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Foundations of Pyrodynamics

Pyrodynamics describes the process of energy conversion fromchemical energy to
mechanical energy through combustion phenomena, including thermodynamic
and fluid dynamic changes. Propellants and explosives are energetic condensed
materials composed of oxidizer-fuel components that produce high-temperature
molecules. Propellants are used to generate high-temperature and low-molecular
combustion products that are converted into propulsive forces. Explosives are
used to generate high-pressure combustion products accompanied by a shock
wave that yields destructive forces. This chapter presents the fundamentals of the
thermodynamics and fluid dynamics needed to understand the pyrodynamics of
propellants and explosives.

1.1
Heat and Pressure

1.1.1
First Law of Thermodynamics

Thefirst law of thermodynamics relates the energy conversion produced by chem-
ical reaction of an energetic material to the work acting on a propulsive or explo-
sive system. The heat produced by chemical reaction (q) is converted into the
internal energy of the reaction product (e) and the work done to the system (w)
according to

dq = de + dw (1.1)

The work is done by the expansion of the reaction product, as given by

dw = pdv or dw = pd
(
1
𝜌

)
(1.2)

where p is the pressure, v is the specific volume (volume per unitmass) of the reac-
tion product, and 𝜌 is the density defined as v = 1∕𝜌. Enthalpy h is defined by

dh = de + d (pv) (1.3)
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Substituting Eqs. (1.1) and (1.2) into Eq. (1.3), one gets

dh = dq + vdp (1.4)

The equation of state for one mole of a perfect gas is represented by

pv = Rg T or p = 𝜌Rg T (1.5a)

where T is the absolute temperature and Rg is the gas constant. The gas constant
is given by

Rg = R
Mg

(1.5b)

where Mg is the molecular mass and R is the universal gas constant,
R = 8.314472 J mol−1 K−1. In the case of n moles of a perfect gas, the equation of
state is represented by

pv = nRg T or p = n𝜌Rg T (1.6)

1.1.2
Specific Heat

Specific heat is defined as

cv =
(

de
dT

)
v

cp =
(

dh
dT

)
p

(1.7)

where cv is the specific heat at constant volume and cp is the specific heat at
constant pressure. Both specific heats represent conversion parameters between
energy and temperature. Using Eqs. (1.3) and (1.5a), one obtains the relationship

cp − cv = Rg (1.8)

The specific heat ratio 𝛾 is defined by

𝛾 =
cp

cv
(1.9)

Using Eq. (1.9), one obtains the relationships

cv =
Rg

𝛾 − 1
cp =

𝛾Rg

𝛾 − 1
(1.10)

Specific heat is an important parameter for energy conversion from heat energy
to mechanical energy through temperature, as defined in Eqs. (1.7) and (1.4).
Hence, the specific heat of gases is discussed to understand the fundamental
physics of the energy of molecules based on kinetic theory [1, 2]. The energy of a
single molecule, 𝜀m, is given by the sum of the internal energies, which comprise
the translational energy 𝜀t , rotational energy 𝜀r , vibrational energy 𝜀v, electronic
energy 𝜀e, and their interaction energy 𝜀i:

𝜀m = 𝜀t + 𝜀r + 𝜀v + 𝜀e + 𝜀i
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A molecule containing n atoms has 3n degrees of freedom of motion in
space:

Molecular structure Degrees of freedom Translational Rotational Vibrational
Monatomic 3 = 3
Diatomic 6 = 3 + 2 + 1
Polyatomic linear 3n = 3 + 2 + (3n−5)
Polyatomic nonlinear 3n = 3 + 3 + (3n−6)

A statistical theorem on the equipartition of energy shows that an energy
amounting to kT∕2 is given to each degree of freedom of the translational and
rotational modes, and that an energy kT is given to each degree of freedom of
the vibrational modes. The Boltzmann constant k is 1.38065 × 10−23 J K−1.
The universal gas constant R defined in Eq. (1.5b) is given by R = k𝜁 , where 𝜁 is
Avogadro’s number, 𝜁 = 6.02214 × 1023 mol−1.
When the temperature of a molecule is increased, rotational and vibrational

modes are excited and the internal energy is increased. The excitation of each
degree of freedom as a function of temperature can be calculated through sta-
tistical mechanics. Though the translational and rotational modes of a molecule
are fully excited at low temperatures, the vibrational modes become excited only
above room temperature. The excitation of electrons and interaction modes
usually occurs only well above combustion temperatures. Nevertheless, dissocia-
tion and ionization of molecules can occur when the combustion temperature is
very high.
When the translational, rotational, and vibrational modes of monatomic, dia-

tomic, and polyatomic molecules are fully excited, the energies of the molecules
are given by

𝜀m = 𝜀t + 𝜀r + 𝜀v

𝜀m = 3 × kT∕2 = 3 kT∕2 for monatomic molecules;

𝜀m = 3 × kT∕2 + 2 × kT∕2 + 1 × kT = 7 kT∕2for diatomic molecules;

𝜀m = 3 × kT∕2 + 2 × kT∕2 + (3n − 5) × kT = (6n − 5) kT∕2
for linear molecules;

𝜀m = 3 × kT∕2 + 3 × kT∕2 + (3n − 6) × kT = 3(n − 1) kT
for nonlinear molecules.

Since the specific heat at constant volume is given by the temperature derivative
of the internal energy as defined in Eq. (1.7), the specific heat of a molecule, cv,m,
is represented by

cv,m =
d𝜀m
dT

=
d𝜀t
dT

+
d𝜀r
dT

+
d𝜀v
dT

+
d𝜀e
dT

+
d𝜀i
dT

J molecule−1 K−1
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Figure 1.1 Specific heats of gases at constant volume as a function of temperature.

Thus, one obtains the specific heats of gases composed ofmonatomic, diatomic,
and polyatomic molecules as follows:

cv = 3R∕2 = 12.47 J mol−1 K−1 for monatomic molecules;

cv = 7R∕2 = 29.10 J mol−1 K−1 for diatomic molecules;

cv = (6n − 5)R∕2 J mol−1 K−1 for linear molecules;

cv = 3(n − 1)R J mol−1 K−1 for nonlinear molecules.

The specific heat ratio defined by Eq. (1.9) is 5/3 for monatomic molecules and
9/7 for diatomic molecules. Since the excitations of rotational and vibrational
modes occur only at certain temperatures, the specific heats determined by kinetic
theory are different from those determined experimentally. Nevertheless, the the-
oretical results are valuable for understanding the behavior of molecules and the
process of energy conversion in the thermochemistry of combustion. Figure 1.1
shows the specific heats of real gases encountered in combustion as a function
of temperature [3]. The specific heats of monatomic gases remain constant with
increasing temperature, as determined by kinetic theory. However, the specific
heats of diatomic and polyatomic gases increase with increasing temperature as
the rotational and vibrational modes are excited.

1.1.3
Entropy Change

Entropy s is defined according to

ds ≡ dq
T

(1.11)
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Substituting Eqs. (1.4), (1.5a), and (1.7) into Eq. (1.11), one gets

ds = cp
dT
T

− Rg
dp
p

(1.12)

In the case of isentropic change, ds = 0, and Eq. (1.12) is integrated as

p
p1

=
(

T
T1

)cp∕Rg
(1.13)

where the subscript 1 indicates the initial state 1. Using Eqs. (1.10), (1.5a), and
(1.13), one gets

p
p1

=
(

T
T1

) 𝛾

𝛾−1
and p

(
1

𝜌

)𝛾

= p1

(
1

𝜌1

)𝛾

(1.14)

When a system involves dissipative effects, such as friction caused by molecu-
lar collisions or turbulence caused by a nonuniform molecular distribution, even
under adiabatic conditions, ds becomes a positive value, and then Eqs. (1.13) and
(1.14) are no longer valid. However, when these physical effects are very small and
heat loss from the system or heat gain by the system is also small, the system is
considered to undergo an isentropic change.

1.2
Thermodynamics in a Flow Field

1.2.1
One-Dimensional Steady-State Flow

1.2.1.1 Sonic Velocity and Mach Number

The sonic velocity propagating in a perfect gas, a, is given by

a =
(
∂p
∂𝜌

)
s

1∕2

(1.15)

Using the equation of state, Eq. (1.8), and the expression for adiabatic change
(Eq. (1.14)), one gets

a =
√

𝛾Rg ⋅ T (1.16)

The Mach number M is defined as

M = u
a

(1.17)

where u is the local flow velocity in a flow field. Mach number is an important
parameter in characterizing a flow field.
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1.2.1.2 Conservation Equations in a Flow Field
Let us consider a simplified flow, that is, a one-dimensional steady-state flowwith-
out viscous stress or a gravitational force. The conservation equations of continu-
ity, momentum, and energy are represented by

rate of mass in − rate of mass out = 0, that is

d(𝜌u) = 0 (1.18)

rate of momentum gain by convection + pressure difference acting on flow =
0, that is,

ρudu + dp = 0 (1.19)

rate of energy input by conduction + rate of energy input by convection = 0,
that is

d
(

h + u2

2

)
= 0 (1.20)

Combining Eqs. (1.20) and (1.4), one obtains the relationship for the enthalpy
change due to a change of flow velocity as

dh = dq − u du (1.21)

1.2.1.3 Stagnation Point
If one can assume that the process in the flow field is adiabatic and that dissipative
effects are negligibly small, the flow in the system is isentropic (ds = 0), and then
Eq. (1.21) becomes

dh = −u du (1.22)

Integration of Eq. (1.22) gives

h0 = h + u2

2
(1.23)

whereh0 is the stagnation enthalpy atu = 0 of a stagnation flowpoint. Substituting
Eq. (1.7) into Eq. (1.23), one gets

cpT0 = cpT + u2

2
(1.24)

where T0 is the stagnation temperature at u = 0.
The changes in temperature, pressure, and density in a flow field are expressed

as a function of Mach number as follows:
T0
T

= 1 + 𝛾 − 1
2

M2 (1.25)

p0
p

=
(
1 + 𝛾 − 1

2
M2
) 𝛾

𝛾−1
(1.26)

𝜌0
𝜌

=
(
1 + 𝛾 − 1

2
M2
) 𝛾

𝛾−1
(1.27)



1.2 Thermodynamics in a Flow Field 7

1

Upstream Downstream

Shock wave

p1 p2

T1 T2

M1 M2

𝜌1 𝜌2

u1 u2

2

Figure 1.2 Shock wave propagation.

1.2.2
Formation of Shock Waves

One assumes that a discontinuous flow occurs between regions 1 and 2, as shown
in Figure 1.2.The flow is also assumed to be one dimensional and in a steady state,
and not subject to a viscous force, an external force, or a chemical reaction. The
mass continuity equation is given by

𝜌1u1 = 𝜌2u2 = m (1.28)

The momentum equation is represented by

p1 + mu1
2 = p2 + mu2

2 (1.29)

The energy equation is represented by the use of Eq. (1.20) as

cpT1 +
u1

2

2
= cpT2 +

u2
2

2
(1.30)

where m is the mass flux in a duct of constant area, and the subscripts 1 and 2
indicate the upstream and the downstream of the discontinuity, respectively. Sub-
stituting Eq. (1.29) into Eq. (1.30), one gets

p1 + 𝜌1u1
2 = p2 + 𝜌2u2

2 (1.31)

Using Eq. (1.25), the temperature ratio in regions 2 and 1 is represented by the
Mach number in 2 and 1 according to

T2
T1

=
1 + 𝛾 − 1

2
M2

1

1 + 𝛾 − 1
2

M2
2

(1.32)

Using Eqs. (1.5a), (1.17), and (1.28), one gets
T2
T1

=
(M2

M1

)2(p2
p1

)2

(1.33)

Combining Eqs. (1.31) and (1.32), the pressure ratio is obtained as a function of
M1 and M2:

p2
p1

=
M1
M2

√
1 + 𝛾 − 1

2
M2

1√
1 + 𝛾 − 1

2
M2

2

(1.34)
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Combining Eqs. (1.33) and (1.34), the Mach number relationship in the
upstream 1 and downstream 2 is obtained as

M1

√
1 + 𝛾 − 1

2
M2

1

1 + 𝛾M2
1

=
M2

√
1 + 𝛾 − 1

2
M2

2

1 + 𝛾M2
2

(1.35)

One obtains two solutions from Eq. (1.35):

M2 = M1 (1.36)

M2 =
⎡⎢⎢⎢⎣

2
𝛾 − 1

+ M2
1

2𝛾
𝛾 − 1

M2
1 − 1

⎤⎥⎥⎥⎦
1∕2

(1.37)

The solution expressed by Eq. (1.36) indicates that there is no discontinuous
flow between the upstream 1 and the downstream 2. However, the solution given
by Eq. (1.37) indicates the existence of a discontinuity of pressure, density, and
temperature between 1 and 2. This discontinuity is called a “normal shock wave,”
which is set up in a flow field perpendicular to the flow direction. Discussions on
the structures of normal shock waves and supersonic flow fields can be found in
the relevant monographs [4, 5].
Substituting Eq. (1.37) into Eq. (1.34), one obtains the pressure ratio as

p2
p1

= 2𝛾
𝛾 + 1

M2
1 −

𝛾 − 1
𝛾 + 1

(1.38)

Substituting Eq. (1.37) into Eq. (1.33), one also obtains the temperature ratio as
T2
T1

= 1
M2

1

2(𝛾 − 1)
(𝛾 + 1)2

(
1 + 𝛾 − 1

2
M2

1

)(
2𝛾

𝛾 − 1
M2

1 − 1
)

(1.39)

The density ratio is obtained by the use of Eqs. (1.38), (1.39), and (1.8) as
𝜌2
𝜌1

=
p2
p1

T2
T1

(1.40)

Using Eq. (1.24) for upstream and downstream and Eq. (1.38), one obtains the
ratio of the stagnation pressures as

p02
p01

=
(
𝛾 + 1
2

M2
1

) 𝛾

𝛾−1
(
1 + 𝛾 − 1

2
M2

1

) 𝛾

1−𝛾
(

2𝛾
𝛾 + 1

M2
1 −

𝛾 − 1
𝛾 + 1

) 1
1−𝛾

(1.41)

The ratios of temperature, pressure, and density downstream and upstream are
expressed by the following relationships:

T2
T1

=
p2
p1

(
1 + 1

𝜉

p2
p1

)
(
1
𝜉
+

p2
p1

) (1.42)
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p2
p1

=

(
𝜉
𝜌2
𝜌1

− 1
)

(
𝜉 − 𝜌

𝜌1

) (1.43)

𝜌2
𝜌1

=

(
𝜉

p2
p1

+ 1
)

(
𝜉 +

p2
p1

) (1.44)

where 𝜁 = (𝛾 + 1)∕(𝛾 − 1). The set of Eqs. (1.42), (1.43), and (1.44) is known as the
Rankine–Hugoniot equation for a shockwavewithout any chemical reactions.The
relationship of p2∕p1 and 𝜌2∕𝜌1 at 𝛾 = 1.4 (for example, in the case of air) shows
that the pressure of the downstream increases infinitely when the density of the
downstream is increased approximately 6 times. This is evident from Eq. (1.43),
as when 𝜌2∕𝜌1 → 𝜁 , then p2∕p1 → ∞.
Though the form of the Rankine–Hugoniot equation, Eqs. (1.42)–(1.44), is

obtained when a stationary shock wave is created in a moving coordinate system,
the same relationship is obtained for a moving shock wave in a stationary coordi-
nate system. In a stationary coordinate system, the velocity of the moving shock
wave is u1, and the particle velocity up is given by up = u1 − u2. The ratios of
temperature, pressure, and density are the same for both moving and stationary
coordinates.
A shock wave is characterized by the entropy change across it. Using the equ-

ation of state for a perfect gas shown in Eq. (1.5a), the entropy change is repre-
sented by

s2 − s1 = cp ln
(T2

T1

)
− Rg ln

(p2
p1

)
(1.45)

Substituting Eqs. (1.38) and (1.39) into Eq. (1.45), one gets

s2 − s1 = cp ln

[
2

(𝛾 + 1)M2
1
+ 1

𝜉

]
+

cp

𝛾
ln
[

2𝛾
𝛾 + 1

M2
1 −

1
𝜉

]
(1.46)

It is obvious that the entropy change will be positive in the region M1 > 1 and
negative in the region M1 < 1 for gases with 1 < 𝛾 < 1.67.Thus, Eq. (1.46) is valid
only when M1 is greater than unity. In other words, a discontinuous flow is formed
only when M1 > 1.This discontinuous surface perpendicular to the flow direction
is the normal shockwave.ThedownstreamMach numberM1 is always< 1, that is,
subsonic flow, and the stagnation pressure ratio is obtained as a function of M1 by
Eqs. (1.37) and (1.41). The ratios of temperature, pressure, and density across the
shock wave are obtained as a function of M1 by the use of Eqs. (1.38)–(1.40) and
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Eqs. (1.25)–(1.27).The characteristics of a normal shock wave are summarized as
follows:

Front ← Shock wave← Behind

Velocity u1 > u2
Pressure p1 < p2
Density 𝜌1 < 𝜌2
Temperature T1 < T2
Mach number M1 > M2
Stagnation pressure p01 > p02
Stagnation density 𝜌01 > 𝜌02
Stagnation temperature T01 = T02
Entropy s1 < s2

1.2.3
Supersonic Nozzle Flow

When gas flows from stagnation conditions through a nozzle, thereby undergoing
an isoentropic change, the enthalpy change is represented by Eq. (1.23). The flow
velocity is obtained by substitution of Eq. (1.14) into Eq. (1.24) as

u2 = 2cpT0

⎧⎪⎨⎪⎩1 −
(

p
p0

)Rg
cp
⎫⎪⎬⎪⎭ (1.47)

Substitution of Eqs. (1.10) and (1.47) gives the following relationship:

u =
⎡⎢⎢⎢⎣

2𝛾
𝛾 − 1

Rg T0

⎧⎪⎨⎪⎩1 −
(

p
p0

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

(1.48a)

The flow velocity at the nozzle exit is represented by

ue =
⎡⎢⎢⎢⎣

2𝛾
𝛾 − 1

Rg T0

⎧⎪⎨⎪⎩1 −
(pe

p0

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

(1.48b)

where the subscript e denotes the exit of the nozzle.Themass flow rate is given by
the law of mass conservation for a steady-state, one-dimensional flow as

ṁ = 𝜌uA (1.49)

where ṁ is the mass flow rate in the nozzle, 𝜌 is the gas density, and A is the cross-
sectional area of the nozzle. Substituting Eqs. (1.48a), (1.5), and (1.14) into Eq.
(1.49), one obtains

ṁ = p0A
⎡⎢⎢⎢⎣

2𝛾
𝛾 − 1

1
Rg T0

(
p
p0

)2∕𝛾 ⎧⎪⎨⎪⎩1 −
(

p
p0

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

(1.50)
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Thus, the mass flux defined in ṁ∕A is given by

ṁ
A

= p0

⎡⎢⎢⎢⎣
2𝛾

𝛾 − 1
1

Rg T0

(
p
p0

)2∕𝛾 ⎧⎪⎨⎪⎩1 −
(

p
p0

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

(1.51a)

The mass flux can also be expressed as a function of Mach number using
Eqs. (1.25) and (1.26) as follows:

ṁ
A

= pu =
pu

Rg T

=
√

𝛾

Rg T0
pM
(
1 + 𝛾 − 1

2
M2
)1∕2

=
√

𝛾

Rg T0
p0M

(
1 + 𝛾 − 1

2
M2
)𝜁∕2

(1.51b)

Differentiation of Eq. (1.50) yields

d
dM

( ṁ
A

)
=
√

𝛾

Rg T0
p0(1 − M2)

(
1 + 𝛾 − 1

2
M2
) 1−3𝛾

2(𝛾−1)
(1.51c)

It is evident that ṁ is maximum at M = 1. The maximum mass flux, (ṁ∕A)max,
is obtained when the cross-sectional area is A∗, given by( ṁ

A∗

)
max

=
√

𝛾

Rg T0
p0

(
2

𝛾 + 1

)𝜁∕2

(1.52)

Thus, the area ratio A∕A∗ is obtained as

A
A∗ = 1

M

{
2

𝛾 + 1

(
1 + 𝛾 − 1

2
M2
)}𝜁∕2

(1.53)

The flow Mach number at A is obtained by the use of Eq. (1.53) when ṁ,

T0, p0, Rg , and 𝛾 are given. In addition, T , p, and 𝜌 are obtained by the use of
Eqs. (1.25), (1.26), and (1.27). Differentiation of Eq. (1.53) with respect to the
Mach number yields Eq. (1.54):

d
dM

( A
A∗

)
= M2 − 1

M2
2

𝛾 + 1

{
2

𝛾 + 1

(
1 + 𝛾 − 1

2
M2
)} 2

𝛾−1
− 𝜁

2
(1.54)

Equation (1.54) indicates that A∕A∗ becomes a minimum at M = 1. The flow
Mach number increases as A∕A∗ decreases when M < 1, and also increases as
A∕A∗ increases when M > 1. When M = 1, the relationship A = A∗ is obtained
and is independent of 𝛾 . It is evident thatA∗ is theminimumcross-sectional area of
the nozzle flow, the so-called nozzle throat, in which the flow velocity becomes the
sonic velocity. Furthermore, it is evident that the velocity increases in the subsonic
flow of a convergent part and also in the supersonic flow of a divergent part.
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The velocity u∗, temperature T∗, pressure p∗, and density 𝜌∗ in the nozzle throat
are obtained by the use of Eqs. (1.16), (1.18), (1.19), and (1.20), respectively:

u∗ =
√
𝛾RT∗ (1.55)

T∗

T0
= 2

𝛾 + 1
(1.56)

p∗

p0
=
(

2
𝛾 + 1

) 𝛾

𝛾−1
(1.57)

𝜌∗

𝜌0
=
(

2
𝛾 + 1

) 𝛾

𝛾−1
(1.58)

For example, T∗∕T0 = 0.833, p∗∕p0 = 0.528, and 𝜌∗∕𝜌0 = 0.664 are obtained
when 𝛾 = 1.4. The temperature T0 at the stagnation condition decreases by 17%
and the pressure p0 decreases by 50% in the nozzle throat.The pressure decrease is
more rapid than the temperature decrease when the flow expands through a con-
vergent nozzle.Themaximum flow velocity is obtained at the exit of the divergent
part of the nozzle. When the pressure at the nozzle exit corresponds to a vacuum,
the maximum velocity is obtained by the use of Eqs. (1.48) and (1.5b) as

ue,max =

√
2𝛾

𝛾 − 1
R

Mg
T0 (1.59)

This maximum velocity depends on the molecular mass Mg , the specific heat 𝛾 ,
and the stagnation temperature T0. The velocity increases as 𝛾 and Mg decrease,
and as T0 increases. Based on Eq. (1.52), a simplified expression for mass flow rate
in terms of the nozzle throat area At(= A∗) and the chamber pressure pc(= p0) is
given by

ṁ = cDAtpc (1.60)

where cD is the nozzle discharge coefficient given by

cD =

√
Mg

T0

√√√√ 𝛾

R

(
2

𝛾 + 1

)𝜁
(1.61)

1.3
Formation of Propulsive Forces

1.3.1
Momentum Change and Thrust

Let us assume a propulsion engine operated in the atmosphere, as shown in
Figure 1.3. Air enters in the front end i, passes through the combustion chamber
c, and is expelled from the exit e. The heat generated by the combustion of an
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Figure 1.3 Momentum change for propulsion.

energetic material is transferred to the combustion chamber. The momentum
balance to generate thrust F is represented by the following terms:

F + pa(Ae − Ai) = (ṁe ue − pe Ae) − (ṁi ui + pi Ai) (1.62)

where ṁi ui = incoming momentum at i,
ṁe ue = outgoing momentum at e,
pi Ai = pressure force acting at i,
pe Ae = pressure force acting at e,
F + pa(Ae − Ai) = force acting on the outer surface of engine

whereu is the flow velocity, ṁ is themass flow rate,A is the area, and the subscripts
i, e, and a denote the inlet, exit, and ambient atmosphere, respectively. The mass
flow rate of the energetic material supplied to the combustion chamber, ṁp, is
given by the difference in the mass flow rates at the exit and the inlet, ṁe − ṁi.
In the case of rocket propulsion, the front end is closed (Ai = 0) and there is no
influx of mass to the combustion chamber (ṁi = 0). Thus, the thrust for rocket
propulsion is represented by

F = ṁe ue + Ae (pe − pa) (1.63)

where ṁp = ṁg . Thus, the thrust is determined by the flow velocity and pressure
at the exit when ṁe, Ae, and pa are given.
Differentiation of Eq. (1.63) with respect to Ae gives

dF
dAe

= ue
dṁg

dAe
+ ṁg

due
dAe

+ Ae
dpe
dAe

+ pe − pa (1.64)

The momentum equation at the nozzle exit is represented by ṁg due = −Aedpe,
and dṁg = 0 for a steady-state flow at the nozzle. Thus, from Eq. (1.64), one
obtains the relationship

dF
dAe

= pe − pa (1.65)

The maximum thrust is obtained at pe = pa, that is, when the pressure at the
nozzle exit is equal to the ambient pressure.
However, it must be noted that Eq. (1.62) is applicable for ramjet propulsion, as

in ducted rockets and solid-fuel ramjets, because in these cases air enters through
the inlet and a pressure difference between the inlet and the exit is set up.Themass
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Figure 1.4 Pressure–volume and enthalpy–entropy diagrams for rocket propulsion.

flow rate from the inlet, ṁi , plays a significant role in the generation of thrust in
the case of ramjet propulsion.

1.3.2
Rocket Propulsion

Figure 1.4 shows a schematic drawing of a rocket motor composed of the pro-
pellant, the combustion chamber, and the nozzle. The nozzle is a convergent–
divergent nozzle designed to accelerate the combustion gas from subsonic to
supersonic flow through the nozzle throat.The thermodynamic process in a rocket
motor is shown in Figure 1.4 by a pressure–volume diagram and an enthalpy–
entropy diagram [6].Thepropellant contained in the chamber burns and generates
combustion products, and this increases the temperature from Ti to Tc at a con-
stant pressure pc. The combustion products expand through the convergent
nozzle to give pressure pt and temperature Tt at the nozzle throat. The combus-
tion products continue to expand through a divergent nozzle to give pressure pe
and temperature Te at the nozzle exit.
If one can assume that (i) the flow is one dimensional and in a steadystate, (ii) the

flow is an isentropic process, and (iii) the combustion gas is an ideal gas and the
specific heat ratio is constant, the plots of p versus v and of h versus s are uniquely
determined [6–9]. The enthalpy change due to the combustion of the propellant
is given by

Δh = cp (Tc − Ti) (1.66)

whereΔh is the heat of reaction of propellant per unitmass.The expansion process
c → t → e shown in Figure 1.4 follows the thermodynamic process described in
Section 1.2.3.
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1.3.2.1 Thrust Coefficient
The thrust generated by a rocket motor is represented by Eq. (1.63). Substituting
Eqs. (1.48b) and (1.52) into Eq. (1.63), one gets

F = Atpc

⎡⎢⎢⎢⎣
2𝛾2

𝛾 − 1

(
2

𝛾 + 1

) 𝛾+1
𝛾−1
⎧⎪⎨⎪⎩1 −

(pe
pc

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

+ (pe − pa) Ae (1.67)

As shown by Eq. (1.65), the maximum thrust Fmax is obtained when pe = pa at
a given specific heat ratio of the combustion gas:

Fmax = Atpc

⎡⎢⎢⎢⎣
2𝛾2

𝛾 − 1

(
2

𝛾 + 1

) 𝛾+1
𝛾−1
⎧⎪⎨⎪⎩1 −

(pe
pc

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

(1.68)

Equation (1.68) can be represented by a simplified expression for thrust in terms
of the nozzle throat area and chamber pressure:

F = cF Atpc (1.69)

where cF is the thrust coefficient and is given by

cF =
⎡⎢⎢⎢⎣
2𝛾2

𝛾 − 1

(
2

𝛾 + 1

) 𝛾+1
𝛾−1
⎧⎪⎨⎪⎩1 −

(pe
pc

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

+
pe − pa

pc

Ae
At

(1.70)

The maximum thrust coefficient cF ,max is then given by

cF ,max =
⎡⎢⎢⎢⎣
2𝛾2

𝛾 − 1

(
2

𝛾 + 1

) 𝛾+1
𝛾−1
⎧⎪⎨⎪⎩1 −

(pe
pc

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

(1.71)

When the nozzle expansion ratio becomes infinity, the pressure ratio pc∕pa also
becomes infinity. The maximum thrust coefficient cF ,max then becomes

cF ,max =
⎡⎢⎢⎣
2𝛾2

𝛾 − 1

(
2

𝛾 + 1

) 𝛾+1
𝛾−1 ⎤⎥⎥⎦

1∕2

(1.72)

For example, cF ,max is 2.246 for 𝛾 = 1.20, and 1.812 for 𝛾 = 1.40.

1.3.2.2 Characteristic Velocity
The characteristic velocity c∗ is defined according to

c∗ =
Atpc
ṁg

(1.73)
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Substituting Eq. (1.52) into Eq. (1.73), one gets

c∗ =

√
RTc
𝛾Mg

(
2

𝛾 + 1

)−
𝜁

2
(1.74)

It can be shown that c∗ is dependent only on Tg , Mg , and 𝛾 and that it is inde-
pendent of the pressure and the physical dimensions of the combustion chamber
and exhaust nozzle; c∗, as defined in Eq. (1.74), is a parameter used to describe the
energetics of combustion.

1.3.2.3 Specific Impulse

Specific impulse Isp is a parameter used to describe the energy efficiency of pro-
pellant combustion, which is represented by

Isp =
F

ṁg g
(1.75)

where g is the gravitational acceleration (9.80665 m s−2); hence specific impulse is
expressed in terms of seconds. Thermodynamically, specific impulse is the effec-
tive time required to generate a thrust that can sustain the propellant mass against
the gravitational force through energy conversion. Since the mass flow rate ṁg is
given by Eq. (1.50) and F is given by Eq. (1.67), Isp is represented by

Isp =
1
g

⎡⎢⎢⎢⎣
2𝛾

𝛾 − 1
R

Mg
Tc

⎧⎪⎨⎪⎩1 −
(pe

pc

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

+ 1
g

(
𝛾 + 1
2

)𝜁∕2
√

RTc
𝛾Mg

(pe − pa
pc

) Ae
At

(1.76)

∼

(
Tg

Mg

)1∕2

(1.77)

whereTg is the combustion temperature andMg is themolecularmass of the com-
bustion products. Though Isp,max is also a function of the specific heat ratio 𝛾 of
the combustion products, 𝛾 varies very little among propellants. It is evident from
Eq. (1.77) that an energetic material that produces high-Tg and high-Mg combus-
tion products is not always a useful propellant. A propellant that generates low-Tg
combustion can also be useful if Mg is sufficiently low. Similar to Fmax and cF ,max,
the maximum specific impulse Isp,max is obtained when pe = pa:

Isp,max =
1
g

⎡⎢⎢⎢⎣
2𝛾

𝛾 − 1
R

Mg
Tg

⎧⎪⎨⎪⎩1 −
(pa

pc

) 𝛾−1
𝛾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦
1∕2

(1.78)
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In addition, the specific impulse is given by the thrust coefficient and the char-
acteristic velocity according to

Isp = cF
c∗
g

(1.79)

Since cF indicates the efficiency of the expansion process in the nozzle flow, and
c∗ indicates the efficiency of the combustion process in the chamber, Isp gives an
indication of the overall efficiency of a rocket motor.

1.3.3
Gun Propulsion

1.3.3.1 Thermochemical Process of Gun Propulsion
Gun propellants burn under conditions of nonconstant volume and nonconstant
pressure. The rate of gas generation changes rapidly with time, and the tempera-
ture changes simultaneously because of the displacement of the projectile in the
combustion chamber of the gun barrel [10–12]. Though the pressure change is
rapid, the linear burning rate is assumed to be expressed by a pressure exponent
law, the so-called Vieille’s law: that is

r = apn (1.80)

where r is the burning rate (mm s−1),p is the pressure (MPa),n is a constant depen-
dent on the composition of the propellant, and a is a constant dependent on the
initial chemical composition and temperature of the propellant.
The fundamental difference between gun propellants and rocket propellants lies

in the magnitude of the burning pressure. Since the burning pressure in guns is
extremely high, more than 100MPa, the parameters of the above equation are
empirically determined.Though rocket propellant burns at below 20MPa, in gen-
eral, the burning rate expression of gun propellants appears to be similar to that
of rocket propellants. The mass burning rate of the propellant is also dependent
on the burning surface area of the propellant, which increases or decreases as the
burning proceeds. The change in the burning surface area is determined by the
shape and dimensions of the propellant grains used.
The effective work done by a gun propellant is the pressure force that acts on the

base of the projectile. Thus, the work done by propellant combustion is expressed
in terms of the thermodynamic energy f , which is represented by

f = pv =
RTg

Mg
= p0v0

Tg

T0
(1.81)

where p0, v0, and T0 are the pressure, volume, and temperature, respectively, gen-
erated by the combustion of unit mass of the propellant in the standard state.
The thermodynamic energy f is expressed in units of MJ kg−1. It is evident that a
higher f value is favorable for a gun propellant, similar to Isp used to evaluate the
thermodynamic energy of rocket propellants.
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The thermal energy generated by propellant combustion is distributed to vari-
ous noneffective energies [10].The energy losses of a caliber gun are approximately
as follows:

Sensible heat of combustion gas 42%
Kinetic energy of combustion gas 3%
Heat loss to gun barrel and projectile 20%
Mechanical losses 3%

The remaining part of the energy, 32%, is used to accelerate the projectile. It is
obvious that the major energy loss is the heat released from the gun barrel. This
is an unavoidable heat loss based on the laws of thermodynamics: the pressure in
the gun barrel can be expended only by the cooling of the combustion gas to the
atmospheric temperature.

1.3.3.2 Internal Ballistics
The one-dimensional momentum equation for the internal ballistics of a gun is
represented by [10–12]

Mw
du
dt

= Mwu du
dx

= pAbi (1.82)

whereMw is themass of the projectile,u is its velocity, x is the distance traveled, t is
time, p is pressure, andAbi is the cross-sectional area of the gun barrel. Integration
of Eq. (1.82) from 0 to Lb gives

ube =

√
2[p]LbAbi

Mw
(1.83)

where ube is the velocity at the barrel exit and Lb is the effective length of the barrel
used to accelerate the projectile. If one assumes an averaged pressure in the barrel,
[p], given by

f = pv = R
Tg

Mg
(1.84)

the velocity of the projectile is given by

ube =
(
2
[
p
]

Abi
Lb

Mw

)1∕2

(1.85)

With fixed physical dimensions of a gun barrel, the thermodynamic efficiency
of a gun propellant is expressed by its ability to produce as high a pressure in the
barrel as possible from a given propellant mass within a limited time.
In general, the internal pressure in a gun barrel exceeds 200MPa, and the pres-

sure exponent n of the propellant burning rate, given by Eq. (1.80), is 1. When
n = 1, the burning rate of a gun propellant is represented by

r = ap (1.86)
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where r is the burning rate, p is the pressure, and a is a constant dependent on
the chemical ingredients and the initial temperature of the propellant grain. The
volumetric burning rate of a propellant grain is represented by S(t)r, where S(t) is
the surface area of the propellant grain at time t. The volumetric burning change
of the propellant grain is defined by

dz
dt

= V (t)
V0

=
S0
V0

S(t)
S0

r(t) = 𝜎
S(t)
S0

r(t) (1.87)

where V0 is the initial volume of the propellant grain, 𝜎 = S0∕V0, V (t) is the vol-
ume of the propellant grain at time t, and z is a geometric function of the grain.
The surface area ratio change, termed the “form function,” 𝜑, is defined according
to

𝜑(z) = S(t)
S0

(1.88)

Table 1.1 shows the form functions for several types of propellant grains. Sub-
stituting Eqs. (1.80), (1.86), and (1.88) into Eq. (1.87), one obtains a simplified
expression for the volumetric burning rate change:

dz
dt

= a𝜎𝜑(z)p (1.89)

Substituting Eq. (1.89) into Eq. (1.82), the velocity change of the projectile is
determined by

du =
( Abi

Mw

)( 1
a𝜎

) dz
𝜑(z)

(1.90)

The velocity of the projectile is obtained by integration of Eq. (1.90) from the
initial stage to the stage z1:

u =
( Abi

Mw

)( 1
a𝜎

)
∫

z1

0

dz
𝜙(z)

(1.91)

Table 1.1 Form functions for various types of propellant grain.

Grain shape 𝝋(z)

Spherical, cubic grain (1 − z)2∕3
Disk, square, strand (1 − z)1∕2
Short column (1 − z)3∕5
Short tubular (1 − 0.57z)1∕2
Center perforated disk (1 − 0.33z)1∕2
Long tubular 1
Seven-holes short tubular (1 + z)1∕2
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where u is the velocity when z = z1. In general, the projectile starts to move when
the pressure in the barrel reaches a certain initial pressure pc due to the action
of the shot resistance between the projectile and the barrel. The velocity of the
projectile is then represented by

u =
( Abi

Mw

)( 1
a𝜎

){
∫

z1

0

dz
𝜙 (z)

− ∫
z0

0

dz
𝜙(z)

}
(1.92)

where z0 is the volumetric burning change at pc. After the propellant grain is com-
pletely consumed, the pressure in the barrel changes isentropically according to

p =
𝜌g p∗

𝜌g ∗
(1.93)

where p∗ and 𝜌g ∗ denote the pressure and density, respectively, when burning is
complete.

1.4
Formation of Destructive Forces

1.4.1
Pressure and Shock Wave

When a propellant grain burns in a closed chamber, a large number of gaseous
molecules are produced. The pressure generated by these molecules acts on the
inner surface the chamber. The pressure increases slowly as a result of the con-
tinuous burning of the propellant. When the pressure exceeds the mechanical
strength of the chamber wall, mechanical breakage occurs at the weakest portion
of the chamber wall. The force acting on the chamber wall is caused by the static
pressure of the combustion gas.
When an explosive detonates in a closed container, a shock wave is formed.

The shock wave travels toward the inner surface of the chamber and acts on the
chamber wall. The pressure wave is caused by this shock wave, rather than by
the pressure created by the detonated burned gases. The shock wave travels first
through the air in the chamber, and the burned gas follows somewhat later. When
the shock wave reaches the inner surface of the chamber wall, the chamber will be
damaged if themechanical strength of the chamberwall is lower than themechan-
ical force created by the shock wave. Though the time for which the shock wave
acts on the wall is very short, in contrast to the static pressure built up by com-
bustion gases, the impulsive force caused at the wall leads to destructive damage.
Though no pressure is formed when a propellant grain burns outside of the cham-
ber, a shockwave is still formedwhen an explosive detonates externally.When this
shock wave reaches the outer surface of the chamber, the chamber wall may well
be damaged.
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1.4.2
Shock Wave Propagation and Reflection in Solid Materials

When a shock wave travels in a solid wall from one end to the other, a compressive
force is created at the front end of the shock wave. When the shock wave reaches
the other end, a reflection wave is formed, which travels back in the reverse direc-
tion. This reflection wave forms an expansion force that acts on the wall.
There are two general modes for the destruction of solid materials, namely duc-

tile fracture and brittle fracture. These modes are dependent on the type of mate-
rial and on the type of forces acting on the material. Themechanical force created
by a shock wave is similar to the force created by an impact stress. The breakage
mechanism ofmaterials is dependent on the action of themechanical force.When
a shock wave travels in a concrete wall from one end to the other, it generates a
compressive stress, and no damage is observed. However, when the shock wave is
reflected at the other end of the wall, a reflection wave is formed, accompanied by
an expansion stress. Since the compression strength of the concrete is sufficient to
endure the compressive stress created by the shock wave, no mechanical damage
results from the shock wave itself. However, when the concrete wall is subjected
to the tensile stress created by the expansion wave, the expansion force exceeds
the tensile strength of the wall, thus leading to its breakage.
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