а

adsorption-induced strain – adsorbate–adsorbent couple 33 – hysteresis loop 33–34 – MCM-41 and SBA-15 silicas 33 Aizoaceae (ice plants) 192 anisotropic deformation 181

b

bilayered structures
bending 185–187
twisting 187–189
biomimetic model 195–197
Biot coefficient 109

С

carbon dioxide injection - axisymmetric 122-123 - cleats 115, 123 capsule - coal matrix thermodynamic equilibrium, - plastic deformation 182 123 - fractured coal 116 intrinsic permeability 123 - Kozeny-Carman relation 123 movement 186-188 - mass balance equations 122 cell wall-water interactions - methane recovery process 116 adsorption stages 180 - methane-free coal seam, finite-element - "free water" 180 simulations 124 - permeability 123 - pressures 115 carnivorous Venus flytrap 182 cavitation cellular solid - Cohan's model 47 - empty pore space 60 - duplex porous layer 51 - elemental isotherms 47-48 geometry 61 - evaporation process 47 - heterogeneous nucleation and elastic strain 52 - 55- ice plant 61-62

Nonlinear Elasticity and Hysteresis: Fluid-Solid Coupling in Porous Media, First Edition. Edited by Alicia H. Kim and Robert A. Guyer. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

- homogeneous nucleation 51-52 - ink-bottle geometry 47 - nitrogen adsorption isotherm 48 - pore-blocking/percolation mechanism 47 - Si/A/B and Si/B/A configuration 49-51 CBM. see coal bed methane (CBM) production CED. see cohesive energy density (CED) cell walls - actuation patterns 187 - anisotropic swelling 184 - bilayered structure, twisting 189 - contractile roots 191-192 - curvature of bilayer 185 - elastic deformation. see elastic deformation - Erodium awns 189 - force and torque 186 - hydro-actuation in pine cones 186 - ice plant seed capsule. see ice plant seed - radial distribution, shear strains 188 - tension wood fibers 189-191 wheat awns hydro-actuated swimming - "freezing bound water" 180 - "non-freezing bound water" 180 swelling/shrinkage, wood 180–181 - typical sorption isotherm, wood 179 - hexagonal. see hexagonal cellular solid - honeycomb. see honeycomb cellular solid

cellular solid (contd.) numerical tests, elastic properties 62 - 63- wood 61-62 cellulose-rich inner laver (CIL) 194 chemical potential molar chemical potential 111 – protocol 68, 70, 72 closure models - fluid-field and solid-field stresses 138-139 governing equations 135 material stress gradients 136–137 – momentum exchange 137–138 - Reynold's stress and body forces 136 - solid matrix constitutive models 139 coal bed methane (CBM) production 115 coal seams - CO2 injection. see carbon dioxide injection - coal bed methane (CBM) production 115 - CO₂-ECBM 115-116 ECBM applications 115–116 – fractured coal 116 - hysteresis source 119-122 - representative elementary volume, modeling 116 - 117- volumetric strain 115 CO2-enhanced coal bed methane recovery (CO2-ECBM) 115 Cohan's model 28, 47 cohesive energy density (CED) - definition 194 ice plant keel 195 contractile roots 191-192 coupling macroscopic damage and damage-dependent PM model 93-94 porous materials. see fluid-solid coupling, porous materials е elastic deformation – carnivorous Venus flytrap 182 light-induced/Circadian movements

182 - stomatal movement 183 - turgor-based rapid movement 184–185 elastic strain 52–55 elemental isotherms 47–48 Erodium awns curling 189 evaporation - porous silicon 30–31 - porous Vycor glass 28–29 - SBA-15 silica 31–33

f

fluid-solid coupling, porous materials
ice plant 61-62
mechanical response, applied external forces 63-66
pore space 73-76
quantities of interest 62-63
skeleton 66-73
systems and models 57-60
wood 61
Fontainebleau sandstone
description 1
longitudinal vibration modes 16
temperature control 21-22

- thin section 1-2

g

gelatinous layer (G-layer) 190-191
generic (and potentially microporous) media
- deviatoric behaviors 110
- Gibbs-Duhem relation 111
- isotropy 110
- pore fluid, molar chemical potential
 111
- tangent Biot coefficient 111-112
- thermodynamic pressure 111
h
Hertz-Mindlin model 4
heterogeneous nucleation 52-55

hexagonal cellular solid – extension ratio 65–66 swelling ratio 67 HF/EtOH solution 47 high-pressure preferred orientation (HIPPO) neutron diffraction measurements. see neutron diffraction measurements sample holder and can 13 - sample with thermocouple junctions and piezoelectric disks 12 homogeneous nucleation 51-52 honeycomb cellular solid – anisotropy 61–62 – extension ratio 65–67 - fluid response 69-71, 74-78 - frame 57-58 - geometry 61, 64 isotropic 62 swelling ratio 66–67 honeycombs - anisotropy, swelling behavior 165

- geometrical features 161, 162
- layered cell wall 163-165
- micromechanics 162

- moisture-induced swelling 162 second-order strain and stress tensors 162 – shape angle 165 - swelling coefficients 165-167 wood geometry analysis 161 Hook's law 173 hydro-actuated plants - anisotropic deformation 181 - biomimetic potential 195, 197 - cell walls. see cell walls - cell wall-water interactions. see cell wall-water interactions - and fungal movements 172 - movement 171 - physiochemistry and mechanics 173 - plant cell walls 177-179 plant-water interactions 171 snap-buckling movements 171–172 - stress and strain 173-174 - swelling/shrinking movements 172 - 173- water. see water

i

ice plant seed capsule – CIL 192 – hierarchical morphology 192–193 – hydroresponsive unfolding 193–194 – plant movement actuator 194–195 – swelling/shrinkage 192–193 inflation, water engine 174–176 ink-bottle geometry 47, 49–50

I

Lagrangian frame 141 Los Alamos Neutron Science Center (LANSCE) 8

т

macroporous media - Biot coefficient 109 - Gibbs - Duhem relation 108 - Lagrangian porosity 108 - linear poroelasticity 109 - micromechanical relations 109 macroscopic damage model - coupling 93-94 - damage loading function 87 - damage variable 85-86 - loading conditions 87 - pre-peak regime 87 - stress-strain curve 85-86

- uniaxial scalar formulation 85

macroscopic measurements - Hertz-Mindlin model 4 humidity measurements, hysteresis 5–6 hysteretic macroscopic strain 3 - Preisach-Mayergoyz (PM) model 4 - rate effects 4 rock grain skeleton 4 - slow dynamics 6-7 - stress-strain hysteresis 4-5 - temperature vs. modulus/sound speed 4 MCM-41 28 mechanical testing - extension ratio 63-64 - swelling ratio 64 mesoporous materials - adsorption-induced strain 29-34 - cavitation. see cavitation - Cohan's model 28 - deformation 27 - evaporation. see evaporation - external stress 45-47 - hysteresis loop 27-28 - MCM-41 and SBA-15 28 - porous Si layers 43 stress and strain effects 27 mesoporous media - Gibbs adsorption isotherm 113 - grand potential 112 - isotropic linear elastic mesoporous medium 114 - pore volume 112 - Shuttleworth equation 113 - surface tension 113 microfibril angle (MFA) - anisotropic swelling 184 - description 177-178 tensile stress generation 191 moisture dependence damage and PM model 99 - 102- disjoining pressure 95 – fluid–solid interactions 95–96 - mechanical experiments 96-98 - porous media classification 94 multifield equations 134-135

n

neutron de Broglie wavelength 8
neutron diffraction measurements
average temperature and frequency 19, 21–22
elastic behavior, sandstone 12
Fontainebleau sandstone 13–14

 HIPPO. see high-pressure preferred orientation (HIPPO)

neutron diffraction measurements (contd.)	 porosity, adsorption and desorption ratios
– hysteresis loop 19–20	160
– longitudinal vibration modes, Fontainebleau	 sorption process, reversibility 159
sample 16	 strain vs. relative humidity (RH) 159
 neutron scattering data 17 	 strain – moisture content curves 160
 nonporous sample (steel) 20–21 	 swelling anisotropy 161
– Pochhammer modes 16	 – tangential to radial strain, ratios 160
– PZT-5A material 14	Piezoelectric disks (PZT-5A) material 14
- quality factor Q 18	pine cones 186
– sample cell 14–15	plant cell walls 177–179
– stress–strain 9–12	plant material—water interactions
neutron scattering measurements	– strain 173–174
 crystalline structure 7–8 	– stress 173–174
– elastic/macroscopic 7	plastic deformation 182
 grains and bonds, rock surface 7 	PM. see Preisach–Mayergoyz (PM) model
– HIPPO 8–9	Pochhammer modes 16
<i>– in situ</i> uniaxial loading 8	pore size distribution (PSD)
– LANSCE 8	 nitrogen adsorption isotherm 48
– magnetic hysteresis 7	– TEM plane views 47
– neutron de Broglie wavelength 8	pore space, solid structural features
 ordered and disordered materials 7 	– description 57
– powder diffraction 8	– fluid in 73–76
- SMARTS 8	porous and cellular materials
– X-ray diffraction techniques 7	– aperture size, piston force 143–144
nitrogen adsorption isotherm 48	- articular cartilage, aperture size $14/-148$
nonlinear, hysteretic and damage behavior of	– cartilage response, loading rate 148
quasi-brittle materials	– cellular solid stress wave 142
– continuum modeling 84	– compression response 144
- cyclic loading 81	 – continuum-scale mechanical response
- load-deformation behavior 81–83	149
– oolitic limestone, cracking pattern 81–82	- dynamic compression, thin sheet 140
– PM model 84–85	– engineering applications 127
– quasistatic compressive tests 84	– equations governing 131
- stiffness reduction and recovery 82	- finite-strain uniaxial compression
- strain-softening curve 82–83	139–140 Guite ereleves to during 121
- nonlinear hysteretic elastic behavior. see	- Inite-volume technique 131
Preisach–Mayergoyz (PM) model	- fluid pressure and flow 127
-	- force-compression curves 14/
<i>p</i> DDSC and primary descending complex surgers	- Interstitial lititas 127
(DDSC) see primary descending scanning curve	– Lagrangian irame 141
(PDSC)	- mechanical response 149
Petter stage 21–22	- multifield equations and systems 152–155
microscopy (DCVTM) 157 159	- Inditified theory 150–151
column translation vector 158	- hatural/synthetic material 151–152
confocal scapping laser microscopy	
157	niston force leading rate 144 145
- controlled relative humidity (PH)	= piston force, foading rate 144-145
157 159	scanning electron micrograph 140
= 3D affine transformation 158	= selicone form $141 = 1/3$
- geometry and alignment 161	_ single-field equations and averaging
- homogeneous tissues behavior 158	133–134
- modified Bronnikov algorithm (MBA)	 traditional modeling approaches
158	128–130

- uniaxial compression 141 - viscoelastic properties 149 porous sedimentary rocks - acoustic field 23 - cementation 2 diagenesis 1 Fontainebleau sandstone 1–2 – grains 2 - macroscopic measurements. see macroscopic measurements - neutron diffraction measurements. see neutron diffraction measurements - neutron scattering measurements. see neutron scattering measurements - oil and gas extractions 1 – Peltier stage 21–22 – petrographic techniques 2 - pore space 2 – sandstone 1 - thermal expansion coefficients, quartz 23 - vibration 3 porous Si layers 43-45 porous solids, poromechanical modeling - adsorption 105 - coal seams. see coal seams mercury intrusion porosimetry 2 - pores, subcategories 105 - saturated porous media. see saturated porous media porous Vycor glass 28-29 Preisach-Mayergoyz (PM) model - compliance 89 - cyclic tensile loading 91 - high damage levels 93 – inelastic strain 90 magnetic domains 4 non-classical units (NCUs) 88–89 - parameters 92 - residual strength 90 - reversible nonhysteretic NCUs 88 - tensile and tensile-compressive hysteretic loops 90-91 primary descending scanning curve (PDSC) - nitrogen adsorption isotherm 27-31 - pore-blocking/percolation model 32 - 33– Xenon adsorption isotherm 29 PSD. see pore size distribution (PSD)

q

quasi-brittle materials

- concrete 84
- crack bridging phenomenon 81

- description 81
- macroscopic damage model 85–88
- moisture dependence. see moisture dependence
- nonlinear, hysteretic and damage behavior 81–85

r

- representative elementary volume, coal seams
- characteristic size 117
- cleats 117
- definition 116
- first-order expansion 118
- fluid, adsorbed amount 118
- poromechanical behavior 119
- scales 117
- state variables, coal matrix 118
- thermodynamic equilibrium 117

S

saturated porous media - generic (and potentially microporous) media 110 - 112- grand potential 108 - macroporous media 108-109 – mesoporous media 112–114 rock mechanics, triaxial cell 108 - thermodynamics 107 SBA-15 silica 31-33 shear strains 173 Si/A/B and Si/B/A configuration 49-51 skeleton, solid structural features - description 57 - fluid 59, 66-73 slow dynamics 6 SMARTS. see Spectrometer for Materials Research at Temperature and Stress (SMARTS) snap-buckling movements 171-172 solid-fluid interface - 2D strains 35 - displacement component 36 - elastic and thermodynamics properties 34 - elastic energy, infinitesimal deformations 36 - homogeneous phases 35 - interfacial excess 35 - interfacial free energy 37 - strain and stress tensor elements 35 - tangentials trains 35 solid-liquid interface 40-43 solid-solid interface 36

solid-vapor interface 37-40

– neutron 10, 23

turgor pressure 182

Trifolium pratense 191-192

Spectrometer for Materials Research at v Venus flytrap 184-185 Temperature and Stress (SMARTS) volumetric confining stress 108 neutron diffraction measurements. see neutron diffraction measurements polycrystalline materials w water spreading pressure 33, 38 - hydrogen bonds 174 stomatal movement 183 - inflation 174-176 swelling - stresses/movements in plants 174 - adjacent cell walls, geometrical interactions - swelling 176-177 153 - uptake. see cell walls adsorbed moisture displacement wheat awns 186-187 153 wood - description 154-155 - cellulose microfibrils 154 - honeycombs, parametric investigation. see closed-loop RH protocol 156 honeycombs - hemicelluloses 155 - investigation. see phase contrast synchrotron - hygroexpansivity 156 X-ray tomographic microscopy - moisture adsorption 153, 155-156, - interfibril distance 155 - macroscopic swelling and shrinkage strains 168-169 155 moisture-induced shape memory - middle lamella (ML) 155 167 - 168- multilayer fiber-reinforced composite 155 sorption hysteresis, relative humidity (RH) - polymerization 154 168 swelling/shrinkage, ice plant seed capsule - softwood 155 - strain hysteresis 156 192 - 193- swelling. see swelling t - swelling/shrinkage 180-181 tension wood fibers 189-191 х time-of-flight (TOF) – diffractometers 8

Xenon adsorption isotherm 29

Young modulus 173-174