Contents

Preface XIII

	List of Contributors XV
1	Molecular Information Processing: from Single Molecules to Supramolecular Systems and Interfaces – from Algorithms to Devices – Editorial Introduction 1 Evgeny Katz and Vera Bocharova References 7
2	From Sensors to Molecular Logic: A Journey 11 A. Prasanna de Silva
2.1	Introduction 11
2.2	Designing Luminescent Switching Systems 11
2.3	Converting Sensing/Switching into Logic 13
2.4	Generalizing Logic 15
2.5	Expanding Logic 16
2.6	Utilizing Logic 17
2.7	Bringing in Physical Inputs 20
2.8	Summary and Outlook 21
	Acknowledgments 21
	References 21
3	Binary Logic with Synthetic Molecular and Supramolecular Species 25 Monica Semeraro, Massimo Baroncini, and Alberto Credi
3.1	Introduction 25
3.1.1	Information Processing: Semiconductor Devices versus Biological
	Structures 25
3.1.2	Toward Chemical Computers? 26
3.2	Combinational Logic Gates and Circuits 27
3.2.1	Basic Concepts 27
3.2.2	Bidirectional Half Subtractor and Reversible Logic Device 28
3.2.3	A Simple Unimolecular Multiplexer – Demultiplexer 32
3.2.4	An Encoder/Decoder Based on Ruthenium Tris(bipyridine) 36

VI	Contents	
	3.2.5	All-Optical Integrated Logic Operations Based on Communicating Molecular Switches 38
	3.3	Sequential Logic Circuits 41
	3.3.1	Basic Concepts 41
	3.3.2	Memory Effect in Communicating Molecular Switches 42
	3.3.3	A Molecular Keypad Lock 43
	3.3.4	A Set–Reset Memory Device Based on a Copper Rotaxane 46
	3.4	Summary and Outlook 48
	3.1	Acknowledgments 49
		References 49
	4	Photonically Switched Molecular Logic Devices 53
		Joakim Andréasson and Devens Gust
	4.1	Introduction 53
	4.2	Photochromic Molecules 54
	4.3	Photonic Control of Energy and Electron Transfer Reactions 55
	4.3.1	Energy Transfer 55
	4.3.2	Electron Transfer 59
	4.4	Boolean Logic Gates 61
	4.5	Advanced Logic Functions 64
	4.5.1	Half-Adders and Half-Subtractors 65
	4.5.2	Multiplexers and Demultiplexers 68
	4.5.3	Encoders and Decoders 69
	4.5.4	Sequential Logic Devices 71
	4.5.5	An All-Photonic Multifunctional Molecular Logic Device 75
	4.6	Conclusion 75
		References 76
	5	Engineering Luminescent Molecules with Sensing
		and Logic Capabilities 79
		David C. Magri
	5.1	Introduction 79
	5.2	Engineering Luminescent Molecules 80
	5.3	Logic Gates with the Same Modules in Different Arrangements 83
	5.4	Consolidating AND Logic 84
	5.5	"Lab-on-a-Molecule" Systems 87
	5.6	Redox-Fluorescent Logic Gates 90
	5.7	Summary and Perspectives 95
		References 96
	6	Supramolecular Assemblies for Information Processing 99
		Cátia Parente Carvalho and Uwe Pischel
	6.1	Introduction 99
	6.2	Recognition of Metal Ion Inputs by Crown Ethers 100
	6.3	Hydrogen-Bonded Supramolecular Assemblies as Logic Devices 102

6.4	Molecular Logic Gates with [2]Pseudorotaxane- and [2]Rotaxane-Based Switches 103
6.5	Supramolecular Host-Guest Complexes with Cyclodextrins and Cucurbiturils 110
6.6	Summary 116 Acknowledgments 117 References 117
7	Hybrid Semiconducting Materials: New Perspectives
	for Molecular-Scale Information Processing 121
	Sylwia Gawęda, Remigiusz Kowalik, Przemysław Kwolek, Wojciech Macyk, Justyna Mech, Marek Oszajca, Agnieszka Podborska, and Konrad Szaciłowski
7.1	Introduction 121
7.2	Synthesis of Semiconducting Thin Layers and Nanoparticles 122
7.2.1	Microwave Synthesis of Nanoparticles 123
7.2.2	Chemical Bath Deposition 124
7.2.2.1	Sulfide Ion Precursors 124
7.2.2.2	Commonly Used Ligand 124
7.3	Electrochemical Deposition 125
7.3.1	Nanoheterostructure Preparation 133
7.3.2	Nanoparticles Directed Self-Assembly 135
7.4	Organic Semiconductors-toward Hybrid Organic/Inorganic
	Materials 136
7.4.1	Self-Organization Motifs Exhibited by Acenes and Acene-Like Structures 137
7.4.2	Applications of Acenes in Organic Electronic Devices 141
7.5	Mechanisms of Photocurrent Switching Phenomena 142
7.5.1	Neat Semiconductor 143
7.5.2	Composite Semiconductor Materials 144
7.5.3	Semiconductor-Adsorbate Interactions 148
7.5.4	Surface-Modified Semiconductor 152
7.5.5	Optoelectronic Devices Based on Organic
	Molecules/Semiconductors 160
7.6	Digital Devices Based on PEPS Effect 161
7.7	Concluding Remarks 167
	Acknowledgments 168
	References 168
8	Toward Arithmetic Circuits in Subexcitable Chemical Media 175
0 1	Andrew Adamatzky, Ben De Lacy Costello, and Julian Holley
8.1	Awakening Gates in Chemical Media 175 Collision-Based Computing 176
8.2 8.3	Collision-Based Computing 176 Localizations in Subexcitable BZ Medium 176
8.4	BZ Vesicles 180
0.4	DC (CSICIES 100

VIII	Contents	
	8.5	Interaction Between Wave Fragments 181
	8.6	Universality and Polymorphism 183
	8.7	Binary Adder 186
	8.7.1	Sum 188
	8.7.2	Carry Out 191
	8.8	Regular and Irregular BZ Disc Networks 193
	8.8.1	Elementary Logic Gates 194
	8.8.2	Half Adder 198
	8.9	Memory Cells with BZ Discs 201
	8.10	Conclusion 204
		Acknowledgments 204
		References 205
	9	High-Concentration Chemical Computing Techniques for Solving Hard-To-Solve Problems, and their Relation to Numerical Optimization, Neural Computing, Reasoning under Uncertainty, and Freedom of Choice 209
		Vladik Kreinovich and Olac Fuentes
	9.1	What are Hard-To-Solve Problems and Why Solving Even One of
		Them is Important 209
	9.1.1	What is so Good About Being Able to Solve Hard-To-Solve Problems
		from Some Exotic Class? 209
	9.1.2	In Many Applications Areas –In Particular in Chemistry –There are Many Well-Defined Complex Problems 210
	9.1.3	In Principle, There Exist Algorithms for Solving These Problems 210
	9.1.4	These Algorithms may Take Too Much Time to be Practical 210
	9.1.5	Feasible and Unfeasible Algorithms: General Idea 210
	9.1.6	Solving Equations of Chemical Kinetics: An Example of a Feasible
		Algorithm 211
	9.1.7	Straightforward Solution of Schrödinger Equation: An Example of an
		Unfeasible Algorithm 212
	9.1.8	Straightforward Approach to Protein Folding: Another Example of an
		Unfeasible Algorithm 213
	9.1.9	Feasible and Unfeasible Algorithms: Toward a Formal
		Description 213
	9.1.10	Maybe the Problem Itself is Hard to Solve? 213
	9.1.11	What Is a Problem in the First Place? 213
	9.1.12	What is a Problem: Mathematics 214
	9.1.13	A Description of a General Problem 214
	9.1.14	What About Other Activity Areas? 214
	9.1.15	What is a Problem: Theoretical Physics 215
	9.1.16	What is a Problem: Engineering 215
	9.1.17	Class NP 215
	9.1.18	Class P and the $P \stackrel{?}{=} NP$ Problem 215
	9.1.19	Exhaustive Search: Why it is Possible and Why it is Not Feasible 216

9.1.20	Notion of NP-Complete Problems 216		
9.1.21	Why Solving Even One NP-Complete (Hard-To-Solve) Problem is Very		
	Important 216		
9.1.22	Propositional Satisfiability: Historically the First NP-Complete		
	Problem 217		
9.1.23	What We Do 217		
9.2	How Chemical Computing Can Solve a Hard-To-Solve Problem of		
	Propositional Satisfiability 218		
9.2.1	Chemical Computing: Main Idea 218		
9.2.2	Why Propositional Satisfiability was Historically the First Problem for		
	Which a Chemical Computing Scheme was Proposed 218		
9.2.3	How to Apply Chemical Computing to Propositional Satisfiability:		
	Matiyasevich's Original Idea 219		
9.2.4	A Precise Description of Matiyasevich's Chemical Computer: First		
	Example 219		
9.2.5	A Precise Description of Matiyasevich's Chemical Computer: Second		
	Example 221		
9.2.6	A Precise Description of Matiyasevich's Chemical Computer: General		
	Formula 221		
9.2.7	A Simplified Version (Corresponding to Catalysis) 222		
9.2.8	Simplified Equations: Example 223		
9.2.9	Chemical Computations Implementing Matiyasevich's Idea Are Too		
	Slow 223		
9.2.10	Natural Idea: Let us Use High-Concentration Chemical Reactions		
	Instead 223		
9.2.11	Resulting Equations 224		
9.2.12	Discrete-Time Version of These Equations Have Already Been Shown		
	to be Successful in Solving the Propositional Satisfiability		
	Problem 225		
9.2.13	Conclusion 225		
9.2.14	Auxiliary Result: How to Select the Parameter Δt 226		
9.3	The Resulting Method for Solving Hard Problems is Related to		
	Numerical Optimization, Neural Computing, Reasoning under		
	Uncertainty, and Freedom of Choice 228		
9.3.1	Relation to Optimization: Why it is Important 228		
9.3.2	Relation to Optimization: Main Idea 229		
9.3.3	Relation to Numerical Optimization: Conclusion 231		
9.3.4	Relation to Numerical Optimization: What Do We Gain from It? 231		
9.3.5	Relation to Neural Computing 231		
9.3.6	Relation to Reasoning Under Uncertainty 232		
9.3.7	Relation to Freedom of Choice 233		
	Acknowledgments 234		
	References 234		

х	Contents

10	All Kinds of Behavior are Possible in Chemical Kinetics: A Theorem
	and its Potential Applications to Chemical Computing 237
	Vladik Kreinovich
10.1	Introduction 237
10.1.1	Chemical Computing: A Brief Reminder 237
10.1.2	Chemical Computing: Remaining Theoretical Challenge 238
10.1.3	What We Do 238
10.2	Main Result 239
10.2.1	Chemical Kinetics Equations: A Brief Reminder 239
10.2.2	Chemical Kinetics Until Late 1950s 240
10.2.3	Belousov – Zhabotinsky Reaction and Further Discoveries 240
10.2.4	A Natural Hypothesis 240
10.2.5	Dynamical Systems 241
10.2.6	W.l.o.g., We Start at Time $t = 0$ 241
10.2.7	Limited Time 241
10.2.8	Limited Values of x_i 242
10.2.9	Limited Accuracy 242
10.2.10	Need to Consider Auxiliary Chemical Substances 242
10.2.11	Discussion 244
10.2.12	Effect of External Noise 245
10.3	Proof 246
	Acknowledgments 256
	References 257
11	Kabbalistic-Leibnizian Automata for Simulating the Universe 259
	Andrew Schumann
11.1	Introduction 259
11.2	Historical Background of Kabbalistic–Leibnizian Automata 259
11.3	Proof-Theoretic Cellular Automata 264
11.4	The Proof-Theoretic Cellular Automaton for Belousov-Zhabotinsky
	Reaction 268
11.5	The Proof-Theoretic Cellular Automaton for Dynamics of Plasmodium
	of Physarum polycephalum 271
11.6	Unconventional Computing as a Novel Paradigm in Natural
	Sciences 276
11.7	Conclusion 278
	Acknowledgments 278
	References 278
12	Approaches to Control of Noise in Chemical and Biochemical
	Information and Signal Processing 281
	Vladimir Privman
12.1	Introduction 281
12.2	From Chemical Information-Processing Gates to Networks 283
12.3	Noise Handling at the Gate Level and Beyond 286
	,

12.4 12.5	Optimization of AND Gates 290 Networking of Gates 294
12.6	Conclusions and Challenges 296 Acknowledgments 297 References 297
13	Electrochemistry, Emergent Patterns, and Inorganic Intelligent Response 305
	Saman Sadeghi and Michael Thompson
13.1	Introduction 305
13.2	Patten Formation in Complex Systems 306
13.3	Intelligent Response and Pattern Formation 308
13.3.1	Self-Organization in Systems Removed from the Equilibrium State 309
13.3.2	Patterns in Nature 310
13.3.3	Functional Self-Organizing Systems 310
13.3.4	Emergent Patterns and Associative Memory 312
13.4	Artificial Cognitive Materials 314
13.5	An Intelligent Electrochemical Platform 315
13.6	From Chemistry to Brain Dynamics 321
13.6.1	Understanding the Brain 321
13.6.2	Brain Dynamics 323
13.6.3	Electrochemical Dynamics 324
13.6.4	Experimental Paradigm for Information Processing in Complex Systems 325
13.7	Final Remarks 327
	References 328
14	Electrode Interfaces Switchable by Physical and Chemical Signals Operating as a Platform for Information Processing 333 Evgeny Katz
14.1	Introduction 333
14.2	Light-Switchable Modified Electrodes Based on Photoisomerizable Materials 334
14.3	Magnetoswitchable Electrodes Utilizing Functionalized Magnetic Nanoparticles or Nanowires 336
14.4	Potential-Switchable Modified Electrodes Based on Electrochemical Transformations of Functional Interfaces 339
14.5	Chemically/Biochemically Switchable Electrodes and Their Coupling with Biomolecular Computing Systems 343
14.6	Summary and Outlook 350 Acknowledgments 351 References 352

XII Contents

15 Conclusions and Perspectives 355

Evgeny Katz
References 357

Index 359