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   1.1    
 Introduction: The History of Antimicrobial Peptides 

  Antimicrobial peptides  ( AMP s) have been recognized in prokaryotic cells since 
1939 when antimicrobial substances, named gramicidins, were isolated from 
 Bacillus brevis , and were found to exhibit activity both  in vitro  and  in vivo  against 
a wide range of Gram-positive bacteria  [1, 2] . Gramicidins were later shown to 
successfully treat infected wounds on guinea-pig skin, indicating their therapeutic 
potential for clinical use  [3] , and were the fi rst AMPs to be commercially manu-
factured as antibiotics  [4] . In the case of humans and other living creatures, which 
are constantly exposed to the threat of microbial infection, it had long been known 
that protection against these infections was provided by the adaptive immune 
system. However, this left the question as to why plants and insects, which lack 
an adaptive immune system, also remain free from infections for most of the time. 
The answer to this question is now known to be that similarly to prokaryotes, 
eukaryotes also produce AMPs and, historically, some sources attribute the dis-
covery of eukaryotic AMPs to early work on plants  [5]  when in 1896 it was shown 

  Summary 

 Eukaryotic antimicrobial peptides (AMPs) fi rst became a research focus in the 
middle decades of the twentieth century with the description of cecropins from 
moths and magainins from frogs. Since then, the number of reported AMPs has 
burgeoned to over 2000 with representatives in virtually all eukaryotic organisms. 
The availability of databases of AMPs has facilitated phylogenetic analyses, which 
have shown that the origins of  β -defensins are traceable to an ancestral gene over 
half a billion years old, indicating the evolutionarily ancient nature of AMPs. An 
emerging theme from research on AMPs is their multifunctional nature, which 
we review here for  β -defensins, and show that these peptides play roles in wound 
healing and modulation of both the innate and adaptive immune systems via the 
dual ability to promote and suppress the proinfl ammatory response to microbial 
infection.  
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that a substance lethal to bread yeast was present in wheat fl our  [6] . At the end 
of the 1920s, lysozyme was identifi ed by Alexander Fleming and is considered 
by some authors to be the fi rst reported instance of a peptide with antimicrobial 
activity  [7] . However, the mechanism of action used by lysozyme is now known to 
be enzymatic destruction of the bacterial cell wall, placing it at its time of discovery 
in a different category to AMPs, which utilize non-enzymatic mechanisms of 
antimicrobial activity  [8, 9] . In 1928, Fleming discovered penicillin  [10]  and in the 
1940s, along with Howard Florey and Ernst Chain, he brought the therapeutic use 
of penicillin to fruition, which led these three men to share the 1945 Nobel Prize 
for Medicine  [11] . With the advent of penicillin and streptomycin in 1943, began 
the “Golden Age of antibiotics,” which led to a rapid loss of interest in the thera-
peutic potential of natural host antibiotics such as lysozyme and the importance 
of this immune defense strategy  [12, 13] . However, in 1942, the antimicrobial 
substance that had previously been detected in wheat fl our  [6]  was isolated from 
wheat endosperm ( Triticum aestivum ) and found to be a peptide that inhibited the 
growth of a variety of phytopathogens, such as  Pseudomonas solanacearum  and 
 Xanthomonas campestris   [14] . Later named purothionin in the mid-1970s  [15, 16] , 
this peptide is now known to be a member of the family of thionins, which are 
AMPs distributed across the plant kingdom  [5] . At the time this work was under-
taken there was also the realization that the “Golden Age of antibiotics” had ended 
and with the rise of multidrug-resistant microbial pathogens in the early 1960s, 
an awakened interest in host defense molecules was prompted  [17, 18] . It is this 
point in time that some sources consider to be the true origin of research into 
AMPs  [19] , beginning with studies that were conducted in the 1950s and 1960s, 
when it was shown that cationic proteins were responsible for the ability of human 
neutrophils to kill bacteria via oxygen-independent mechanisms – clearly not activ-
ity associated with the adaptive immune system  [20, 21] . In 1962, in what some 
consider to be the fi rst description of an animal AMP  [22] , bombinin was reported 
in the orange speckled frog  Bombina variegate   [23] . Also in the 1960s, the antimi-
crobial protein, lactoferrin, was isolated from milk  [24]  and small antimicrobial 
molecules were observed to be induced in the hemolymph of wax moth larvae 
after challenging with  Pseudomonas aeruginosa   [25] . In the late 1970s and 1980s 
several groups reported a number of AMPs and antimicrobial proteins from leu-
kocytes  [26] , including what are now known to be  α -defensins from rabbits  [27–29]  
and humans  [30] . Along with purothionin described above, these defensins were 
among the fi rst cysteine-stabilized AMPs to be reported (Chapter  2 ). In 1981, in 
what are now generally considered as landmark studies, Boman  et al . injected 
bacteria into the pupae of the silk moth,  Hyalophora cecropia , and isolated the 
inducible cationic antimicrobial proteins, P9A and P9B, from the hemolymph 
of these pupae (Chapter  2 )  [31] . Soon after, these peptides were sequenced, char-
acterized, and renamed as the more familiar “cecropins,” thereby constituting the 
fi rst major  α -helical AMPs to be reported  [32] . In 1987, another landmark study 
occurred when Zasloff  et al . (1987) isolated and characterized cationic AMPs from 
the African clawed frog,  Xenopus laevis , and, refl ecting their defense role, named 
these peptides magainins after the Hebrew word for “shield”  [33] . A few years 
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later,  β -defensins and  θ -defensins, which differ from  α -defensins with respect to 
their cysteine pairings, were characterized after isolation, respectively, from bovine 
granulocytes  [34]  and leukocytes of the rhesus monkey  [35] . In the mid-1990s, 
Brogden  et al . identifi ed the fi rst anionic AMPs in  X .  Laevis   [36]  and characterized 
several other such peptides in ruminants, including sheep and cattle  [37] . Ironi-
cally, also in the early 1990s, evidence began to accumulate that led to the current 
view that lysozyme possesses antimicrobial activity involving non-enzymatic 
mechanisms that are similar to AMPs, thereby substantiating the view that it was 
one of the fi rst of these peptides to be discovered  [8] . Based on these results, a 
number of investigators considered the possibility that AMPs may play a role in 
the defense systems of organisms lacking an adaptive immune system  [38] . In the 
mid-1990s, this was confi rmed for the fruit fl y,  Drosophila melanogaster , when it 
was shown that the deletion of a gene encoding an AMP rendered the insect 
susceptible to a massive fungal infection  [39] . Since these earlier studies, AMPs 
have been extensively studied not only in plants  [40, 41]  and insects  [42–44] , but 
also other invertebrate organisms that lack an adaptive immune system  [45–48]  
although most of the current understanding of AMPs has been obtained from 
studies on those isolated from amphibian skin secretions, which is a rich source 
of these peptides  [49–52] . In combination, these studies have established that 
AMPs exist in virtually all multicellular organisms  [53]  and it is increasingly being 
recognized that that these peptides play an important role in the immune system 
of mammals, including humans  [54–57] . These peptides have been identifi ed at 
most sites of the human body normally exposed to microbes such as the skin and 
mucosae  [54, 55] , and are produced by a number of blood cell types, including 
neutrophils, eosinophils, and platelets  [58–60] . However, as research into the 
expression of AMPs progressed, it became clear that the production of these 
peptides may be either constitutive or induced by infl ammation or injury  [38] . 
Typically, for example,  α -defensins and dermcidin (the precursor of AMPs involved 
in skin defense) tend to be produced constitutively, whereas the majority of 
 β -defensins are inducible  [61–63] . Moreover, although particular AMPs may pre-
dominate at specifi c body sites only a small minority are exclusively produced by 
a certain cell type or tissue and each tissue has its own spectrum of AMPs that 
may vary in composition depending upon the prevailing physiological conditions 
 [55] . For example, peptides derived from dermcidin are the major AMPs in human 
sweat but show differing profi les between the body sites of a given individual in 
response to exercise    [64] . One question that has puzzled investigators since the 
discovery of AMPs is the fact that the  minimal inhibitory concentration s ( MIC s) 
required for their  in vitro  antimicrobial activity are generally much higher than the 
physiological concentrations of these peptides found  in vivo   [65] . Two major expla-
nations proposed for this observation are that at sites of infl ammation, AMPs can 
accumulate at high local concentrations suffi ciently above their MIC to exert their 
antimicrobial effect or that these peptides may act synergistically with other AMPs 
 [65] . Over the last decade, these synergistic effects have been demonstrated for a 
variety of AMPs  [66] , including those that are structurally similar and from the 
same host organism, such as magainin and PGLa, which is another  α -helical 
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peptide from  X .  Laevis   [67, 68] , and those that are structurally dissimilar and from 
differing host organisms, such as LL-37, an  α -helical human peptide, and indoli-
cidin, an extended bovine peptide (Chapter  2 )  [69] . Studies over the last decade 
have also established that some organisms produce AMPs as suites of closely 
related peptides that synergize to produce a broad spectrum of antimicrobial 
activity, such as maximins, which are  α -helical AMPs produced in the brains of 
amphibians  [70] , and cyclotides, which are cyclic cystine knot   AMPs produced in 
the leaves, fl owers, stems, and roots of various plants  [71, 72] . As more has been 
learnt about AMPs, it has become somewhat arbitrary as to their precise defi nition. 
For example, perforin and the complement component C9 are large proteins of 
approximately 60 kDa that under physiological conditions insert into membranes 
and form pores as result of highly regulated immune processes, and are thus not 
classifi ed as AMPs  [73, 74] . In contrast, lactoferrin, which is around 80 kDa, is 
generally included as an AMP, based on the fact that it is ubiquitous in various 
body fl uids and utilizes a non-specifi c mode of antimicrobial action similar to 
other AMPs (Chapter  5 )  [75, 76] . Moreover, some “AMPs” do not appear to exert 
direct antimicrobial activity such as the  PLUNC  ( palate, lung, nasal epithelium 
clone ) proteins that appear to primarily play a role in neutralizing endotoxins, 
promoting the agglutination of bacteria, and modulating cytokine production  [77] . 
Nonetheless, it is now well established that the production of AMPs is a defense 
strategy used across eukaryotes, evidenced by the list of databases dedicated to 
these peptides that have appeared almost every year over the last decade (Table 
 1.1 ). Examination of these databases shows that in excess of 2000 AMPs have now 
been listed and the number of these peptides being reported is increasing rapidly 
 [87, 89] . The availability of these databases has allowed comparisons to be made 
between AMPs based on a variety of criteria, most often structure–function rela-
tionships and mechanisms of antimicrobial action, which are discussed in later 
chapters of this book. However, two less well discussed aspects of AMPs are 
reviewed in the remainder of this chapter, namely their ancient origins and evolu-
tion along with their functional promiscuity, encompassing a number of biological 
roles in addition to antimicrobial activity. 

    1.2    
  AMPs : Evolutionarily Ancient Molecules 

 Since the discovery of magainins in  X. laevis   [33] , it has become clear that the 
skin secretions of many anurans include a spectrum of AMPs that ranges between 
10 and 20 members  [92–94]  along with a variety of other bioactive peptides, includ-
ing neuropeptides, pheromones, and neuronal nitric oxide synthase inhibitors 
 [95–97] , which has led to the availability of sequence data for these molecules at 
the levels of protein  [91]  and DNA  [98–100] . Taken with the ubiquity of AMPs 
across the anuran suborders  [94] , this has facilitated investigation into the evolu-
tionary history of these peptides, particularly those from frogs of the Ranidae and 
Hylidae families  [96, 101–107] . In a seminal work, one of the earliest investigations 
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into the phylogeny of these peptides considered the evolutionary relationships 
between AMPs from  hylids of South America  ( HSA s) and  hylids of Australia  
( HA s) along with  ranids from Asia, North America, and Europe  ( RANAE s)  [102] . 
Essentially, this latter study derived the amino acid sequences for precursor pro-
teins of caerins, which are AMPs from  Litoria caerulea , a member of the HAs  [96, 
102] , and then aligned these sequences with those of precursor proteins from 
various HSAs and RANAEs  [102] , which have previously been shown to belong to 
a single family, the pre-prodermaseptins  [52] . This alignment revealed that the 
precursor proteins from these three groups of frogs possessed highly conserved 

 Table 1.1       Representative databases dedicated to  AMPs . 

Year Database Website Content Key 
reference

2002 AMSDb  http://www.bbcm.univ.trieste.it/ ∼ tossi/amsdb.html Animal/plant 
AMPs

–

2002 SAPD  http://oma.terkko.helsinki.fi :8080/ ∼ SAPD Synthetic AMPs  [78] 

2003 NAD  http://www.nih.go.jp/ ∼ jun/NADB/search.html General AMPs –

2004 A/OL  http://www.atoapps.nl/AOLKnowledge/ Antimicrobial 
compounds

–

2004 Peptaibol  http://www.cryst.bbk.ac.uk/peptaibol/home.shtml Fungal AMPs  [79] 

2006 CyBase   http://researcht.imb.uq.edu.au/cybase   Plant AMPs  [80] 

2006 PenBase  penbase.immunaqua.com Shrimp AMPs  [81] 

2007 BACTIBASE  bactibase.pfba-lab.org Bacterial AMPs  [82] 

2007 Defensins  defensins.bii.a-star.edu.sg Defensins across 
eukarya

 [83] 

2007 AMPer  http://marray.cmdr.ubc.ca/cgi-bin/amp.pl Animal/plant 
AMPs

 [84] 

2008 PhytAMP  phytamp.pfba-lab-tun.org Plant AMPs  [85] 

2008 RAPD  http://faculty.ist.unomaha.edu/chen/rapd/index.php Recombinant 
AMPS

 [86] 

2009 APD2  http://aps.unmc.edu/AP Natural AMPs  [87] 

2010 CAMP  http://www.bicnirrh.res.in/antimicrobial General AMPs  [88] 

2012 YADAMP  www.yadamp.unisa.it General AMPs  [89] 

2012 DAMPD  http://apps.sanbi.ac.za/dampd General AMPs  [90] 

2012 DADP  http://split4.pmfst.hr/dadp/ Amphibian 
AMPS

 [91] 
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N-terminal pre-prosequences of approximately 50 residues, including a 22-residue 
signal peptide and an acidic spacer region, that was linked to a hyper variable 
C-terminal domain. This domain corresponded to progenitor AMPs with great 
diversity in length, sequence, net positive charge, and antimicrobial spectra  [102] . 
The strong conservation of these N-terminal pre-prosequences allowed molecular 
phylograms to be constructed, which showed that nucleotide sequences of pre-
prodermaseptins from HSAs, HAs, and RANAEs formed three separate clusters. 
Further analysis of these phylograms indicated a key result: the genes encoding 
the pre-prodermaseptins in these clusters arose from a common ancestral locus, 
which subsequently diversifi ed by several rounds of duplication and divergence of 
loci. Most of these duplication events appeared to have occurred in a species 
ancestral to the ranids and hylids, although gene duplication in  L. caerulea  appeared 
to have taken place after the divergence of HSAs and HAs  [102] . To provide a 
temporal framework for the origins and evolution of the pre-prodermaseptin 
genes, data from phylogenetic analyses  [101, 102]  were used in conjunction with 
the historical biogeography of hylids and ranids, which is strongly linked with 
tectonic events that occurred during fragmentation of the supercontinent Gond-
wana to eventually form the modern day continents  [108, 109] . This historical 
reconstruction showed that these genes arose before the isolation of India and 
South America from Africa in a pan-Gondwanan land mass, and therefore origi-
nated from an ancestral gene in excess of 150 million years old  [101, 102] . Moreo-
ver, given that hylids and ranids belong to the Neobatrachia, which diverged from 
Archeobatrachia in early Jurassic times  [110, 111] , and that pre-prodermaseptins 
have not been detected in this latter suborder  [112, 113] , these observations 
suggested that the ancestral gene of HSAs, HAs, and RANAEs may be up 
to around 200 million years old  [101] . Further analysis of cDNA from pre-
prodermaseptins suggested that duplications of this ancestral gene accompanied 
by accelerated mutations in the AMPs progenitor region and the action of positive 
selection all appeared to be mechanisms that contributed to the hypervariability 
of their C-terminal domain, and hence the great diversity of modern day AMPs 
from HSAs, HAs, and RANAEs  [102] . Interestingly, there was evidence to suggest 
that the diversity of these AMPs may have in part resulted from random substitu-
tions involving the operation of a mutagenic error-prone DNA polymerase  [102]  
similar to that reported for some bacteria  [114–116] . Since the initial study  [102] , 
these results have been supported and extended by later studies, which have 
been facilitated by the growing repository of cDNA for AMPs of anuran species 
 [101, 106, 107, 113] . For example, recent phylogenetic analyses have shown that 
the signal sequences of AMPs are highly conserved not only within lineages of the 
Neobatrachia, but also within those of Bombinatoridae and Pipidae from the 
Archeobatrachia. Although high divergence between the signal sequences of these 
three lineages was observed, there was evidence to suggest that the genes encoding 
AMPs in anurans had evolved convergently on at least three occasions in evolution-
ary time  [113] . In another study, which compared the signal sequences of a range 
of bioactive peptides from anurans, phylogenetic analyses showed that caerulein 
neuropeptides produced by  Litoria  spp. have a different evolutionary origin to the 
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pre-prodermaseptins found in these frogs  [105] . This latter study also showed that 
the profi le of bioactive peptides produced by individual frogs from a range of 
species was suffi ciently characteristic to form the basis of a diagnostic technique 
that was able to differentiate between subspecies and different population clusters 
of the same species and thereby provide insight into anuran evolutionary relation-
ships. Use of this technique showed that the bioactive peptide profi le of  L. caerulea  
from mainland Australia differed strongly to that of the same species present on 
offshore islands that had been isolated for around 10 000 years, indicating that 
evolutionary change can be effected in a relatively short time in evolutionary terms 
 [105] . Taken overall, these studies have led to the consensus view that the panopoly 
of AMPs produced by hylids, ranids, and other frogs represents the successful 
evolution of a defense system that maximizes host protection against rapidly 
changing microbial biota while minimizing the potential development of micro-
bial resistance to these peptides  [52, 101, 102] . 

 In contrast to the peptides discussed above, which are produced by organisms 
of a single taxonomic order, defensins are AMPs that are produced by creatures 
across the eukaryotic kingdoms  [48, 117–120] . In vertebrates these peptides have 
been identifi ed in fi sh  [121, 122] , amphibians  [92, 93, 96] , reptiles  [123, 124] , 
rodents  [125, 126] , monotremes  [127, 128] , birds  [129–132] , marsupials  [133] , 
and mammals  [134–136] , including humans and other primates  [137–139] . The 
defensins of vertebrates fall within the  α -,  β -, and  θ -defensin groups described 
above, and are generally cationic, amphiphilic peptides that contain around 15–50 
amino acid residues, including a conserved motif based on six cysteine residues 
that form three intramolecular disulfi de bonds (Chapter  2 ). Both  α - and  β -defensins 
adopt triple-stranded antiparallel  β -sheet confi gurations but whereas the former 
peptides form disulfi de bonds via the linking of Cys1–Cys6, Cys2–Cys4, and Cys3–
Cys5, the latter peptides form these bonds through links between Cys1–Cys5, 
Cys2–Cys4, and Cys3–Cys6 (Figure  1.1 )  [137, 138] . In contrast,  θ -defensins are 
cyclized molecules of 18 residues that appear to be the product of a head-to-tail 
ligation of two truncated  α -defensins and are the only known circular peptides of 
mammalian origin  [140] . Defensins are also found in plants  [141–143] , fungi  [144, 
145] , and invertebrates, such as insects  [120, 146, 147] , arachnids, including 
spiders  [148, 149] , ticks  [150, 151] , and scorpions  [152, 153] , crustaceans, including 
crabs  [154–156]  and lobsters  [157] , and bivalvia, including clams  [158, 159]  and 
mollusks  [160–163] . These invertebrate peptides commonly adopt the cysteine-
stabilized  α -helical and  β -sheet (CS α  β ) fold, which consists of a single  α -helix that 
is connected to a  β -sheet formed from multiple antiparallel strands depending 
upon the number of disulfi de bridges in the molecule  [141, 164–167] . 

  It has been proposed that all defensins evolved from a single precursor based 
on similarities in sequences, structures, modes of action, and the inter-functionality 
of these peptides derived from different kingdoms  [120, 146, 168] . For example, 
plant defensins were found to be structurally similar to their insect counterparts 
 [169]  while some fungal defensins displayed high levels of sequence homology to 
those found in invertebrates  [164, 166] . The identifi cation of defensins in lower 
eukaryotes by these latter studies led to the suggestion that the ancestral gene of 
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these peptides existed before the fungal and insect lineages of the eukaryotic 
domain diverged, and may be therefore at least 1 billion years old  [164, 166] . Con-
sistent with these observations a conserved structural motif, the  γ -core motif, 
was identifi ed in cysteine-stabilized AMPs, including defensins, from organisms 
across the phylogenetic spectrum  [170–172] . This motif was composed of two 
antiparallel  β -sheets with an interposed short turn region and, based on its evolu-
tionary lineage, it was proposed that defensins from mammals, plants, fungi, and 
invertebrates emerged from a common ancestor that can be traced back to prokary-
otic origins and was therefore in the region of at least 2.6 billion years old  [172, 
173] . Strongly supporting this proposal, AMPs were identifi ed in the myxobacteria 
 Anaeromyxobacter dehalogenans  and  Stigmatella aurantiaca , which showed strong 
similarities in sequence and structure to fungal defensins, and it was suggested 
that these bacterial peptides may represent the ancestors of eukaryotic defensins 
 [174, 175] . It has previously been hypothesized that myxobacteria played a central 
role in the endosymbiotic origins of the early eukaryotic nuclear genome  [176, 
177] , and it was proposed that the transfer of myxobacterial genes encoding these 
ancestral defensins may have mediated the immune defense of early eukaryotes 
and thereby the lineage of modern day defensins  [174, 175] . 

 The evolutionary relationship between defensins from vertebrates and inverte-
brates is far from clear, but based on common sequence and structural features, 

  Figure 1.1         Structure of human defensins: 
three-dimensional structures of human 
 α -defensin 1 (a) and  β -defensin 1 (b). Both 
 α - and  β -defensins adopt triple-stranded 
antiparallel  β -sheet confi gurations; however, 
whereas the former peptides form disulfi de 

bonds via the linking of Cys1–Cys6, 
Cys2–Cys4, and Cys3–Cys5, the latter 
peptides form these bonds through links 
between Cys1–Cys5, Cys2–Cys4, and 
Cys3–Cys6. 
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there is evidence to suggest that some of the former peptides may have their 
origins in the “ big defensin s” ( BD s), which have been identifi ed in invertebrates, 
but not in vertebrates (Figure  1.2 )  [138, 181] . BDs are a family of evolutionarily 
conserved AMPs that were initially isolated from crustaceans  [154–156] , later 
identifi ed in mussels  [159, 160, 182–184] , and most recently described in amphi-
oxus  [185] , which are the closest invertebrate ancestors to vertebrates  [178, 186, 
187] . The presence of BDs in mollusks, which are Protostomes, and amphioxus, 
which are Deuterostomes (Cephalochordata), enables the evolutionary history of 
these peptides to be traced back to their common ancestor, Bilateria (Figure  1.2 ), 
indicating that they are in the region of at least 500 million years old  [178–180] . 
BDs are between 79 and 94 residues in length, and comprise an N-terminal region 
that mediates activity against Gram-positive bacteria along with a C-terminal 
region that is active against Gram-negative bacteria  [154, 181] . This C-terminal 
region has been shown to form a three-stranded  β -sheet stabilized by three di -
sulfi de bridges that exhibits close structural homology to a number of a mam-
malian  β -defensins, which also show selective activity against Gram-negative 
bacteria  [138, 156, 181] . Taken with the fact that BDs and mammalian  β -defensins 
show similar gene structures, the similarities in structure and bioactivity pos-
sessed by these two groups of AMPs suggested an evolutionary relationship with 

  Figure 1.2         Evolution of  β -defensins: 
phylogenetic tree indicating evolutionary 
relationships of bilateral animals that led to 
the emergence of  β -defensins in the 
vertebrate lineage. This tree shows that the 

evolutionary history of these peptides to be 
traced back to Bilateria, indicating that they 
are in the region of at least 500 million years 
old  [178–180] . 
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 β -defensins emerging from BDs through exon shuffl ing or intronization of exonic 
sequences  [181, 188] . In relation to other mammalian defensins,  α -defensins have 
only been detected in certain animals  [189] , such as humans  [138]  and horses  [134] , 
but were found to be absent from others, such as cattle  [190]  and dogs  [191] . The 
underlying reasons for the selective expression of  α -defensins in mammals is not 
well understood but clearly, these AMPs arose after mammals diverged from other 
vertebrates  [192] . Primarily founded on the physical proximity of  α - and  β -defensins 
on the chromosome as well as similarities between their structures and biological 
activities, it is generally accepted that the former AMPs have evolved from the 
latter peptides via gene duplication and subsequent positive diversifying selection 
 [126, 189, 193] . Based on the fact that they had only been identifi ed in therians 
 [194] , it had been suggested that  α -defensins were at least 130 million years 
old, arising before the divergence of placental mammals and marsupials  [136] . 
However, the recent identifi cation of  α -defensins in the duck-billed platypus 
pushed their emergence back to before the divergence of monotremes and the-
rians  [128] , which occurred around 210 million years ago  [195] . It is generally 
believed that mutated  α -defensin genes gave rise to  θ -defensin genes  [138] , and 
these peptides appear to be only expressed in the rhesus macaque monkey  [196]  
and baboons  [197, 198] . In humans and their closest primate relatives, including 
chimpanzees, bonobos, and gorillas,  θ -defensin genes exist as pseudogenes and 
although they are transcribed, a premature termination codon in the signal se -
quence precludes their translation and to date these peptides have not been 
reported to occur naturally in human cells  [140, 199, 200] . Given that humans 
evolved from orangutans over 7 million years ago, and that these latter primates 
have both intact and silenced copies of  θ -defensin genes, it has been proposed that 
the premature stop codon found in some of these genes may have originated at 
this fork in evolution  [201] . Moreover, based on the evolutionary divergence of 
Hominoidea from Cercopithecoidea, this would suggest that  θ -defensins are at 
least 30 million years old  [202, 203] . Interestingly, the pseudogenes of human 
 θ -defensins, or retrocyclins, have been successfully expressed in human cells by 
using aminoglycosides to bypass the premature stop codon of their mRNA  [201, 
204]  and have been shown to have potent antiviral activity  [205] , particular against 
HIV  [204, 206, 207] . Given that viruses have evolved in the absence of selective 
pressures from retrocyclins, it has been proposed that restoration of the endog-
enous production of these peptides in human cervicovaginal tissues by the applica-
tion of aminoglycoside-based topical microbicides may help prevent the sexual 
transmission of HIV  [201, 204] . 

  It is clear that AMPs possess an ancient history, and positive selection appears 
to be the major evolutionary driver of the structural and functional diversity 
observed for these peptides in the case of both vertebrates  [208, 209]  and inverte-
brates  [210, 211] , engendering AMPs with an ability to combat new or altered 
microbial pathogens  [212, 213] . Indeed, it has been suggested that AMPs and 
microbial resistance mechanisms have coevolved, leading to a transient host–
pathogen balance that has shaped the existing repertoire of these peptides found 
in nature  [57, 170, 172, 173, 214] . For example, plants and humans are susceptible 
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to different pathogens and thus their defensins are exposed to different selective 
pressures. As plants are generally much more susceptible to infection by fungi 
compared to other microbes, fungal pathogenicity would select for survivors with 
antifungal defensins. In contrast, humans are generally much more susceptible 
to infection by bacteria than fungi and thus bacterial pathogenicity would select 
for survivors with antibacterial defensins  [215] . However, positive selection also 
appears to be an important factor in retaining duplicated genes and promoting 
the acquisition of a novel or more specialized function  [216] , which can provide 
the host with an evolutionary advantage as observed with the diversifi cation of 
defensins  [217–219] . For example, some plant defensins have no antifungal action, 
and, rather, inhibit the activity and synthesis of  α -amylase, which is a digestive 
enzyme found in the gut of insects. It has been proposed that that the inhibition 
of  α -amylase activity renders plant material indigestible and thus helps plants to 
resist feeding insects  [141, 220] . In the case of vertebrates, it has been shown that 
 β -defensins have evolved via gene duplication and diversifi cation to become the 
major components of venom in the duck-billed platypus, believed to be the only 
venomous monotreme  [127, 221] . Interestingly, some species of snakes and lizards 
produce venoms that include peptides derived from the duplication of  β -defensins, 
and share many features with platypus venoms via convergent evolution  [128, 222] . 
It is also interesting to note that the expression of platypus genes encoding venom 
defensins was detected in non-venom tissues, suggesting that these peptides 
may play other biological roles  [223] , and consistent with this suggestion, non-
antimicrobial biological activities have been demonstrated for  β -defensins in the 
case of a number of vertebrates  [125, 137, 139, 224, 225] . This functional promiscu-
ity of  β -defensins represents an evolutionary advantage for mammals  [181] , which 
has been demonstrated for other AMPs  [75, 226–231]  and is now discussed below 
using defensins as a major example.  

  1.3    
  AMPs : Multifunctional Molecules 

 As described above, mammalian defensins were fi rst isolated due to their antimi-
crobial properties  [138, 232] ; in other cases, however, AMPs were initially recog-
nized for other functions and shown to possess antimicrobial activity at a later 
date  [55] . For example, lactoferrin was originally recognized primarily for its ability 
to bind iron and later studies demonstrated that the protein was able to kill bacteria 
via iron-independent mechanisms of membrane interaction that were typical of 
AMPs  [233] . The idea that peptides could serve both as AMPs and modulators 
of the immune system came from studies on   α -melanocyte stimulating hormone  
(  α -MSH ). This peptide was well recognized for its endogenous melanogenic prop-
erties and ability to control infl ammation via immunomodulation, promoting the 
generation of anti-infl ammatory cytokines, and downregulating proinfl ammatory 
cytokines  [234–237] . However, the widespread distribution of  α -MSH in many 
barrier cells such as keratinocytes, fi broblasts, and melanocytes, and in various 
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immune cells, including neutrophils, monocytes, and macrophages, suggested the 
potential for a wider role in host defense  [238–240] . Confi rming this suggestion, 
 α -MSH is now generally included within the AMP ’ s classifi cation based on its 
potent broad-spectrum antimicrobial activity  [241, 242] , which includes mem-
branolytic action against bacteria  [243–245] . The fi rst hints that established AMPs 
such as defensins may possess functional promiscuity came from comparative 
studies between these peptides and chemokines, which play a role in the induction 
of leukocyte traffi cking. These two groups of peptides were originally thought to 
have distinct roles in the innate immune response, but it was found that their 
expression levels could be upregulated in response to microbial challenge; further 
studies showed that many chemokines were able to exert direct antimicrobial 
activity via mechanisms similar to AMPs while some defensins were capable of 
activating specifi c chemokine receptors and exerting chemoattractant activity  [246, 
247] . Such studies led to the realization that AMPs are also multifunctional pep-
tides that serve a variety of biological roles, including immunomodulatory func-
tions in host defense that can supplement their direct antimicrobial activity and 
lead to the resolution of infection  [231, 248] . 

  1.3.1    
 Defensins as Effectors of Immunity 

 The  human  β -defensin s ( HBD s) 1–4 are the most studied mammalian defensins 
and are primarily expressed in various epithelial tissues, including airway epithe-
lia, urogenital tissues, nasolacrimal duct, mammary gland, testes, and epididymis 
along with some immune cells, such as monocytes and macrophages  [232, 249–
258] . The best known role of HBDs and other mammalian  β -defensins as effec-
tors of innate immunity is direct action against Gram-positive and Gram-negative 
bacteria, fungi, viruses, and parasites, which has been extensively reviewed else-
where (Chapter  2 )  [38, 125, 139, 232, 251, 257] . However, in addition to their direct 
antimicrobial activities, HBDs play a critical role in regulating infl ammation, 
which is essentially a protective response by the host ’ s immune system to elimi-
nate injurious stimuli, such as infection by pathogenic microbes, and to initiate 
healing at the infl amed tissue site  [137, 139] . As a contribution to regulating 
infl ammation, HBDs function as chemoattractants for a variety of immune cells 
 [224, 232]  and in a landmark study, Yang  et al . demonstrated the recruitment of 
immature dendritic cells and CD4  +   memory T cells by a concentration gradient of 
HBD1 and 2  [259] . The chemotactic activity of HBD3 towards immature dendritic 
cells has also been demonstrated, along with that of several murine defensins, 
which have been shown to chemoattract immature murine dendritic cells  [224] . 
In combination, these results clearly suggested that HBDs and other defensins 
are able to serve as modulators of the adaptive immune response to infection with 
their initiation into this process being marked by the recruitment of immature 
dendritic cells to sites of microbial entry into the host. This recruitment leads to 
the uptake, processing, and presentation of microbial antigens by mature dendritic 
cells with the subsequent induction of the antigen-specifi c immune system  [257, 
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260, 261] . HBDs have also been show to exert chemotactic activity towards phago-
cytes, which include monocytes and macrophages, and form part of the front-line 
effector cells involved in innate defense against invading pathogenic microbes 
 [262–266] . For example, it has been shown that HBD1 is chemotactic for mono-
cytes while HBD2–4 are variously chemotactic for monocytes, macrophages, and 
mast cells  [139, 267] , which in the latter case can indirectly promote phagocyte 
recruitment  [224, 257] . Once recruited to the site of infection, phagocytes become 
activated and work in conjunction with a range of effector molecules to internalize 
and kill infecting microbes. Moreover, the processing of microbes by both imma-
ture and mature dendritic cells is phagocytic, and hence contributes to innate 
immunity by directly killing pathogens. In addition, dendritic cells, particularly 
upon activation, produce numerous mediators, including cytokines, chemokines 
and AMPs, that participate in innate immunity  [224, 257, 261, 268] . Taken together, 
these results indicated that HBDs can serve as modulators of both the innate 
and adaptive immune response to infection  [125, 139, 232] . HBDs are able 
to function as proinfl ammatory mediators of the immune response by indirect 
mechanisms as shown by a recent study, which demonstrated that these peptides 
are able to suppress the apoptosis of neutrophils  [269]  and prolonging the lifespan 
of these cells is an infl ammatory event that contributes to host defense against 
invading microbes. It was found that HBDs, particularly HBD3, exerted their sup-
pressive effect on neutrophil apoptosis through binding to CCR6, which is a 
chemokine receptor. The resulting activation of this receptor led to a series of 
antiapoptotic events, including the upregulation of antiapoptotic proteins and the 
downregulation of proapoptotic proteins  [269] . However, in many cases HBDs 
directly promote a proinfl ammatory immune response by binding to various cell 
receptors  [137] . For example, the ability of HBDs 2 and 3, and to a lesser extent 
HBD1, to chemoattract immature dendritic cells and CD4  +   memory T cells is 
facilitated by interaction with CCR6  [259, 270] , which is a  G-protein-coupled recep-
tor  ( GPCR )  [271, 272] . In the case of HBD3, a number of studies have investigated 
the structure–function relationships underpinning these interactions, and found 
that both the N-terminal tertiary structure and specifi c residues proximal to this 
terminus were important to the receptor binding and chemotactic activity of the 
peptide  [273–275] . These data were strongly supported by the results of structure–
function studies on the murine ortholog of HBD3, DEFB14  [274–276] , which also 
chemoattracts cells that express CCR6 along with macrophages from both mice 
and humans  [275, 276] . However, the chemotactic activity of DEFB8, a murine 
 β -defensin, towards immature dendritic cells and CD4  +   T cells  [277]  along with 
that of HBD3 and 4 towards macrophages was found to be independent of CCR6, 
suggesting the use of different receptors  [273] . In the case of HBD3 this appears 
to be the chemokine receptor CCR2  [278, 279] , which is also a GPCR  [280, 281] . 
The mechanisms used by  β -defensins to mediate chemotaxis are poorly under-
stood  [139]  and are generally beyond the scope of this chapter; however, currently, 
three alternative models have been proposed  [65] . According to the “alternate 
ligand model,”  β -defensins directly bind to a specifi c chemokine receptor, re -
sulting in the initiation of receptor signaling. This model appears to include 
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chemotaxis mediated by the binding of HBDs to CCR6 where these peptides serve 
as alternate ligands to the chemokine  macrophage infl ammatory protein-3 α   ( MIP-
3 α  ), which is the natural agonist of this receptor. The ability of HBDs to bind 
CCR6 appeared to be based on similarities between the three-dimensional struc-
tures of HBDs and MIP-3 α , including the presence of topological motifs that could 
mediate receptor recognition and the surface distribution of cationic residues 
on these molecules  [232, 246] . The “membrane disruption model” proposes that 
 β -defensins modify the membrane microdomain associated with the chemokine 
receptor, which indirectly changes its function to either signal without a ligand or 
to become unresponsive to binding by its specifi c ligand. In contrast, the “trans-
activation model” suggests that  β -defensins stimulate the release of a membrane-
bound growth factor, which then binds and activates its high-affi nity receptor 
(Figure  1.3 )  [65] . 

  In addition to binding chemokine receptors,  β -defensins have also been shown 
to interact with  antigen-presenting cell s ( APC   s) via  Toll-like receptor s ( TLR s), 

  Figure 1.3         Models for the interaction of 
 β -defensins with cell surface receptors: 
putative models for the interaction of 
defensins with chemokine receptors (adapted 
from  [65] ). According to the “trans-activation 
model” (a), AMPs stimulate the release of a 
membrane-bound growth factor, which then 
binds to its high-affi nity receptor with 
activation resulting. In the “alternate ligand 
model” (b), AMPs bind directly to the 

receptor, which results in the initiation of 
signaling. The “membrane disruption model” 
(c) proposes that AMPs modify the 
membrane microdomain associated with the 
receptor, which indirectly leads to a change 
in receptor function. This functional change 
allows the receptor to either signal without a 
ligand or become insensitive to binding by 
its specifi c ligand. 

Trans-activation: AMPs displace growth
factors facilitating receptor activation
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which are integral membrane glycoproteins that recognize microbial components 
 [282, 283] . For example, it has been reported that the activation of APCs by HBD3 
is mediated by binding of the peptide to TLR1 and TLR2 and the subsequent 
activation of the  MyD88  ( myeloid differentiation primary response gene 88 )-depend-
ent signaling pathway  [284] . MyD88 is an adapter molecule that is recruited by 
activated TLRs in order to propagate a signal  [283] . Studies on MBD2, which is a 
murine ortholog of HBD2, showed that interactions between the peptide and TLR4 
mediated the upregulation of costimulatory proteins on immature dendritic cells, 
including CD40, CD80, and CD86  [285] , which play a role in the maturation of 
these cells  [286] . MBD2 was found to stimulate the maturation of immature den-
dritic cells, which led to an adaptive immune response, including the production 
of proinfl ammatory cytokines  [285, 287] . Most recently, the induction of proinfl am-
matory cytokines by HBD3 was demonstrated in human macrophages by the 
enhanced expression of a variety of gene transcripts, including those for tumor 
necrosis factor- α ,  interleukin  ( IL )-1 α , IL-6, and IL-8  [279] . In human monocytes, 
the increased expression of proinfl ammatory cytokines was detected at the protein 
level for IL-1 α , IL-6, and IL-8, which appeared to be induced by the binding of 
HBD3 to TLR1 and TLR2  [288] . A number of studies have shown that HBD2–4 
can stimulate human keratinocytes to increase the production of a variety of proin-
fl ammatory mediators, including IL-6, IL-8, IL-10, IL-20, and MIP-3 α   [289–291] . 
In some cases, there was evidence to suggest that the induction of these mediators 
was dependent on the interaction of HBDs with a GPCR  [289] . The use of a GPCR 
was also implicated in the ability of HBD2–4 to enhance the expression of the 
pruritogenic cytokine, IL-31, in a variety of human mast cells, which constituted 
a novel source of this cytokine. These studies also showed that the expression of 
IL-31 was elevated in psoriatic skin mast cells, which led to the suggestion that 
the HBD-stimulated production of pruritogenic factors by mast cells provided a 
novel mechanism by, which human AMPs may contribute to infl ammatory reac-
tions and suggested a role for these HBDs in the pathogenesis of psoriasis and 
other skin disorders  [292] . 

 Collectively, the studies described above demonstrate that HBDs and other 
 β -defensins are able to bind a variety of cell surface receptors and enhance the 
adaptive and innate immune response. However, studies over recent years have 
suggested that these peptides are also able to attenuate the immune response by 
suppressing a proinfl ammatory response  [137, 293] . The ability of HBDs and other 
 β -defensins to exert an immunosuppressive effect on proinfl ammatory responses 
induced by bacterial and viral components has been suggested by investigations 
both  in vitro   [137, 294–297]  and  in vivo   [293, 298, 299] . In general, the mechanisms 
underpinning these immunosuppressive effects are unclear but recent work has 
suggested that HBDs and other  β -defensins may combine both pro- and anti-
infl ammatory capacities with the balance of these effects determined by the levels 
of expression of the HBD peptides. For example, HBDs may be produced at high 
levels at the site of microbial infection, resulting in a proinfl ammatory response 
and the chemotactic recruitment of immune cells such as macrophages, as 
described above. However, as the microbial threat is nullifi ed and the levels of 
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HBDs present at the site of infection decreases, the ability of these peptides to act 
as proinfl ammatory suppressors contributes to the resolution of infection  [137] .  

  1.3.2    
 Defensins and Wound Healing 

 A number of studies showed that HBD1–4 was expressed in skin substitutes 
prepared from keratinocyte cultures and split skin grafts from healthy and burned 
donors  [300–302] . It has also been shown that a number of these HBDs stimulate 
the migration and proliferation of epidermal keratinocytes, which led to the sug-
gestion that these peptides may promote cutaneous wound healing  [289] . Consist-
ent with this suggestion, the expression of HBD2 appeared to be upregulated in 
acute and chronic wounds while the presence of the peptide was not detected in 
healthy skin  [303, 304] . It has been shown that the expression of HBD2 is signifi -
cantly induced by  epidermal growth factor  ( EGF ) when costimulated with the 
cytokine, IL-1 α   [305] . It has previously been shown that this defensin is upregu-
lated by IL-1 α  in the human corneal epithelium in response to ocular surface 
injury and it was suggested that the presence of the peptide in the regenerating 
corneal epithelium may indicate that it plays a direct role in the wound-healing 
process  [306] . HBD2 also appears to play a role in the restitutive migration of 
epithelial cells and wound healing of the mucosal barrier in the intestine  [307] , 
while other studies have shown that, similarly to vascular endothelial growth 
factor, the peptide is able to promote the migration and wound healing of endothe-
lial cells, manifested by the formation of capillary-like tubes with human umbilical 
vein endothelial cells  [308] . More recent studies have shown that a high-glucose 
environment reduces HBD2 expression in keratinocytes via the downregulation 
of STAT protein signaling, which led to the observation that reduced expression 
of the peptide would have severe negative effects on the wound healing process 
under diabetic conditions, including impaired keratinocyte migration and subop-
timal neovascular formation  [309] . HBD3 is highly expressed in keratinocytes, 
especially at wound sites in response to the growth factors such as EGF, transform-
ing growth factor- α , and insulin growth factor-1  [310–312] , and it has been shown 
that the peptide promotes the proliferation and migration of keratinocytes through 
phosphorylation of the EGF receptor and STAT proteins  [289] . Consistent with 
these fi ndings, studies on murine models showed that the expression of  rat 
 β -defensin 3  ( RBD3 ) was enhanced at both the mRNA and protein levels after skin 
wounding. However, this study also showed that when the skin of diabetic rats 
was wounded, RBD3 induction was negligible and similar observations were made 
for HBD3 expression in human keratinocytes under various glucose-treatment 
conditions, indicating that both defensins were dysfunctional under hyperglyc-
emic conditions  [313] . Reinforcing the importance of HBD3 to the process of 
wound healing, several studies demonstrated that gene transfer of the peptide to 
infected excisional wounds on the backs of diabetic pigs enhanced wound closure 
by around 25% compared to controls  [314, 315] .  
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  1.3.3    
 Defensins and Canine Coat Color 

 CBD103 is a canine  β -defensin with potent antibacterial activity that is widely 
expressed in the skin of dogs, thereby participating in the innate defense of 
the host  [191, 316–318] . However, in addition to its immune-related functions, a 
number of recent studies have suggested that CBD103 may play a role in determin-
ing the color of some dog coats  [137, 319] . A number of genes and their protein 
products were known to mediate the pigmentation of dog coats although interac-
tions between the  melanocortin 1 receptor  ( Mc1r ) and its antagonist, the  agouti 
signal peptide  ( ASP ) appeared to be the primary determinants of this process  [320] . 
Essentially, constitutive signaling by Mc1r located on the surface of melanocytes 
controls the production of eumelanin, or black pigment, and the binding of ASP 
to the receptor antagonizes this signaling, resulting in the production of pheomel-
anin, or red/yellow pigment  [319, 321] . Differential signaling and genetic variation 
in both ASP and Mc1r was able to explain much of the variation found in canine 
coat color  [319] , but it had long been known that these interactions could not 
account for the dominant black coat color observed in breeds such as Labrador 
and Golden retrievers  [322] . In response, recent studies showed that this dominant 
black phenotype was associated with an allele located at the K locus of the canine 
genome  [323, 324] , which encoded a variant of CBD103 that lacked an N-terminal 
glycine residue  [325] . This mutant defensin was found to act as a neutral antago-
nist to Mc1r, thereby preventing ASP from associating with the receptor and 
allowing unrestricted signaling to synthesize black pigment  [326] . Interestingly, 
through mating with domestic dogs, this dominant mutation has been identifi ed 
in North American wolves and occurs at high frequency in those of these animals 
that inhabit forested locations where dark color would provide an advantage, dem-
onstrating a molecular signature of positive selection  [327] . Most recently, evidence 
has been presented suggesting that orthologs of CBD103 may be linked to the 
determination of coat color phenotypes in cattle  [328]  and function as novel Mc1r 
agonists in the regulation of melanocyte responses in humans  [326, 329] .   

  1.4    
 Discussion 

 In this chapter, the history of AMPs has been described, and the discovery of these 
peptides provided an explanation as to why plants and insects, which lack an adap-
tive immune systems, are able to resist infections. This chapter has shown that 
the starting point for the history of AMPs is popularly taken to be the 1980s based 
on the fi rst descriptions of cecropins in 1981  [32]  and magainins in 1987  [33] . 
However, there is some debate as to the validity of this assertion, which appears 
to be not without foundation, given that in 1962 AMPs were reported in the Euro-
pean frog,  B. variegate   [23] , predating the fi rst reports of magainins by around 25 
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years. However, while accreditation for the discovery of AMPs is an academic 
matter, the subsequent explosive increase in their rate of identifi cation and char-
acterization (Table  1.1 ) has provided some very tangible benefi ts in relation to the 
understanding and utilization of these peptides. The most obvious of these ben-
efi ts is the promise shown by these peptides to act as lead molecules for develop-
ment as novel antimicrobial agents and as anticancer agents (Chapter  6 ). However, 
the availability of databases of AMPs with detailed descriptions of their structural 
and antimicrobial properties has provided other benefi ts, such as the construction 
of models to describe their membrane interactions, which is a key factor in the 
ability of these peptides to kill microbes (Chapters  5 ). Such understanding 
can also provide insight into other lipid–peptide interactions within biological 
systems. The availability of databases of AMPs with structural information has 
also contributed to the development of theoretical techniques to analyze the prop-
erties of AMPs, including the prediction of their membrane interactive potential 
(Chapter  4 ) along with phylogenetic analysis of their evolutionary relationships 
as discussed above. This chapter has shown that AMPs have an evolutionarily 
ancient history with pre-prodermaseptins from frogs of the Ranidae and Hylidae 
families, originating from an ancestral gene over 200 million years old. Moreover, 
these AMPs have evolved to give modern frogs profi les of these peptides that 
are suffi ciently characteristic to aid the taxanomic classifi cation of these creatures 
and link their biodiversity to their recent evolutionary history. In the case of ver-
tebrate  β -defensins, these peptides appear to have evolved from the C-terminal 
domain of ancestral invertebrate defensins with an evolutionary history that 
can be traced back to bilateran organisms that lived over half a billion years ago 
(Figure  1.2 ). 

 An emerging theme from the voluminous literature on AMPs is the multifunc-
tional nature of these peptides. In the case of  β -defensins, these peptides contrib-
ute to host defense by direct antimicrobial action and by their ability to modulate 
both the innate and adaptive immune systems. These peptides have been shown 
to promote the proinfl ammatory response via indirect mechanisms such as inhib-
iting the apoptosis of immune cells and directly through their ability to bind to 
immune cell receptors and induce the chemoattraction of these cells to sites of 
microbial infection, thereby facilitating pathogen clearance. There is also increas-
ing evidence that  β -defensins are able to suppress the proinfl ammatory response, 
thereby contributing to the resolution of infection. Increasingly, other biological 
functions for  β -defensins are being reported and here we have briefl y described 
several of these functions, including the ability of these peptides to infl uence 
canine coat color and to contribute to wound healing. However, beyond the scope 
of this chapter,  β -defensins have also been reported to play roles in mammalian 
fertility and development along with conditions ranging from psoriasis and atopic 
dermatitis to cancer and Crohn ’ s disease, which have been extensively reviewed 
elsewhere  [19, 125, 137, 139, 251, 330] . Taking this chapter as a whole, it is clear 
that AMPs are ancient molecules; however, given their evolutionary signifi cance 
and functional promiscuity, they would appear to have a promising future in areas 
ranging from phylogeny to therapeutics.  
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