Index

<i>a ab initio</i> methods 67–71, 91, 94	'basicity method' for tautomer ratio estimation			
- <i>ab initio</i> molecular dynamics (AIMD) 253	5, 299, 305–333			
absolute tautomerism 116	- complicating factors in use of 326–330			
absorption UV–Vis spectroscopy 25–46, See	caused by hydrogen bonding 327–328			
also Quantitative analysis of tautomeric	caused by protonation at the 'wrong site' 328			
equilibria	 – caused by steric and stereoelectronic 			
activation energy 216	factors 326-327			
acylamidines, Δ (NMe) in 313–315	- correction factors 308-320, See also			
adenine, gas-phase spectroscopy of 187	individual entry			
adenosine triphosphate (ATP) 2	experimental protocol 307–308			
adiabatic reactive molecular dynamics	 tautomeric problems to which basicity 			
(ARMD) 256	method is inapplicable 330–332			
alicyclic ketones and amides, tautomerism	 using model compounds 306 			
in 3	Beer's law 26			
amidines 308–309	benzofusion			
 amidine correction factors, conformational 	 to give benzenoid structures in six-mem- 			
effects on 309-310	bered ring oxoheterocycles 321-324			
4-((4-Aminophenyl)diazenyl)-N,N-dimethyl- aniline 43–45	 to give quinonoid structures in a variety of compounds 324–325 			
ammonium–azonium tautomerism 43–45	bifunctional NH/N azaaromatics,			
– in 4-((4-aminophenyl)diazenyl)-N,N-	tautomerism in 56–67			
dimethylaniline 43-45	- intramolecular excited-state NH			
annular tautomerism in tetrazole 363	tautomerization in 2,9-(di-2'-pyridyl)-4,7-			
aromatic ketones and amides, tautomerism	di(<i>tert</i> -butyl)carbazole 59			
in 3	- intramolecular NH/N tautomerization			
aromatic resonance 3–4	56–59			
Arrhenius theory 17	biophysics, NH Tautomerism as a tool in			
azaindole 17	72–74			
azo-hydrazone tautomerism 133	Boltzmann distributions 184–185			
,	bond energy bond order (BEBO) potential			
b	255			
ballistic wavepacket motion 88–90	Born–Oppenheimer approximation 145			
bands decomposition, quantitative analysis by	Brownian motion 98, 223			
using 29-33				
barrier frequency 222	C			
base pairs 189–191	carbohydrate tautomerism 132–133			
base-strengthening effect 329	cation salvation 306			

 ${\it Tautomerism: Methods \ and \ Theories, First \ Edition. \ Edited \ by \ Liudmil \ Antonov.} \\ @\ 2014\ Wiley-VCH\ Verlag\ GmbH\ \&\ Co.\ KGaA. \ Published\ 2014\ by\ Wiley-VCH\ Verlag\ GmbH\ \&\ Co.\ KGaA. \\$

chemical shifts in tautomeric equilibria study	- lowest energy structures of
145-173, See also under Isotope effects	hydrogen-bonded cytosine dimmers 190
chemometrics 25-46, See also Quantitative	
analysis of tautomeric equilibria	d
citrinin 169	Debye relaxation time 225
classical Liouville equation 235, 241	definition of tautomerism 1–3
classical proton transfer reaction 236–238	- practicalities 1-3
coherences 238	– principles 1–3
coherently excited vibrations in product modes	density functional theory (DFT) methods 60,
90–92	67–71, 166, 189, 254–255, 338, 342–347
- <i>ab initio</i> calculations 91	 double (doubly) hybrid functionals
common cation 307, 331–333	344–345
complete active space perturbation theory	 generalized gradient approximation (GGA)
(CASPT2) calculations 68	343
complete active space self-consistent field	- Hybrid Functionals 344
(CASSCF) 68	- Kohn-Sham formulation of 343
computational approaches to proton transfer	 Lee, Yang, and Parr (LYP) 343
254–256	 local density approximation (LDA) 343
	– meta-GGA functionals 344
concentration effect on equilibrium 36 concentric tubes 149	- OPTimized eXchange (OPTX) 343
	– orbital-free DFT procedures 342
concerted mechanism 67	– unconventional' approaches to 345–346
condensed-phase proton transfer 263–264	– dispersion corrections 345
conductor-like screening model (COSMO)	– – local hybrids 345
354	- validation of density functionals 346–347
configuration	density matrix 236
integrationsingles-second-order	density operator 236
Møller–Plesset (CIS-MP2) studies 67	deuterium isotope effects 153–154, See also
configuration interaction (CI) 340	Intrinsic isotope effects
contiguous nitrogen atoms, compounds with,	diatomics in molecules (DIM) 255
Δ (NMe) for 315–317	diffraction methods 197-211, See also under
continuum solvation models 353–355	Solid state; X-ray diffraction
contracted basis function 348	diffuse functions 348
coordinate covalency term 278	dipolar repulsion 4–5
correction factors 307–325	dipyridocarbazole, ESDPT in 64
- derivation of 308–320	direct evidence of solid-state tautomerism by
– – acylamidines, Δ (NMe) in 313–315	diffraction methods 197-211
 – amidines and related compounds 	direct intramolecular proton transfer reactions
308-309	50-51
– imides, Δ (NMe) in 313–315	disorder 198
lactams 310-312	dispersion corrections 345
– – thiolactams, Δ (NMe) for 317–320	double (doubly) hybrid functionals 344-345
– – vinylogous lactams 312–313	double ESIPT, reaction-path-specific
 regularities revealed by 320–325 	wavepacket dynamics in 96-97
 – six-membered ring oxoheterocycles 	double hybrid density functionals (DHDFs)
321–324	347
correlated treatments 340–342	double zeta, DZ 348
coupled cluster (CC) calculations 340	double-resonant spectroscopy 178, 185
coupling quantum and classical motion	dynamic electron correlation 339
242-246	•
couplings 149	e
critical micelle concentration (CMC) 73-74	electrical effect substituent constants 7
cyclic anhydride-enol tautomerism 114	electronegative substituents, changes in
cytosine, gas-phase spectroscopy of 187–188	tautomeric form brought about by 7-8

electronic rearrangement 233-234 – fluorescence correlation spectroscopy environmental changes affecting equilibrium 55-56 - - fluorescence microscopy 55-56 33 - 37- concentration effect 36-37 - phase-modulation fluorimetry 54 - mathematical expression 33-37 - pulse fluorimetry 54 - optimization procedure 35 steady-state fluorescence methods 52–53 - physical meaning 33-37 - time-resolved fluorescence approaches 54 salt addition effect 34 fluorescence upconversion 84 - solvent effect 33-34 Fokker-Planck equation 214, 222, 234-236, - temperature change effect 35 239, 241 exchange of isotopes 149 force-field-based reactive MD 255 excited state protontransfer reaction (ESIPT) Fourier grid Hamiltonian method 247 13 - 15Fourier transform microwave spectroscopy excited-state intramolecular proton transfer (ESIPT) reactions 57, 79-80, 213-250, See Franck-Condon principle 91, 93-95, 278 also Transition state theory (TST) frequency domain 54 - quantum and classical 236-238 fully polarizable continuum model (FPCM) - 'self-assisted' intermolecular ESIPT 59 354 - solvent friction and solvent dynamics 224-226 gas phase, classical and quantum proton ultrafast transient absorption signatures of transfer in 261-263 85 - 87experimental and theoretical methods in gas-phase experiments 177-192, See also tautomerism 1-20 under Tautomer-selective spectroscopy - history 1-20 Gaussian-type orbitals (GTOs) 348 - introduction 1-20 general Amber force field (GAFF) 359 - recent developments in 1-20 generalized gradient approximation (GGA) explicit solvent models 355-357 343 geometric isotope effect 151 ground-state intramolecular proton transfer femtochemistry 247-249 reactions 213-250, See also Transition femtosecond photoelectron 84 state theory (TST) femtosecond pump-probe spectroscopy quantum and classical 236–238 79 - 100- solvent friction and solvent dynamics 224-226 - double ESIPT, reaction-path-specific wavepacket dynamics in 96-97 guanine 179-187 - internal conversion 97-99 gas-phase spectroscopy of 179–187 - of photoinduced tautomerism 79-100, See -- IR absorption spectra 182 also Pump-probe spectroscopy dynamics; -- IR-UV hole burning 181-182, 185-186 Ultrafast pump-probe spectroscopy – keto guanine 184 - reaction mechanism 93-96 -- REMPI 181-187 five- or six-membered heterocyclic -- UV-UV hole burning 181 compounds, annular tautomerism of 126 - 128flavones 17 halochromism 43 fluorescence anisotropy 54-55 Hamiltonian (\mathcal{H}) operator 235–238 fluorescence correlation spectroscopy (FCS) Hartree-Fock (HF) theory 254-255, 339 55 - 56Hilbert space 214 fluorescence microscopy 55-56 Hildebrand solubility parameter 278, 301 fluorescence sensing 72 Hohenberg-Kohn theorem 342 fluorescence techniques for studying hole-burning 178 tautomerism 52-56 hybrid functionals 344 - advanced techniques in 54-56 - double (doubly) hybrid functionals 344-345 – fluorescence anisotropy 54–55

hybrid functionals (contd.) - local hybrids 345 - random phase approximation (RPA) 345–346 - range-separated hybrids 345 hydrogen-bonded dimers, intermolecular NH/N tautomerization in 59–60 hydrogen bonding 327–328 hydrogen transfer (HT) in molecular systems 253–268 - force field treatment of 253–268 2-(2-Hydroxyphenyl)benzothiazole (HBT) 80 i imides, Δ(NMe) in 313–315 imine–amine tautomerism 116–124	couplings 149 exchange of isotopes 149 - isotope labeling 151 - one-tube experiments 148 - solvent variation 150 - temperature 150 - potential energy wells 147 - primary effects 146–147, 149–150, 161–163 - secondary effects 146–147 - solid state 164–165 - theoretical calculations 165–166 isotope labeling 151 isotopic perturbation of equilibrium 160–161
independent particle methods 339–340	k
infrared (IR) absorption 178	Kamlet-Abboud-Taft (KAT) 283
infrared spectroscopy 259–261	keto–enol tautomerism 15, 112–116
instrument response function (IRF) 73	 of monosubstituted phenylpyruvic acid
integral intensities 38	114
inter alia 279, 326	– in 4-(phenyldiazenyl)naphthalen-1-ol 37–40
interactive non-linear least-squares (I-NoLLS) 267	ketohydrazone-azo enol tautomeric
internal conversion, in femtosecond	equilibrium 203
pump-probe spectroscopy 97-99	ketopyridine-enolpyridine-ketoenamine
intramolecular hydrogen bonding 5–6	tautomerization 203–204
 selective stabilization through 5–6 	kinetic isotope effect (KIE) 262
with a side chain group 6	Kirkwood function 301
intramolecular NH/N tautomerization	Kohn-Sham formulation of DFT 343
56–59	
$-\pi$ -conjugation role in 58	lastana lastina tractama nicesa. 124, 126
- in 2,9-(di-2pyridyl)-	lactam—lactim tautomerism 124–126 – of 2-hydroxypyridine 360–362
4,7-di(<i>tert</i> -butyl)carbazole 59 – in hydrogen-bonded dimers 59–60	of 2-hydroxypyridine 360–362 lactams 310–312
intramolecular proton transfer reactions	- vinylogous lactams 312–313
50–51	lactim–lactam phototautomerization 93
intrinsic isotope effects 151–156	Langevin equation 222–223
– intrinsic deuterium isotope effects	laser-induced fluorescence (LIF) 178
153-154	Lee, Yang, and Parr (LYP) density function
– – on ¹³ C CS 153–154	343
on ¹⁹ F CS 154–155	Legendre polynomials 257
on ¹⁵ N chemical shifts 154	Lennard–Jones parameters 356
on ¹⁷ O chemical shifts 154–155	linear combination of atomic orbitals (LCAO)
¹⁸ O isotope effects on ¹³ C chemical shifts	339
155–156 intrinsic splitting width 106	linear solvation energy relationship (LSER) methods 2, 277–302
ionization techniques 84	- case histories 287–298
isotope effects on chemical shifts as a tool in	$-$ enol formation from β -diketones and
tautomeric equilibria study 145–173, See	related compounds 288
also Intrinsic isotope effects; Secondary	– – pyrazolone 25, 295–298
isotope effects	 – Schiff bases and related azo compounds
– experimental requirements 148–151	292–295
– – concentric tubes 149	disadvantages 298–300

- earlier approaches 301-302 NMR spectroscopy, tautomerism types studied - Taft-Kamlet LSER methodology 277-287, by 109-137 See also individual entry azo-hydrazone tautomerism 133 - in tautomer ratio study 277-302 - carbohydrate tautomerism 132-133 linearized coupled cluster theory with single - five- or six-membered heterocyclic and double excitations (LCCSD) 340 compounds, annular tautomerism of Liouville equation 214 126 - 128- classical 214 - imine-amine tautomerism 116-124 - quantum 215 keto-enol tautomerism 112–116 Liouville space 238 - lactam-lactim tautomerism 124-126 local density approximation (LDA) 343 - methodologies 104-108 local hybrids 345 - MMPT for 264-267 - nitroso (n-oxide) - oxime tautomerism lone-pair repulsion 4-5 low-barrier hydrogen bond (LBHB) systems 128 - 129nucleosides 129–131 lumichrome 66 - nucleotides 129-131 - phosphorus compounds 134-136 - porphyrins 131-132 many-body perturbation theory (MBPT) 340 - proteins 129-131 Marcus's theory 215 - ring-chain tautomerism 109-111 Maxwell-Boltzmann distribution 216 - tetrazole-azide tautomerism 111 meta-GGA functionals 344 - transannular tautomerism 111-112 microwave spectroscopy 178 nonlinear optics 246-247 Miertus-Scrocco-Tomasi model (MST) 354 nucleobases 177-192, See also under minimal augmentation 349 Tautomer-selective spectroscopy minimum basis set 348 nucleosides, tautomeric structures in mixed states 238 129 - 131model compounds 306 nucleotides, tautomeric structures in molecular dynamics free-energy perturbation 129 - 131simulations (MD-FEP) 355 molecular mechanics (MM) dynamics 71 ¹⁸O isotope effects on ¹³C chemical shifts molecular mechanics with proton transfer (MMPT) 254 155 - 156- applications of 259-267 O-hydroxy Schiff bases 157, 162 - - classical and quantum proton transfer in one-tube experiments 148 gas phase 261-263 Onsager's principle 227, 239 - - infrared spectroscopy 259-261 optical dielectric constant 225 - for NMR properties 264-267 optimization procedure 35 - proton transfer reactions with 256-259 OPTimized eXchange (OPTX) density Moller-Plesset perturbation theory (MP2) function 343 ortho-hydroxybenzaldehyde (o-HBA) Monte Carlo free-energy perturbation derivatives 18, 80, 218-219 oscillatory model 14 (MC-FEP) 355 multireference configuration interaction with singles (MR-CIS) level 184 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 72 Pauli principle 339 N zeta 348 negative-charge-assisted hydrogen bonding phase-modulation fluorimetry 54 1-((phenylimino)methyl)naphthalen-2-ol NH tautomerism as a tool in biophysics 1-(phenyldiazenyl)naphthalen-2-ol 41-43 nitroso (n-oxide) – oxime tautomerism 4-(phenyldiazenyl)naphthalen-1-ol, keto-enol 128-129 tautomerism in 37-40

phosphorus compounds 134-136 photoinduced NH tautomerism studies 49-74, See also Bifunctional NH/N azaaromatics; Fluorescence techniques for studying tautomerism; Solute-solvent hydrogen-bonded complexes NH tautomerism as tool in biophysics 72 - 74- by stationary and time-resolved fluorescence techniques 49-74 photoinduced proton/hydrogen atom transfer - amino-imino (NH/N) tautomeric transformations 49-51 direct intramolecular proton transfer reactions 50-51 - solvent-mediated 52 photoinduced tautomerism 79-100. 208-210, See also Femtosecond pump-probe spectroscopy picosecond dynamics of amino-imino tautomerization 65 Poisson bracket 235 Poisson-Boltzmann, generalized born 354 polarizability correction term 278 polarizable continuum model (PCM) 354 polarization functions 229-231, 348 polyfluoroacylmethylenenaphthalides, ring-chain tautomerism of 109-111 populations 238 porphyrins 131–132 positive-charge-assisted hydrogen bonding potential energy surfaces (PESs) 256 potential of mean constraint force (PMF) 73 primary deuterium isotope effects 150 primary isotope effects 146-147, 149-151, 161-163 - deuterium 150 - tritium 150 primary tritium isotope effects 150 primitives 348 proteins, tautomeric structures in 129-131 proton migrations 67-69 - reaction mechanisms and cooperativity in 67 - 69-- concerted mechanism 67 – stepwise or sequential mechanism 67 proton transfer in 5'-deoxypyridoxal 14 - in malonaldehye 16 proton transfer (PT) in molecular systems 253-268, See also Molecular mechanics with proton transfer (MMPT)

-- force-field-based reactive MD 255 - - quantum methods 254 -- ReaxFF 255 - condensed-phase proton transfer 263-264 - force field treatment of 253-268 proton transfer analysis 69-71, 199-210, See also under X-ray diffraction - molecular dynamics 71 - QM/MM simulations 71 - reaction path calculations and energy barriers for 69-71 - using tautomers 2-3 protonation effect on ammonium-azonium tautomerism 43-45 prototropic tautomerism 1 Pseudomerie/ortisomerie theory 10-11 pulse fluorimetry 54 pump-dump-probe 247 pump-probe spectroscopy dynamics 85-93 - ballistic wavepacket motion 88-90 - coherently excited vibrations in product modes 90-92 - data analysis 87-88 - ultrafast IR studies 92 - ultrafast transient absorption signatures of ESIPT 85-87 pure state 238 pyrazolone 25, 295-298 2-pyridone-2-hydroxypyridine (2PY2HP) 254 QM/MM simulations 71 quadratically convergent CISD procedure (QCISD) 340 quantitative analysis of tautomeric equilibria - classical spectrophotometric analysis 26-29 - early attempts to find a solution 26-29 - environmental changes affecting 33-37 - limitations 26-29 - using bands decomposition 29-33 quantum chemical calculation of tautomeric equilibria 337-364, See also Density functional theory (DFT) methods; Wave-function-based methods (WFT) - applications of 357-363 - - annular tautomerism in tetrazole 363 -- lactam-lactim tautomerism of 2-hydroxypyridine 360-362 – SAMPL2 challenge of predicting tautomer ratios 357-360 - choice of basis set 347-351

- computational approaches to 254-256

- computational procedures 338–353	− principles and practicalities 1−3
- solvent effects 353-357	secondary isotope effects 146–147
continuum solvation models 353-355	- on CS 156-161
- spectroscopic properties calculation	isotopic perturbation of equilibrium
351–353	160–161 'self-assisted' intermolecular excited-state
quantum decay 238–242 quantum Liouville equation 215, 243	proton transfer 59
quantum methods 254	self-consistent charged-density functional
quantum proton transfer reaction 236–238	tight binding (SCC-DFTB) 254
quantum proton transfer reaction 250 250	self-consistent field (SCF) 339
r	self-consistent reaction field (SCRF) 354
random phase approximation (RPA) 345–346	short, strong hydrogen bonds (SSHBs) 201 short, strong, low-barrier (SSLB) hydrogen
range-separated hybrids 345	bonds 200
Rayleigh–Brilloun spectrum 239	six-membered ring oxoheterocycles 321–324
reaction surface Hamiltonian (RSH) 261	 benzofusion to give benzenoid structures in
reactive frequency 223	321–324
real tautomeric systems analysis 37–45	Slater determinants 340
 keto-enol tautomerism 	Slater-type orbitals (STOs) 347
– in 4-(phenyldiazenyl)naphthalen-1-ol	solid state 164–165
37–40	- NMR spectroscopic study of tautomerism in
– – in 1-(phenyldiazenyl)naphthalen-2-ol	103–138, See also NMR spectroscopy
41–43	- tautomerism evidenced by diffraction
- 1-((phenylimino)methyl)naphthalen-2-ol40-43	methods 197–211, <i>See also</i> X-ray diffraction
ReaxFF 255	– isomers, equilibria, and kinetics
redfield theory 214, 241–243	197–211
red-shifted fluorescence found in salicylic acid	solute-solvent hydrogen-bonded complexes
16	60-67
reduced density matrix 247	solution, NMR spectroscopic study of
resonance-assisted hydrogen bond (RAHB)	tautomerism in 103-138, See also NMR
systems 154, 199–203	spectroscopy
restricted Hartree-Fock (RHF) 67	solvatochromic approach 277, 284
reversal in tautomeric form 3–5	solvent coordinate 226–233
- causes of 3-4	– application 231–233
aromatic resonance 3-4	- basics 226-229
dipolar repulsion 4-5	solvent dependence 34
lone-pair repulsion 4-5	- intensity 34
 – selective stabilization through 'far' intramolecular hydrogen bonding 5–6 	- shape 34 solvent effect
ring-chain tautomerism 109–111	- on ammonium-azonium tautomerism
- of polyfluoroacylmethylenenaphthalides	43–45
109	- in quantum chemical calculation 353–357
root-mean-square (RMS) deviation 351	- continuum solvation models 353–355
()	- – explicit solvent models 355–357
S	solvent frequency 243
salt addition effect on equilibrium 34	solvent functionality 33–34
α Scale 281–283	solvent influence on tautomeric form 8–9
β Scale 279–281	solvent-mediated NH tautomerism 52
$-\beta$ value for water 283–286	solvent role in intramolecular proton transfer
π^* Scale 278–279	reactions 221–224
Schiff bases 93, 157, 162, 292–295	spectral charts 12
Schrödinger equation 237	spectral files 12
scope of tautomerism 1–3	spectroscopic properties calculation 351–35.

376	Index	
	spin-boson system 242 spin-component-scaled MP2 method (SCS-MP2) 340 split valence zeta 348 static (non-dynamic) electron correlation	tetrazole–azide tautomerism 111 thermally induced tautomerism, XRD of 203–208 – crystal structure 206, 208 – ketohydrazone-azo enol tautomeric
	stationary fluorescence techniques 49–74, See also under Photoinduced NH tautomerism studies	equilibrium 203 - molecular structure 204 - viable supramolecular structures and tautomeric states 207
	steady-state fluorescence methods 52–53 stepwise or sequential mechanism 67 stereoelectronic hindrance 326–327 steric hindrance 326–327	thiolactams, Δ (NMe) for 317–320 β -Thioxoketones 156, 166–172 – multiple equilibria 169–172 thymine 188–189
	Stokes friction 224 Stokes shift 80	time-dependent density functional theory (TD-DFT) methods 69
	structure influence on tautomeric form 9 surface volume polarization for electrostatics (SVPE) 354	time domain 54 time-resolved absorption measurements 82–84
susceptibility 246 tim		time-resolved fluorescence techniques 54, See also under Photoinduced NH tautomerism studies
	Taft–Kamlet LSER methodology 277–287 $-\pi^*$ for gas phase 286–287 $-\pi^*$ scale 278–279 $-\beta$ scale 279–281	time-resolved infrared spectroscopy 84–85 transannular tautomerism 111–112 transition state theory (TST) 17, 213, 216–218
	$-\alpha$ scale 281–283 tautomeric constant ($K_{\rm T}$) 26	activation energy 216solvent role 221–224
	tautomeric equilibrium 9–13 – historical overview 9–13 – azaindole 17	triple-zeta, TZ 348 tryptophan 17 two-bond isotope effects 153
	 – flavones 17 – ortho- hydroxybenzaldehyde derivatives 	u ultrafast IR studies 92
	18 pseudomerie/ortisomerie theory 10–11 spectral charts 12 spectral files 12	ultrafast pump–probe spectroscopy 81–85 – fluorescence upconversion 84 – ionization techniques 84
	 - tautomerization dynamics 13-19 - tryptophan 17 tautomeric shift 177 	pump-probe experiment for 82time-resolved absorption measurements82-84
	tautomer-selective spectroscopy 177–192 – of nucleobases, isolated in gas phase 177–192, <i>See also</i> Guanine	 time-resolved infrared spectroscopy 84–85 ultrafast transient absorption signatures of ESIPT 85–87
	adenine 18/ advantages 178 base pairs 189–191	'unconventional' approaches to DFT 345–346
	challenges in 178 cytosine 187–188	uracil 188–189 usnic acid 163
	techniques 177–179 thymine 188–189	valence multiple zeta 348
	 - uracil 188–189 temperature change effect on equilibrium 35 	vinylogous lactams 312–313
	temperature jump technique 14 tetrazole, annular tautomerism in 363	wave-function-based methods (WFT) 338–342

- correlated treatments 340-342
- independent particle methods 339-340

х

x-ray diffraction 197–199

- in proton transfer analysis 199-211
- asymmetric hydrogen bonds, proton potentials of 200
- photoinduced tautomeric processes 208-210
- - resonance-assisted hydrogen bonding 199-203

- - tautomerism 199-203
- - thermally induced tautomerism 203-208, See also individual entry - in ratio of tautomers estimation 198
- x-ray photodiffraction 209

zero-point energy (ZPE) 351 zwitterionic equilibria 330