Contents

List of Contributors XV

Introduction 1
Gerhard Wagner, Willi Meier, and Ulrich Bröckel
What Is Product Design and Engineering? 1
Why This Book? 3
References 5

1 Rheology of Disperse Systems 7
Norbert Willenbacher and Kristina Georgieva
1.1 Introduction 7
1.2 Basics of Rheology 8
1.3 Experimental Methods of Rheology 12
1.3.1 Rotational Rheometry 12
1.3.1.1 Concentric Cylinder Measuring System 12
1.3.1.2 Parallel-Plate Measuring System 13
1.3.1.3 Cone-and-Plate Measuring System 14
1.3.2 Capillary Rheometer 15
1.4 Rheology of Colloidal Suspensions 16
1.4.1 Hard Spheres 17
1.4.1.1 Viscosity of Suspensions of Spheres in Newtonian Media 17
1.4.1.2 Non-spherical Particles 20
1.4.2 Influence of Colloidal Interactions on Rheology 24
1.4.2.1 Repulsive Particles 24
1.4.2.2 Attractive Particles 28
1.4.3 Effect of Particle Size Distribution 36
1.4.4 Shear Thickening 38
1.5 Rheology of Emulsions 40
References 46
2 Rheology of Cosmetic Emulsions 51
Rüdiger Brummer
2.1 Introduction 51
2.2 Chemistry of Cosmetic Emulsions 52
2.2.1 Modern Emulsifiers 52
2.2.2 Skin Care and Cleansing 53
2.2.3 Microemulsions 53
2.2.4 Emulsifier-Free Products 53
2.2.5 Production of Emulsions 54
2.2.6 Processes Occurring During Emulsification 55
2.2.7 Serrated Disc Disperser 55
2.3 Rheological Measurements 56
2.3.1 Stationary Flow Behavior 56
2.3.2 Stress Ramp Test 58
2.3.3 Newtonian Flow Behavior 61
2.3.4 Creep and Creep Recovery Test 62
2.3.5 Ideal Elastic Behavior 62
2.3.6 Ideal Viscous Behavior 62
2.3.7 Real Viscoelastic Behavior 63
2.3.8 Steady Flow Curve 63
2.4 Dynamic Mechanical Tests (Oscillation) 65
2.4.1 Amplitude Dependence 65
2.4.2 Structure Breakdown and Build-Up 67
2.4.3 Time Dependence 68
2.4.4 Frequency Test 68
2.4.5 Temperature Dependence 70
2.4.6 Combined Temperature–Time Test 71
References 74

3 Rheology Modifiers, Thickeners, and Gels 75
Tharwat F. Tadros
3.1 Introduction 75
3.2 Classification of Thickeners and Gels 76
3.3 Definition of a “Gel” 76
3.4 Rheological Behavior of a “Gel” 76
3.4.1 Stress Relaxation (After Sudden Application of Strain) 77
3.4.2 Constant Stress (Creep) Measurements 79
3.4.3 Dynamic (Oscillatory) Measurements 79
3.5 Classification of Gels 80
3.5.1 Polymer Gels 81
3.5.1.1 Physical Gels Obtained by Chain Overlap 81
3.5.1.2 Gels Produced by Associative Thickeners 82
3.5.2 Crosslinked Gels (Chemical Gels) 86
3.6 Particulate Gels 87
3.6.1 Aqueous Clay Gels 87
3.6.1.1 Organo-clays (Bentones) 89
3.6.2 Oxide Gels 89
3.6.3 Gels Produced Using Particulate Solids and High Molecular Weight Polymers 90
3.7 Rheology Modifiers Based on Surfactant Systems 91

References 93

4 Use of Rheological Measurements for Assessment and Prediction of the Long-Term Assessment of Creaming and Sedimentation 95

Tharwat F. Tadros

4.1 Introduction 95
4.2 Accelerated Tests and Their Limitations 96
4.3 Application of High Gravity (g) Force 96
4.4 Rheological Techniques for Prediction of Sedimentation or Creaming 98
4.5 Separation of Formulation (“Syneresis”) 99
4.6 Examples of Correlation of Sedimentation or Creaming with Residual (Zero Shear) Viscosity 100
4.6.1 Model Suspensions of Aqueous Polystyrene Latex 100
4.6.2 Sedimentation in Non-Newtonian Liquids 101
4.6.3 Role of Thickeners 101
4.6.4 Prediction of Emulsion Creaming 102
4.6.5 Creep Measurements for Prediction of Creaming 104
4.6.6 Oscillatory Measurements for Prediction of Creaming 104
4.7 Assessment and Prediction of Flocculation Using Rheological Techniques 105
4.7.2 Rheological Techniques for Studying Flocculation 108
4.7.3 Wall Slip 108
4.7.4 Steady State Shear Stress–Shear Rate Measurements 109
4.7.5 Influence of Ostwald Ripening and Coalescence 109
4.7.6 Constant Stress (Creep) Experiments 109
4.7.7 Dynamic (Oscillatory) Measurements 110
4.7.7.1 Strain Sweep Measurements 111
4.7.7.2 Oscillatory Sweep Measurements 112
4.8 Examples of Application of Rheology for Assessment and Prediction of Flocculation 113
4.8.1 Flocculation and Restabilization of Clays Using Cationic Surfactants 113
4.8.2 Flocculation of Sterically Stabilized Dispersions 113
4.8.3 Flocculation of Sterically Stabilized Emulsions 114
4.9 Assessment and Prediction of Emulsion Coalescence Using Rheological Techniques 115
4.9.1 Introduction 115
5 Prediction of Thermophysical Properties of Liquid Formulated Products

Michele Mattei, Elisa Conte, Georgios M. Kontogeorgis, and Rafiqul Gani

5.1 Introduction

5.2 Classification of Products, Properties and Models

5.2.1 Classification of Products

5.2.2 Classification of Properties

5.2.3 Classification of Property Models

5.3 Pure Compound Property Modeling

5.3.1 Homogeneous Formulated Products – Primary and Secondary Properties

5.3.1.1 Cost

5.3.1.2 Density

5.3.1.3 Dielectric Constant

5.3.1.4 Dynamic Viscosity

5.3.1.5 Evaporation Time

5.3.1.6 Vapor Pressure and Heat of Vaporization

5.3.1.7 Solubility Parameters

5.3.1.8 Open Cup Flash Point

5.3.1.9 Surface Tension

5.3.1.10 Environmental Health and Safety Related Properties

5.3.2 Emulsified Formulated Products – Primary and Secondary Properties

5.3.2.1 Cloud Point

5.3.2.2 Critical Micelle Concentration

5.3.2.3 Hydrophilic–Lipophilic Balance

5.3.2.4 Krafft Temperature

5.3.2.5 Surface Tension

5.4 Functional Bulk Property Modeling – Mixture Properties

5.4.1 Bulk Properties Based on Linear Mixing Rule

5.4.2 Bulk Properties Based on Nonlinear Mixing Rules

5.5 Functional Compound Properties in Mixtures – Modeling

5.5.1 Fugacity Coefficients

5.5.2 Activity Coefficients

5.6 Performance Related Property Modeling

5.6.1 Prediction of Liquid Phase Stability
6 Sources of Thermophysical Properties for Efficient Use in Product Design 153
Richard Sass
6.1 Introduction 153
6.2 Overview of the Important Thermophysical Properties for Phase Equilibria Calculations 154
6.3 Reliable Sources of Thermophysical Data 154
6.4 Examples of Databases for Thermophysical Properties 155
6.4.1 DETHERM 156
6.4.2 Dortmund Database (DDB) 156
6.4.3 DIPPR Database 156
6.4.4 NIST Chemistry WebBook 159
6.5 Special Case and Challenge: Data of Complex Solutions 162
6.6 Examples of Databases with Properties of Electrolyte Solutions 162
6.6.1 DETHERM/ELDAR Database 162
6.6.2 The Dortmund Database (DDB) 164
6.6.3 Data Bank for Electrolyte Solutions at CERE DTU Chemical Engineering 164
6.6.4 JESS 164
6.6.5 Springer Materials – The Landolt-Börnstein Database 165
6.6.6 Closed Collections 165
6.7 Properties of New Component Classes: Ionic Liquids and Hyperbranched Polymers 165
References 166

7 Current Trends in Ionic Liquid Research 169
Annegret Stark, Martin Wild, Muhammad Ramzan, Muhammad Mohsin Azim, and Anne Schmidt
7.1 Introduction 169
7.1.1 Ionic Liquid Abbreviations 170
7.2 Ionic Liquids as Acido-basic Media 171
 7.2.1 Synthesis 171
 7.2.2 Structure 172
 7.2.3 Physicochemical Properties 175
 7.2.3.1 Thermal Properties 175
 7.2.3.2 Conductivity 176
 7.2.3.3 Dynamic Viscosity 176
 7.2.4 Applications 177
 7.2.4.1 Organic Synthesis 177
 7.2.4.2 Fuel Cells 180
 7.2.5 Conclusions: Ionic Liquids as Acido-basic Media 182
7.3 Binary Mixtures of Ionic Liquids: Properties and Applications 182
 7.3.1 Physicochemical Properties 183
 7.3.2 Structural Investigations 186
 7.3.3 Potential Applications 188
 7.3.4 Conclusion: Binary Mixtures of Ionic Liquids 189
7.4 Nanoporous Materials from Ionothermal Synthesis 191
 7.4.1 Aluminophosphates 193
 7.4.2 Co-structure Directing Agents and Aluminophosphates 198
 7.4.3 Silicoaluminophosphates 199
 7.4.4 Metalloaluminophosphates 199
 7.4.5 Zeolites (Aluminosilicates) 200
 7.4.6 Conclusions: Nanoporous Materials from Ionothermal Synthesis 200
7.5 Catalytic Hydrogenation Reactions in Ionic Liquids 201
 7.5.1 Early Developments of Ionic Liquids in Hydrogenation Reactions 202
 7.5.2 Stereoselective Hydrogenation Reactions in Ionic Liquids 203
 7.5.3 Ionic Liquids as Thermomorphic Phases 204
 7.5.4 SILCA-Type Materials 205
 7.5.5 Conclusions: Catalytic Hydrogenation Reactions in Ionic Liquids 209
7.6 Concluding Remarks 209
Acknowledgements 210
References 210

8 Gelling of Plant Based Proteins 221
Navam Hettiarachchy, Arvind Kannan, Christian Schäfer, and Gerhard Wagner
8.1 Introduction – Overview of Plant Proteins in Industry 221
8.2 Structure and Formation of Protein Gels 222
8.3 Factors Determining Physical Properties of Protein Gels 224
8.4 Evaluating Gelation of Proteins 226
8.5 Gelation of Proteins Derived from Plants 227
 8.5.1 Gelation of Cereal Crop Plant Proteins 227
 8.5.1.1 Wheat Proteins 227
8.5.1.2 Rice Proteins 228
8.5.1.3 Maize/Corn 229
8.5.1.4 Sorghum 229
8.5.1.5 Rye, Oat, and Barley 229
8.5.2 Gelation of Legume Plant Proteins 230
8.5.2.1 Lupin 233
8.5.2.2 Sesame 233
8.5.2.3 Sunflower 233
8.5.2.4 Canola 234
8.5.2.5 Bean 234
8.5.2.6 Broad Bean 235
8.5.2.7 Pea, Chickpea, Lentil, and Pigeonpea (Pulses) 236
8.5.2.8 Cowpea 236
8.5.3 Oilseed Proteins 237
8.5.4 Vegetable/Fruit Proteins 238
8.6 Protein Gels in Product Application 238
8.7 Future Prospects and Challenges 240
References 240

9 Enzymatically Texturized Plant Proteins for the Food Industry 247
Christian Schäfer
9.1 Introduction 247
9.2 Reactions Catalyzed by MTG 249
9.3 Current Sources of MTG 250
9.4 Need for Novel Sources of MTG 251
9.5 Vegetable Proteins Suitable for Crosslinking with MTG 251
9.5.1 Soy Protein 252
9.5.2 Wheat Protein 253
9.5.3 Rice Protein 253
9.5.4 Pea Protein 254
9.5.5 Lupin Protein 254
9.5.6 Sesame Protein 255
9.5.7 Sunflower Protein 255
9.5.8 Canola Protein 256
9.5.9 Potato Protein 256
9.5.10 Sorghum Protein 257
9.5.11 Various Other Vegetable Protein Sources 258
9.6 Strategies to Modify and Improve Protein Sources for MTG
Crosslinking 258
9.6.1 Hydrolysis 258
9.6.2 Maillard Reactions 259
9.6.3 Deamidation and Glycosylation 259
9.6.4 Solubilization and Hydrothermal Treatment 259
9.6.5 Removal of Undesired Substances from Vegetable Proteins 259
9.6.6 Improving the Nutritive Value of Plant Proteins 260
9.7 Applications of MTG in Processing Food Products Containing Vegetable Protein 261
 9.7.1 Soybean Products 261
 9.7.2 Bread and Bakery Products 262
 9.7.3 Noodles 263
9.8 Applications of MTG Crosslinked Leguminous Proteins in Food Models and Realistic Food Products 263
 9.8.1 Crosslinking Protein Isolates from Pea, Lupin, and Soybean in Food Models 263
 9.8.2 Methods for Monitoring the Enzymatic Texturization 264
9.9 Safety of MTG and Isopeptide Bonds in Crosslinked Plant Proteins 264
 9.9.1 Safety of the Isopeptide 264
 9.9.2 Safety of MTG 264
 9.9.3 Allergenicity of MTG Crosslinked Plant Proteins 265
 9.9.4 Allergenicity of Plant Proteins 265
9.10 Conclusions 266

References 267

10 Design of Skin Care Products 273

Wilfried Rähse

10.1 Product Design 273
10.2 Skin Care 274
 10.2.1 Cosmetic Products for Beautifications 276
 10.2.2 Active Cosmetics for a Healthy Skin 277
 10.2.3 Differences between Cosmeceuticals and Drugs 278
10.3 Emulsions 280
 10.3.1 Basics (Definition, Structure, Classification) 280
 10.3.2 Stability of Emulsions 282
 10.3.3 Preparation of Emulsions in the Laboratory 285
10.4 Structure of a Skin Care Cream 286
 10.4.1 Excipients 286
 10.4.2 Preservations 288
 10.4.3 Additives 290
 10.4.4 Groups of Active Substances 291
 10.4.5 Typical Effects of Cosmetics 292
10.5 Essential Active Substances from a Medical Point of View 292
 10.5.1 Linoleic and Linolenic 293
 10.5.2 Urea 294
 10.5.3 Panthenol 294
10.6 Penetration into the Skin 294
 10.6.1 Skin Structure 294
 10.6.2 Applying the Emulsion 296
 10.6.3 Proof of Performance 297
 10.6.4 Penetration of Lipophilic Substances 298
10.7 Targeted Product Design in the Course of Development 301
10.8 Production of Skin Care Products 302
10.9 Bottles for Cosmetic Creams 306
10.10 Design of all Elements 310
References 311

11 Emulsion Gels in Foods 315
Arjen Bot, Eckhard Flöter, Heike P. Karbstein-Schuchmann, and Henelyta Santos Ribeiro
11.1 Introduction 315
11.2 Food Emulsions 316
11.2.1 Dispersed Phase 316
11.2.2 Continuous Phase 318
11.2.2.1 Aqueous Continuous Phase 318
11.2.2.2 Lipid Continuous Phase 319
11.2.2.3 Emulsion Stabilization by Emulsifiers or Particles 320
11.2.2.4 Interaction between Continuous and Dispersed Phase: Hydration of Structurant in Organogel-Based Emulsions 321
11.3 Creating a Food Emulsion 322
11.3.1 Basic Principles 322
11.3.2 Emulsification Processes for Gel-Like Food Emulsions 324
11.3.2.1 Emulsification Machines 324
11.3.2.2 Emulsification in Theory: Dimensionless Numbers and Process Functions 326
11.3.3 High Internal Phase Emulsions (HIPEs) 328
11.3.4 Production of Emulsion Gel Foods 329
11.3.4.1 Margarine 329
11.3.4.2 Mayonnaise 330
11.3.4.3 Cream Cheese 330
11.3.4.4 Dairy Cream 331
11.4 Applications of Gel-Like Type Emulsions 331
11.4.1 Water Continuous Food Products 332
11.4.1.1 Emulsion Droplet Stability 334
11.4.1.2 Droplet Aggregation 334
11.4.1.3 Protein Aggregation 334
11.4.2 Fat Continuous Food Products 335
11.4.3 Chemical Properties 338
11.4.4 Microbiological Properties 339
11.5 Final Considerations 339
References 340

Index 345