-side mass transfer coefficients 285	- energetic efficiency of mixing 172
– macro-model 285	flow ratevs. segregation index 166
– micro-models 285	- mixing timevs. absorbance 167
– non-reactive systems 284	– – mixing timevs. Reynolds number 171
– penetration model 285	 mixing timevs. specific power dissipation
- reactive systems 284	169
– vs. conventional contactors 299	 – mixing timevs. specific power dissipation
material balance 19	169
– chemical reactors 180	 – neutralization and ester hydrolysis
– MSR 197	reactions 160
MBT device see Microfluidic baker's	– optical techniques 159
transformation (MBT) device 153	– – physical methods 158
mean residence time 91	segregation index 163
meander mixer 146	– Villermaux-Dushman reaction 162
mesh microcontactor 333, 335, 339	- passive mixer see Passive micromixers 144
Michaelis-Menten model 27, 85	- passivevs. active mixing 143
micro bubble column 317	- schematic representation 144
micro-channels	microscopic mixing 129
 laminar flow mixing 	microstirrers 157
– – characteristic dimension 138	microstructured falling film reactor 272, 317
– – characteristic mixing time 141	333, 334
– – engulfment regime 142	– disadvantage 293
 – predictedvs. experimentally determined 	– mass transfer coefficient 294
mixing time 141, 142	– mass transfer resistance 293
– – pressure drop 140	- microchannels 293, 294
– – specific power dissipation 140	– surface structure 296
– T-mixer 136	microstructured reactors (MSR)
– – time for diffusion 137	 1-ethyle-3-methyle imidazolium ethyl
- RTD	sulfate synthesis 207
– – axial and radial diffusion 115	– advantages

356	Index	
ı	microstructured reactors (MSR) (contd.) - – novel operating window 7 - – numbering-up 7 - – process safety 5	n novel operating windows 7 nucleophilic/electrophilic catalysis 26 numbering-up strategy 8
	- transfer rates 2- applications 10	Nusselt falling film theory 338
	 axial temperature profile 199 benchmarking 5 chemical mobile plants 12 chemical reactions catagories of, 195 energy balance 198 	organometallic complex catalysis 26, 27 overall volumetric heat transfer coefficient 191
	- fabrication techniques 9 - fine chemical/pharmaceutical industry 12 - fluid-fluid reactors, see Fluid-fluid microstructured reactors 267 - heat evacuation 196	p parallel microchannels 272 passive micromixers - chaotic mixing 149 - Coanda effect mixer 153
	 hotspot reduction strategies 196 laboratory tool 11 material balance 197 	integrated mixer/valve design 153jet collision device 150MBT 153
	 multi-injection see Multi-injection microstructured reactors 212 objectives 2 	 moving droplet mixers multilamination mixers bifurcation-type feeds 147
	 overall heat transfer coefficient 199 parametric sensitivity 201 selection steps 9 	 - cyclone mixer 148 - interdigital mixers 147 - SuperFocus mixers 148
	 single-injection see Single-injection microstructured reactors 218 vs. conventional processing 13 	types 147 - SAR mixers 149 - single channel mixers
	miniaturized systems 2 mixer-settler 269 most abundant surface intermediate (MASI)	 - cyclone type mixers 145 - T-mixer 144 - structured packing 149, 150
	approximation 55 moving droplet mixers 151 multi-injection microstructured reactors	passive micromixing 143 PFR see Plug flow reactor (PFR) 39 phase transfer catalysis (PTC)
	adiabatic temperature rise 214Grignard reaction 224heat balance 213	 β-keto esters 321 p-nitrophenyl acetate hydrolysis 321 plug flow reactor (PFR)
	 heat evacuation time 213 hot-spot reduction number of injection points 218 unequal flow partition 219 	 constant density reactions 40 conversionvs. Damkohler-number 43 heat balance 44 mass balance 39, 198
	- mass balance 213 - schematic representation 213 - temperature profile 217	 mixing – Damkohler number 132 – fast mixing 133
	multichannel micro heat exchanger – axial temperature profiles 192 – heat exchanger efficiency 192	 - intermediate yieldvs. conversion 134 - mass balances 133 - segregation intensity 131
	multilamination mixers – bifurcation-type feeds 147 – cyclone mixer 148 – interdigital mixers 147	 - slow mixing 132 - reactor volume and space time 39 - RTD 95 - variable density reactions 41
	- SuperFocus mixers 148 multiple homogeneous reactions 24 multiple reactions 22	power rate law (PRL) 22, 25 Prater number 77, 78 pressure drop

 gas-liquid flow homogenous model 301 separated flow model 301, 302 liquid-liquid flow power dissipation 307 with film 305 without film 304 PRL see Power Rate Law (PRL) 25 process classification 1 process safety 5 pulse function stimulus- response method 93 q quasi steady-state approximation (QSSA) 26 quasi-surface equilibrium approximation 54 	positive reaction order 107 product yield 114 tanks-in-series model 112 - real reactors, models for dispersion model 101 - tanks-in-series model 100 - tanks-in-series model 100 - tubular reactors axial dispersion estimation 105 - boundary conditions 102 - laminar flow 98 - pulse function stimulus-response method 94 Reynolds-number 283
quant surrues equinorium approximation of	RTD see Resident time distribution (RTD) 90
r	
randomly-packed bed catalytic micro-reactor	s
– gas-phase reactions	SAR mixers see Split-and-recombine (SAR)
advantage 233	mixers 148
backmixing 233	segmented flow
– flow mal-distribution 233	– Nusselt number 194
 – integrated packed bed-heat exchanger 	segmented flow gas-liquid-solid reactors 340
234	segregation 130
– reaction slit and cooling channels 234	selectivity 30
residence time distribution 233	shell and tube micro heat exchanger 186
shallow micro-fabricated channels 233	single channel mixers
– silicon cross-flow microreactor 234	– cyclone type mixers 145
- mass transfer 244	- T-mixer 144
rate determining step approach 25	single homogeneous reactions 22
reaction orders 22	single reaction 22
reactor volume	single-injection micro-structured reactors
- CSTR 36	- 1,3-Dimethylimidazolium-triflate synthesis
- PFR 39	221
residence time distribution (RTD) – cascade CSTR 96	– adiabatic temperature rise 218
- CSTR 95	– dialkyl-substituted thioureas nitration 222
- dispersion model 101	– methyl butyrate reduction 223
- experimental determination	sinusoidal corrugated-plate channels 189,
 – pulse function stimulus- response method 	190
93	skewness 91
– step function stimulus- response method92	SLPC see Supported liquid phase catalysis (SLPC) 49
- function (E(t)) 90	slug flow, see also Taylor flow 274, 281, 296
- idealvs. real reactors 96, 97	slug-bubbly flow 279
- micro-channel reactors	slug-dispersed flow 298
 – axial and radial diffusion 115 	slug-drop flow 282, 297
gas flow 117	slug-flow micro-reactor 11
liquid flow 118	space time
– – multiphase flow 122	- CSTR 36
– PFR 95	– PFR 40
 reactor performance 	specific heat production 196
– – dispersion model 111	split-and-recombine (SAR) mixers 148
– – known formal kinetics 108	staggered herringbone mixer (SHM) 151

stagnant film model 285	 – film mass transfer coefficient 289
star lamination micromixer 148	 – gas-liquid mass transfer 287, 288
step function stimulus- response method 92	 – Higbie penetration model 287
stirred tanks 268	 – liquid slug lengths 290
straight microchannels	 – superficial gas velocity 290
- aspect ratiovs. asymptotic Nusselt number	– – Taylor bubbles 287
184	- radial mixing 276
 effective heat exchange area 185 	Thiele modulus 70
– laminar velocity profile 182	three phase systems
– mean Nusselt number 183	- gas-liquid-liquid systems 346
 overall heat transfer coefficient 182 	– gas-liquid-solid systems 331
- shell and tube micro heat exchanger 186	- hydrodynamics 331
stratified flow 144	Train flow see Taylor flow 274
streamlined fins 296	trans-esterification 320
SuperFocus micromixer 148	tubular contactors 268
supported liquid phase catalysis (SLPC) 49	tubular reactors
system volume 19	 axial dispersion estimation 105
	– boundary conditions 102
t	– laminar flow 98
T-mixer	- pulse function stimulus-response method
- design 169	94
- flow regimes 144	
tanks-in-series model 100, 112	V
Taylor flow	variable density reactions
– applications 276	- CSTR 37
– bubble velocity 277, 278	- PFR 41
– capillary number 276	Villermaux-Dushman reaction 162
- correlations 276	Vortex flow 144
– delay tube 274	
 flow rates and fluid properties 276 	W
– generation 275	Weisz modulus 72
– interfacial gas – liquid area 276	wet etching 10
– mass transfer	-
caps and liquid film 290	y
characteristic diffusion time 291	yield 29
– – film contact time 291	•