Index

a
absorber–reflector tandem concept 168
absorber
 – application 203, 204
 – coatings 73, 76, 77, 168, 204, 332–334, 337
 – cylindrical 59
 – design 229, 230
 – geometries 76
 – made in PPS 341
 – material selection guidelines 202
 – optimization 291
 – plate risers and manifolds 75
 – temperature measurement 109, 110, 367
absorption
 accelerated aging tests 362
 accelerated lifetime testing (ALT) 332
 activation energy 339
 air collector 20, 45, 54, 55
 – scheme 18
 – system 224–226, 229
 air conditioning 29
 air mass 4
albedo 6
amorphous thermoplastics 144
 – characterization 141
 – glass transition temperatures 144
antioxidant diffusion model 199
antioxidant packages 199
anti-soiling additives, drawback 269
anti-soiling effect 268, 284
anti-wetting phenomenon 269
application of current standards
 – high-temperature tests 360–363
 – impact resistance test 365, 366
 – internal absorber pressure test 359, 360
 – mechanical load test 363–365
aquifer thermal energy storage (ATES) 48
Arrhenius equation 250
atactic polystyrene (at-PS) 143
b
black body 4
black fluid 115, 116
borehole thermal energy storage (BTES)
 Brookhaven collector 224
calcium carbonate scale 199
CAMPUS® (Computer Aided Material
 Preselection by Uniform Standards) 212, 213, 216
casing 80
 – of flat plate collector 80
 – materials 80
Cassie–Baxter model 273, 274
CED, see cumulative energy demand (CED)
cermet coatings 168
chemical resistance 216
chemical vapor deposition (CVD) 267
coefficient 114, 115
collector mounting structures 80, 82
 – fastening system 82
 – mounting structure 81
 – roof hooks 81
collectors, see also flat plate collector (FPC);
 glazed flat plate collectors; metallic unglazed
collectors
 – collector efficiency, calculation 287–291
 – conceptual design 287–299
 – cross section 311
 – 2D/3D model 296
 – deformations 287
 – efficiency factor 255, 262, 288, 290
 – calculations 287–291
 – flow optimization 291

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
Index

- fluid dynamics optimization in polymeric collectors 291–295
- absorber optimization 291, 292
- non-rectangular collectors 292–295
- header/manifold 312
- and heat stores 301–317
- internal stresses 287
- mechanics 295–297
- temperatures in 107–114
- thermal efficiency 312
- Von Mises stress 298

collector types 14

distribution, worldwide capacity 19

European market 25, 26

global market development 22–24

global market forecast 25

market share 18

resources 26

combisystems 86, 95, 96

materials

mounting system 89

reference 94

used in components 88

weight of components 86, 88, 90–92

commercial-grade buffer stores 232

commodity polymers 248

compound parabolic concentrator (CPC) collector 60, 61

computational fluid dynamics (CFD) 287, 297

concentrating collectors 16–18

contact angles 270, 271, 273, 274, 275, 280, 281, 283

conventional collector designs, material substitution in 222–224

creep deformation 244

cross-cut tests 334, 335

crosslinked polyethylene (PEX) 94

cumulative energy demand (CED) 97, 100

– for maintenance 101

– for production 100

– assembly 101

– piping 100

– transport 100

d

degradation

– indicator 333, 335

– mechanism 328, 335, 337

– polymeric materials 147, 189, 338

– UV degradation 204, 279

desiccant cooling systems 44

DHW, see domestic hot water (DHW)
diisocyanato hexyl (DICH) 280–282
direct solar radiation 4

dispersants 170–174
domestic hot water (DHW)

– boiler 225

– load 38

– preparation 93

– for multi-family houses 39, 40

– polymeric system 93

– for single family houses 33

– production 332, 333

drain-back circuit 39, 42, 116
dynamic system test 124

e

easy-to-clean effect 269
elastomeric membranes 239
elastomers 129, 140, 146, 237
electromagnetic radiation 3, 4

energy flux 255

energy payback time (EPB) 97–99

EPS, see expanded polystyrene (EPS)
ethylene-chlorotrifluoroethylene copolymer (E-CTFE) 204

ethylene propylene diene monomer (EPDM) 80, 221, 229, 343–345

ethylene vinyl acetate (EVA) 146

– copolymer 140

European Solar Thermal Industry Federation (ESTIF) 26

evacuated flat plate collector (EFPC) 16

evacuated tube collectors (ETC) 16, 22

– categories of designs for evacuated tubes 59

– characteristics 58

– heat transfer fluid flows 59, 60

– market trends 22

expanded polystyrene (EPS) 84, 85, 131, 233, 238

extraterrestrial solar radiation 4

f

fiber reinforced polymer 165

fillers 149

finite element method (FEM) 287, 297

flat plate 22

– absorber 292

– market trends 22

flat plate collector (FPC) 14, 15, 16, 18, 20, 45, 46, 74, 75, 77, 86, 322, 337, 366

– description 307–309

– development of products 309, 310

– glazed flat plate collectors (See glazed flat plate collectors)
– with overheating protection 307–310
– with thermotropic layer 310–313
flow optimization 291
fluid-to-fluid polymer heat exchangers 205
fluorinated polymers 321, 326
– films 332
– types 326
fluorocarbons 190, 204
fluoroethylene-propylene (FEP) 205
fluoropolymers 143, 182, 189, 204, 326
– resin binders 279
fossil fuels 3, 13
Fourier-transform spectrometers 323
FPC, see flat plate collector (FPC)
fractional energy savings 102
frame temperatures 110

g
geothermal energy 3
glass fibers 215
glass mat thermoplastics (GMT) 165, 166
glass transition temperature 139, 142, 144, 145, 151, 160, 191, 192, 204, 244, 257, 262
glazed flat plate collectors 51, 52, 56, 57, 222, 224, 225, 228, 332, 337
– for domestic hot water (DHW) production 332
– with polymeric absorbers 224, 225
– thermal balance 52
– total capacity 21

h
heat deflection temperature 244
heat demand 29
heat exchangers 191, 192
heat storages 82, 83
– classification 64
– different combi storages 69
– domestic hot water storages 65–67
– non-domestic hot water storages 67, 68
– non-water based storage 68, 70
– PCM based heat storages 69
– variations of solar thermal storages 65
hemispheric transmittance 258, 261
heptaisobutyl-trisilanol [IB7 T7(OH)₃] POSS dispersant 171
heptaisobutyl-trisilanol silsesquioxane (trisilanol POSS) 173
high-density polyethylene (HD-PE) 221
high-temperature performance polymers 224
hindered amine light stabilizer (HALS) 148
home for life concept 355
hydraulic
– appliance 115
– arrangements 58
– circuit to compensate 36
– designs 47, 224
– pressure 337–339
– scheme 67
– system 224
hydrostatic design basis (HDB) 192, 205

i
IEA SHC Task 8, 10, 39, 43, 47, 49, 228, 243, 301, 352, 353
IEA Solar Heating and Cooling Programme 332
indentation tests 244, 251, 340
injection molding 141, 161–164, 304, 305, 311
– inorganic pigment (CuFeMnOₓ spinel black) 168
insulations 217
– material properties of 79, 80
– thermal 74, 77, 223, 236, 237, 240
integrated storage collectors (ISC) 33, 34, 225–228
– with components of polymeric materials 228
integration
– architectural, as marketing tool 351–353
– of auxiliary heating system 66
– with other polymer components 189
– of solar-assisted district heating net 344
– description 359, 360
isoprene–isobutene rubber (IIR) 343–345
– water vapor permeation resistance factor 346

l
laboratory aging experiments 251
Landau–Levich equation 179
life cycle assessment (LCA) 97
lifetime models 250
light-shielding efficiency 258
linear concentrating Fresnel collector 60, 61
liner materials, advantages and weaknesses 240
lotus effect 268
Lumiflon resins binders 280, 281, 284

m
Magen eco-Energy 307–310
market development, of technologies 31
material, see also polymeric materials
polyamide-imide (PAI) 131, 133
polycarbonate (PC) 93, 131, 187, 228, 247, 320, 325, 327
polyester fiber fleece 84, 85
poly(ether ether ketone) (PEEK) 131
poly(ether sulfone) (PES) 133
polyethylene (PE) 131, 142, 146, 187
poly(ethylene terephthalate) (PET) 131
polyfluoroalkoxylkane (PFA) 205
polyhedral oligomeric silsesquioxanes (POSSs) compounds
as low surface energy additives for coatings 276–278
polymer absorber, in solar collector
– glazed flat-plate collectors with 224, 225
– temperature resistance evaluation 337–343
– method 338, 339
– plastics absorber made in PPS, service life for 341–343
polymer additives, and compounds 146, 147
– antioxidants 147, 148
– light stabilizers 148
– modifying additives 148, 149
– stabilizing additives 147
polymer degradation, see degradation polymer durability 187
– absorbers 201
– applications 205, 206
– benefits 187
– candidate polymeric film glazing materials 190
– heat exchanger 204, 205
– high-temperature performance/compatibility with working fluid 193, 194
– material selection 196, 201–203, 205
– mechanical and thermal properties 195
– national sanitary foundation (NSF) 191, 192
– oxidation 199–201
– plastics piping institute (PPI) publications 192
– polymer absorber applications 203, 204
– polymeric absorbers/heat exchangers 189
– polymeric glazing 188, 189
– polymer manufacturers 192
– requirements, overview 191–195
– thermal conductivity and strength 196–198
polymeric absorber coating, accelerated lifetime testing 332–337
– ALT test procedure
Index
poly(methyl methacrylate) (PMMA) 131, 143, 311, 320, 323, 324, 326, 328, 330
polyolefins 131
polyoxymethylene (POM) 131
poly(phenylene ether)–polystyrene blend (PPE+PS) 247
– aging behavior 250, 251
– load–indentation curves 251
poly(phenylene oxide) (PPO) 204
poly(phenylene sulfide) (PPS) 133, 146, 188, 195, 205, 217, 306, 337, 341, 343
– absorber sheets production 305
polypropylene (PP) 93, 131, 138, 187, 198, 221
polystyrene (PS) 131, 138
polysulfone (PSU) 204
polytetrafluoroethylene (PTFE) 143
polyurethanes (PURs) 129, 311
– binder 332
– insulation 226
– thermal stability 333
– vibrational bands 336
poly(vinyl chloride) (PVC) 131, 143, 187
poly(vinylidene fluoride) (PVDF) 205
pool absorbers 221, 222
pool collectors 221
– examples 222
primary energy embodied in the system (PEE_{in}) 97
prototype polymeric collector
– advantages 313
– collector efficiency 312, 313
– development 313
PU rigid foam 83, 84

q
quasi-dynamic method 369

r
rectangular fluid channels, fluid flow 289
reflectance efficiency 264
reflection 73, 75, 114
refractive index 260, 261
renewable energy 3
resin binders 335
– oleophobicity 280
Reynolds numbers 292
rigid polyurethane foam (PUR/PIR) 78, 79
rolling water drop, for cleaning 269

s
seasonal energy storage 239
seasonal thermal energy store (STES) 235, 237, 239
– polymeric liners for 235, 236
self cleaning effect 269
semicrystalline polymer 246
shear thinning effect 151
sheet molding compound (SMC) 165
silanes
– precursors 172
– surface modification by 172
silicone resin binder 168
size exclusion chromatography (SEC) 246–248
soiling effect 323
solar absorbers, see also absorbers
– aging behavior 243
– aging on component level 250–252
– characterization of physical and chemical aging 246
– commodity plastics 248, 249
– engineering plastics 247, 248
– lifetime modeling 249, 250
– methodology/major elements of a work program 246, 247
– from high-performance plastics 301–307
– made of high-performance plastics 301–307
– selective coatings 62–63
solar assisted district heating 47–49
solar collectors
– all-polymeric flat plate solar collectors
– collector efficiency 262, 263
– materials, and sample preparation 256, 257
– overheating protection 255–264
– polymers, physical characterization 257
– stagnation temperatures, thermotropic layers effect on 262, 263
– Aventa solar collector
– constituents in 303
– water flow 304
– efficiency graph 368, 369
– low-iron glass glazings 188
– testing
– for durability and reliability 120
– scope of standards for determining thermal performance 123
– for thermal performance 120, 121
solar constant 3
solar domestic hot water (SDHW) system 8, 33, 38, 39, 40, 41, 44, 67, 93, 96, 100, 102, 201, 222, 224, 227, 332
– cumulative energy demand 105
– energy payback time 104, 105
– materials and masses of systems
– solar energy 10, 167
– consumption 10, 11
– fractional energy savings \(f_{\text{sav}} \) 10
– solar fraction \(f_{\text{sol}} \) 10
solar heating systems 222, 235
solar irradiation 3, 4, 6, 7, 8, 40, 66, 121, 264, 265, 360, 368–369
– in technical applications 6, 7
SolarNoC ® collector 247
solar radiation 4
– path through atmosphere 5
solar simulator 124
solar spectrum 4
solar storage tanks
– description 314
– development of products 314–317
– FLEXSAVE heat storage 313–316
– with polymeric sealing technology 313–317
– presentation 313, 314
solar store 227
solar thermal applications 7–9, 29–31
– collectors types 223
– for multi-family houses 39, 40
– for single family houses 33
– final energy consumption for heating and cooling 30
– forced-circulation systems 35, 36, 38
– characteristics 36
– heat demand 29
– integrated collector–storage (ICS) systems 33, 34
– market deployment of technologies 30, 31
– operating conditions with unglazed and glazed collectors 32
– operating temperature 30
– polymeric materials in 221–241
– process heat applications 49, 50
– seasonal thermal energy stores, polymeric liners for 235–241
– small to mid-sized polymeric heat stores 231–235
– solar assisted district heating 47–49
– solar collectors 221–231
– solar cooling applications 44–47
– space heating, and DHW preparation 40–43
– swimming pool heating applications 31, 33
–– hydraulic scheme 33
–– thermosiphon systems 34, 35
–– characteristics 35
–– direct and indirect system 36, 37
–– total final energy consumption 30
solar thermal collectors 50, 213, 221–231, 303
– absorber designs from polymer engineering 229–231
–– characterization 230
–– air collector systems 225
–– basic principle 50–53
–– collector glazing 227, 228
–– components 214
–– compound parabolic concentrator (CPC) collector 60
–– concentrating collectors 243
–– conventional collectors
–– efficiency 287, 302
–– evacuated tubes 58–60
–– flat plate collectors
–– selective/non-selective collectors 243
–– glazed flat-plate collectors 56–58
–– with polymeric absorbers 224
–– heat exchangers for 232
–– integrated storage collectors (ISC) 225–227
–– linear concentrating Fresnel collector 60, 61
–– parabolic trough collectors 62
–– plastic materials in 337
–– pool absorbers 221, 222
–– principle 306
–– requirements 214
–– selective coatings for solar absorbers 62, 63
–– stagnation temperatures in 255
–– standards for 120
–– storage collectors 243
–– swimming pool absorbers 243
–– thermal one-knot model 288
–– thermosiphon systems 225–227
–– unglazed collector 53–55
–– vacuum-tube collectors 243
solar thermal flat plate collector 336
solar thermal installations 351
solar thermal products testing 124, 125
– CSTG method 125
– CTSS method 125
–– principle structure 126
–– DST method 125
solar thermal stores 231
solar thermal systems 121, 122, 353
– architecturally appealing 351–357
–– architectural integration as marketing tool 351–353
–– web database 353, 354
– custom built 122
Index

- distributors 353
- factory-made 122
- impression 351
- primary energy saved by 98
- thermal performance
 solar transmittance 262, 320
 values 321

solar water heating systems 187
- absorber and heat exchangers 189
spectrally selective paints, application techniques 175
- brush and hand roller 175
- spray application methods 176, 177
spectral selectivity 267
spray pyrolysis 168
stagnation temperature 333, 342, 368, 369
- vs. solar irradiation 342
STES, see seasonal thermal energy store (STES)
strain-to-break
- chemical aging strain-to-break values 246
- vs. aging time 248, 249
structural polymeric materials, aging behavior, see solar absorbers
structure–property performance
 pyramid 245
superoleophobic surfaces 272
surface energy 272, 273
surface roughness 273–275
surface superhydrophobicity 272

T

tank thermal energy storage (TTES) 48
tap water, phosphate ions 198
teflon film 204
temperature frequency function 334
temperature loads
- characteristic parameters 108
- histograms, measurement results 109–112
- measures for reduction of 114–116
- measuring equipment, installation 107
- monitoring 107–114
- temperature profile of dry collector 113
- temperature sensors 108
tetrahydrofuran (THF) 277
thermal conductivity 74, 75, 79, 89, 143, 195–198, 217, 290, 299
thermal convection 73, 74
thermal dilatation coefficient 329
thermal emittance 333
thermal energy stores (TES) 235, 236, 239, see also seasonal thermal energy store (STES)
- application of polymers in 237, 238
- liner of pilot 240, 241
- advantages/weaknesses of liner materials 240
- and thermal insulation 240, 241
thermal expansion coefficients 287
thermal insulation 77, 78
thermal one-knot model 288
thermal performance
- determination, standards scope of 123
- methods of testing 124
thermal radiation 16, 52, 74, 79, 117
thermal transitions, of amorphous polymers 145
thermo-functional layers 262
thermoplastic elastomers (TPE) 237, 239
thermoplastic polymer 187, 188, 206
thermoplastics 129, 131, 135, 140, 141, 151
- as non-crosslinked materials 140
thermosets 129, 140, 146, 151
thermosiphon collectors systems 227
thermosiphon systems 34, 35, 225–227
- characteristics 35
- direct and indirect system 36, 37
thermotropic glazings 255, 262
thermotropic hydrogels 255
thermotropic layers 367
- AFM phase images 261
- effect on collector efficiency, and stagnation temperatures 262, 263
- hemispheric and diffuse solar transmittance 261
- values 259
- light-shielding efficiency 261
- materials and sample preparation 256, 257
- overheating protection 255–264
- all-polymeric flat plate solar collectors (see solar collectors)
- polymers, physical characterization 257
- radiation transmittance 255
- strength–weakness analysis 256
- switching process 260
- thermogram 260
- types 255
thermotropic polymer blends 255
thermotropic systems with fixed domains (TSFD) 255, 256
- performance properties 263
- thermosensitivity 260
- absorber
-- effective mean temperature 334
-- high-temperature tests 335
-- ALT test procedure on 333
-- anti-soiling properties 275
-- application for wetting properties modification 267–284
-- coatings on rough surfaces, anti-wetting properties 282–284
-- wetting properties of TISS coatings 282–284
-- coatings with smooth surfaces, anti-wetting properties 278–282
-- effective mean temperature of paint absorber 334
-- as low surface energy additives for coatings 276–278
-- morphology 275, 276
-- surface properties 275
-- surface roughness 275, 276
-- wetting of surfaces, application of POSS compounds for modification 270–276 thickness sensitive spectrally selective (TSSS) paint coatings 167–171
-- on polymeric substrate, using silane dispersants 178, 179
-- coil coating 182–185
-- dip and flow coating 180, 181
-- direct coating application techniques 179, 180
-- roll coating 182
tidal energy 3
transmission 73
transmittance 324
transparent covers 75
two-package polyurethanes 177

u
unglazed collectors 14
UP matrix 329
UV-blocking effect 324, 325
UV-curable resin materials 257
UV-protection additives 332
UV radiation 80, 167, 217, 221, 227, 257, 279, 325, 337
UV-sensitive polymer 215
UV-transmission 330

v
velocity vectors, of geometry 293
viscosity 137, 151, 153, 175–177, 180–182
Von Mises stress 295, 296, 298

w
water collectors, total capacity 19
water repellent properties 270
water vapor permeation resistance factor 345
-- cost-effective determination 347
-- influence of temperature 346

x
XTEL material 304

y
yield stress 249
Young’s angle 273, 274
Young’s equation 272